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Abstract. We provide a semantical reconstruction of rational closure. We first
consider rational closure as defined by Lehman and Magidor for propositional
logic, and we provide a semantical characterization based on minimal models
mechanism on rational models. Then, we extend the whole formalism and se-
mantics to Description Logics focusing our attention to the standard ALC: we
first naturally adapt to Description Logics Lehman and Magidor’s propositional
rational closure, starting from an extension of ALC with a typicality operator
T that selects the most typical instances of a concept C (hence T(C) stands
for typical Cs). Then, we provide for ALC plus T a semantical characterization
similar to the one for propositional logic. Last, we extend the notion of rational
closure to the ABox.

1 Introduction
In [18] Kraus, Lehmann and Magidor (henceforth KLM) proposed a set of natural
properties of non-monotonic reasoning. Plausible inferences are represented by non-
monotonic conditionals of the form A |∼ B, to be read as “typically or normally A
entails B”: for instance monday |∼ go work can be used to represent that “normally
if it is Monday I go to work”. Conditional entailment is non-monotonic since from
A |∼ B one cannot derive A ∧ C |∼ B, in our example from monday |∼ go work one
cannot monotonically derive monday ∧ ill |∼ go work (“normally if it is Monday,
even if I am ill I go to work”). KLM organized the core properties of non-monotonic
reasoning into a hierarchy of systems, from the weakest to the strongest: cumulative
logic C, loop-cumulative logic CL, preferential logic P. Preferential logic has been
strengthened into rational logic R in [20]. In this work, we restrict our attention to the
rational logic R on which rational closure is built.

KLM system R formalizes desired properties of non-monotonic inference but it
is too weak to perform useful non-monotonic inferences. We have just seen that by
the non-monotonicity of |∼, A |∼ B does not entail A ∧ C |∼ B, and this is a wanted
property of |∼. However, there are cases in which, in the absence of information to
the contrary, we want to be able to tentatively infer that also A ∧ C |∼ B, with the
possibility of withdrawing the inference in case we discovered that it is inconsistent.
For instance, we might want to infer that A ∧ C |∼ B when C is irrelevant with respect
to the property B: we might want to tentatively infer from monday |∼ go work that
monday ∧ shines |∼ go work (“normally if it is Monday, even if the sun shines I go to
work”), with the possibility of withdrawing the conclusion if we discovered that indeed
the sun shining prevents from going to work. R cannot handle irrelevant information in
conditionals, and the inferences just exemplified are not supported.

Partially motivated by this weakness, Lehmann and Magidor have proposed a true
non-monotonic mechanism on the top of R. Rational closure on the one hand preserves



the properties of R, on the other hand it allows to perform some truthful non-monotonic
inferences, like the one just mentioned (monday ∧ shines |∼ go work). In [20] the
authors give a syntactic procedure to calculate the set of conditionals entailed by the
rational closure as well as a quite complex semantic construction. It is worth noticing
that a strongly related construction has been proposed by Pearl [22] with his notion of
1-entailment, motivated by a probabilistic interpretation of conditionals.

The first problem we tackle in this work is that of giving a purely semantic characteri-
zation of the syntactic notion of rational closure. Our semantic characterization has as its
main ingredient the modal semantics of logic R, over which we build a minimal models’
mechanism, based on the minimization of the rank of worlds. Intuitively, we prefer
the models that minimize the rank of domain elements: the lower the rank of a world,
the more normal (or less exceptional) is the world and our minimization corresponds
intuitively to the idea of minimizing less-plausible worlds (or maximizing most plausible
ones). We show that a semantic reconstruction of rational closure can be given in terms
of a specific case of a general semantic framework for non-monotonic reasoning.

In the second part of the paper we consider Description Logics (DLs for short). A
large amount of discussion has recently been done in order to extend the basic formal-
ism of DLs with non-monotonic reasoning features [1, 2, 4, 6, 7, 14, 19, 17, 3, 21]; the
purpose of these extensions is that of allowing reasoning about prototypical properties
of individuals or classes of individuals. In spite of the load of work in this direction,
finding a solution to the problem of extending DLs for reasoning about prototypical
properties seems far from being solved. The best known semantics for non-monotonic
reasoning have been used to the purpose, from default logic [1], to circumscription [2],
from Lifschitz’s non-monotonic logic MKNF [6, 21] to KLM logics. Concerning KLM
logics, in [10] a preferential extension of ALC is defined, based on the logic P, and in
[14] a minimal model semantics for this logic is proposed; in [3], a defeasible description
logic based on the logic R is introduced and, in [4], a notion of rational closure is defined
for ALC through an algorithmic construction similar to the one introduced by Freund
for the propositional calculus. Although [4] provides axiomatic properties of this notion
of rational closure, it does not provide a semantics for it.
We here extend to ALC the definition of rational closure by Lehmann and Magidor
[20] and define a minimal model semantics for rational closure in ALC by adapting the
semantics introduced in the propositional case. We start from the extension of the descrip-
tion logicALC with a typicality operator T, first proposed in [10], that allows to directly
express typical properties such as T(HeartPosition) v Left , T(Bird) v Fly , and
T(Penguin) v ¬Fly , whose intuitive meaning is that normally, the heart is positioned
in the left-hand side of the chest, that typical birds fly, whereas penguins do not. In this pa-
per, the T operator is intended to enjoy the well-established properties of rational logic R.
Even if T is a non-monotonic operator (so that for instance T(HeartPosition) v Left
does not entail that T(HeartPositionuSitusInversus) v Left) the logic itself is mono-
tonic. Indeed, in this logic it is not possible to monotonically infer from T(Bird) v Fly ,
in the absence of information to the contrary, that also T(Bird u Black) v Fly . Nor it
can non-monotonically be inferred from Bird(tweety), in the absence of information to
the contrary, that T(Bird)(tweety) and that Fly(tweety). Non-monotonicity is achieved,
from a semantic point of view, by defining, on the top of ALC with typicality, a minimal
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model semantics which is similar to the one in [14], with the difference that the notion
of minimality is based on the minimization of the ranks of the worlds, rather than on the
minimization of specific formulas, as in [14]. This semantics provides a characterization
to the rational closure construction for ALC, which assigns a rank (a level of exception-
ality) to every concept; this rank is used to evaluate defeasible inclusions of the form
T(C) v D: the inclusion is supported by the rational closure whenever the rank of C is
strictly smaller than the one of C u ¬D.

Last, we tackle the problem of extending rational closure to ABox reasoning: in
order to ascribe defeasible properties to individuals we maximize their typicality. This
is done by minimizing their ranks (that is, their level of exceptionality). Because of the
interaction between individuals (due to roles) it is not possible to separately assign a
unique minimal rank to each individual and alternative minimal ranks must be considered.
We end up with a kind of skeptical inference with respect to the ABox.

The rational closure construction that we propose has not just a theoretical interest
and a simple minimal model semantics, we show that it is also feasible. Its complexity is
EXPTIME in the size of the knowledge base (and the query), the same complexity as
the underlying logic ALC. In this respect it is less complex than other approaches to
non-monotonic reasoning in DLs [14, 2] and comparable with the approaches in [4, 21],
and thus a good candidate to define effective non-monotonic extensions of DLs.

2 Propositional rational closure: a semantic characterization
2.1 KLM rational system R
The language of logic R consists just of conditional assertions A |∼ B. Here we consider
a richer language which also allows boolean combinations of assertions. Our language
L is defined from a set of propositional variables ATM , the boolean connectives and
the conditional operator |∼. We assume that the set ATM is finite. We use A,B,C, . . .
to denote propositional formulas (that do not contain conditional formulas), whereas
F,G, . . . are used to denote all formulas (including conditionals). The formulas of L are
defined as follows: if A is a propositional formula, A ∈ L; if A and B are propositional
formulas, A |∼ B ∈ L; if F is a boolean combination of formulas of L, F ∈ L. A
knowledge base K is any set of formulas: in this work we restrict our attention to finite
knowledge bases.

Here is the axiomatization of logic R [11]. We use `PC (resp. |=PC) to denote
provability (resp. validity) in the propositional calculus:
• All axioms and rules of propositional logic
• A |∼ A (REF)
• if `PC A↔ B then (A |∼ C)→ (B |∼ C), (LLE)
• if `PC A→ B then (C |∼ A)→ (C |∼ B) (RW)
• ((A |∼ B) ∧ (A |∼ C))→ (A ∧B |∼ C) (CM)
• ((A |∼ B) ∧ (A |∼ C))→ (A |∼ B ∧ C) (AND)
• ((A |∼ C) ∧ (B |∼ C))→ (A ∨B |∼ C) (OR)
• ((A |∼ B) ∧ ¬(A |∼ ¬C))→ ((A ∧ C) |∼ B) (RM)

The axiom (CM) is called cumulative monotony and it is characteristic of all KLM
logics, axiom (RM) is called rational monotony and it characterizes the logic of rational
entailment R (it is what distinguishes rational from the weaker preferential entailment). R
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seems to capture the core properties of non-monotonic reasoning, as shown by Friedman
and Halpern these properties are quite ubiquitous being characterized by different
semantics (all of them being instances of so-called plausibility structures [8]).

The logic R enjoys a simple modal semantics, actually it turns out that it is the flat
fragment (i.e. without nested conditionals) of the well-known conditional logic VC. The
modal semantics is defined by considering a set of worldsW equipped by an accessibility
(or preference) relation <. Intuitively the meaning of x < y is that x is more normal/less
exceptional than y. We say that a conditional A |∼ B is true in a model if B holds in all
most normal worlds where A is true, i.e. in all <-minimal worlds satisfying A.

Definition 1. A rational model is a tripleM = 〈W, <, V 〉 where: • W is a non-empty
set of worlds; •< is an irreflexive, transitive relation onW satisfying modularity: for all
x, y, z, if x < y then either x < z or z < y. < further satisfies the Smoothness condition
defined below; • V is a function V : W 7−→ 2ATM , which assigns to every world
w the set of atoms holding in that world. If F is a boolean combination of formulas,
its truth conditions (M, w |= F ) are defined as for propositional logic. Let A be a
propositional formula; we define MinM< (A) = {w ∈ W | M, w |= A and ∀w′, w′ < w

impliesM, w′ 6|= A}. HenceM, w |= A |∼ B if for all w′, if w′ ∈ MinM< (A) then
M, w′ |= B.
We define the Smoothness condition: ifM, w |= A, then w ∈ MinM< (A) or there is
w′ ∈ MinM< (A) s.t. w′ < w. Validity and satisfiability of a formula are defined as usual.
Given a set of formulas K of L and a modelM = 〈W, <, V 〉, we say thatM is a model
of K, writtenM |= K, if for every F ∈ K and every w ∈ W ,M, w |= F . K rationally
entails a formula F (K |= F ) if F is valid in all rational models of K.

Since in this work we limit our attention to a language containing finitely many atoms,
and to finite knowledge bases, we can restrict our attention to finite models, as the logic
enjoys the finite model property (observe that in this case the smoothness condition is
ensured trivially by the irreflexivity of the <). It is easy to see from Definition 1 that
the truth condition of A |∼ B is “global” in a modelM = 〈W, <, V 〉: given a world
w, we have thatM, w |= A |∼ B if, for all w′, if w′ ∈ MinM< (A) thenM, w′ |= B. It
immediately follows that A |∼ B holds in w if and only if A |∼ B is valid in a model,
i.e. it holds thatM, w′ |= A |∼ B, for all w′ inW; for this reason we will often write
M |= A |∼ B. Moreover, when the reference to the modelM is unambiguous, we will
simply write Min<(A) instead of MinM< (A).

Rational models can be equivalently defined by postulating the existence of a rank
function k : W → N, and then letting x < y iff k(x) < k(y). For this reason rational
models are also called “ranked models”.

Definition 2 (Rank of a world). Given a modelM = 〈W, <, V 〉, the rank kM of a
world w ∈ W , written kM(w), is the length of the longest chain w0 < · · · < w from w
to a minimal w0 (i.e. there is no w′ such that w′ < w0).

Definition 3 (Rank of a formula). The rank kM(F ) of a formula F in a modelM is
i = min{kM(w) :M, w |= F}. If there is no w :M, w |= F , F has no rank inM.

Proposition 1. For anyM = 〈W, V,<〉 and any w ∈ W , we haveM |= A |∼ B iff
kM(A ∧B) < kM(A ∧ ¬B) or A has no rank inM.
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2.2 Lehmann and Magidor’s definition of rational closure
As already mentioned, although the operator |∼ is non-monotonic, the notion of logical
entailment just defined is itself monotonic. In order to strengthen R and to obtain
non-monotonic entailment, Lehmann and Magidor in [20] propose the well-known
mechanism of rational closure. Since in rational closure no boolean combinations of
conditionals are allowed, in the following, the knowledge base K is just a finite set of
positive conditional assertions of the form A |∼ B.

Definition 4 (Exceptionality of propositional formulas and conditional formulas).
Let K be a knowledge base (i.e. a finite set of positive conditional assertions) and A a
propositional formula. A is said to be exceptional for K if and only if K |= > |∼ ¬A. A
conditional formula A |∼ B is exceptional for K if its antecedent A is exceptional for K.
The set of conditional formulas which are exceptional for K will be denoted as E(K).

It is possible to define a non increasing sequence of subsets of K, C0 ⊇ C1, . . . by
letting C0 = K and, for i > 0, Ci = E(Ci−1). Observe that, being K finite, there is a
n ≥ 0 such that for all m > n,Cm = Cn or Cm = ∅.

Definition 5 (Rank of a formula). Let K be a knowledge base and let A be a proposi-
tional formula. A has rank i (for K) if and only if i is the least natural number for which
A is not exceptional for Ci. If A is exceptional for all Ci then A has no rank.

Definition 5 above allows to define the rational closure of a knowledge base K.

Definition 6 (Rational closure K̄ of K). Let K be a conditional knowledge base. The
rational closure K̄ of K is the set of all A |∼ B such that either (1) the rank of A is
strictly less than the rank of A ∧ ¬B (this includes the case A has a rank and A ∧ ¬B
has none), or (2) A has no rank.

This mechanism, which is now well-established, allows to overcome some weaknesses
of R . First of all it is closed under rational monotonicity (RM): if (A |∼ B) ∈ K̄ and
(A |∼ ¬C) 6∈ K̄ then (A ∧ C) |∼ B ∈ K̄. Furthermore, rational closure supports some
of the wanted inferences that R does not support. For instance rational closure allows
to deal with irrelevance: from monday |∼ go work, it does support the non-monotonic
conclusion that monday ∧ shines |∼ go work.

2.3 A semantical characterization of rational closure
We provide a semantical reconstruction of rational closure in terms of a minimal models’
mechanism, thus providing an instantiation of the following general recipe for non-
monotonic reasoning:
(i) fix an underlying modal semantics for conditionals (here we concentrate on R but
another possible choice could have been the weaker P as in [12]),
(ii) obtain non-monotonic inference by restricting semantic consequence to a class of
minimal models. These minimal models should be chosen on the basis of semantic con-
siderations, independent from the language and from the set of conditionals (knowledge
base) whose non-monotonic consequences we want to determine.
In the next proposition we will useMi defined as follows. LetM = 〈W, <, V 〉 be
any rational model of K. LetM0 = M and, for all i, letMi = 〈Wi, <i, Vi〉 be the
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rational model obtained fromM by removing all the worlds w with kM(w) < i, i.e.,
Wi = {w ∈ W : kM(w) ≥ i}.
Proposition 2. LetM = 〈W, <, V 〉 be any rational model of K. For any propositional
formula A, if rank(A) ≥ i, then 1) kM(A) ≥ i, and 2) if A |∼ B is entailed by Ci, then
Mi satisfies A |∼ B.

The semantics we propose is a fixed interpretations minimal semantics, for short FIMS .
In some respects our approach is similar in spirit to minimal models approaches to
non-monotonic reasoning, such as circumscription4.

Definition 7 (FIMS ). GivenM = 〈W, <, V 〉 andM′ = 〈W ′, <′, V ′〉 we say thatM
is preferred toM′ with respect to the fixed interpretations minimal semantics, and we
writeM <FIMS M′, ifW = W ′, V = V ′, and for all x, kM(x) ≤ kM′(x) whereas
there exists x′ : kM(x′) < kM′(x′). We say thatM is minimal w.r.t. <FIMS in case
there is noM′ such thatM′ <FIMS M. We say that K minimally entails a formula
F w.r.t. FIMS , and we write K |=FIMS F , if F is valid in all models of K which are
minimal w.r.t. <FIMS .

Can we capture rational closure within the semantics of Definition 7 above? We are soon
forced to recognize that this is not the case. For instance, consider the following:

Example 1. Let K = {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly}. We derive
that K 6|=FIMS penguin ∧ black |∼ ¬fly. Indeed in FIMS there can be a modelM in
whichW = {x, y, z}, V (x) = {penguin, bird, fly, black}, V (y) = {penguin, bird},
V (z) = {bird, fly}, and z < y < x.M is a model of K, and it is minimal with respect
to FIMS (indeed once fixed V (x), V (y), V (z) as above, it is not possible to lower the
rank of x nor of y nor of z unless we falsify K). Furthermore, inM, x is a typical world
in which “it flies” and “it is black” hold (since there is no other world satisfying the same
propositions which is preferred to it). Therefore, K 6|=FIMS penguin ∧ black |∼ ¬fly.

We have that {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly} 6|=FIMS penguin ∧
black |∼ ¬fly. On the contrary, it can be verified that penguin∧ black |∼ ¬fly is in the
rational closure of {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly}. Therefore, FIMS
as it is does not allow us to define a semantics corresponding to rational closure. Things
change if we consider FIMS applied to models that contain all possible valuations
compatible (see Definition 8 below) with a given knowledge base K. We call these
models canonical models.

Example 2. Consider Example 1 above. If we restrict our attention to models that also
contain a w with V (w) = {penguin, bird, black} which satisfies “it is a penguin”, “it
is black” and “it does not fly” in which w is a typical world satisfying “it is a penguin”,
we are able to conclude that typically it holds that if it is a penguin and it is black then it
does not fly, as in rational closure. Indeed, in all minimal models of K that also contain
w with V (w) = {penguin, bird, black}, it holds that penguin ∧ black |∼ ¬fly.

4 As for circumscription, there are mainly two ways of comparing models with the same domain:
by keeping the valuation function fixed (only comparingM andM′ if V and V ′ in the two
models respectively coincide); or by also comparingM andM′ in case V 6= V ′. In this work
we consider the latter alternative.
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We are led to the conjecture that FIMS restricted to canonical models could be the
right semantics for rational closure. Canonical models are defined w.r.t. the language
L. A truth assignment v : ATM −→ {true, false} is compatible with K, if there is no
formula A ∈ L such that v(A) = true and K |= A |∼ ⊥.

Definition 8. A modelM = 〈W, <, V 〉 satisfying a knowledge base K is said to be
canonical if it contains (at least) a world associated to each truth assignment compatible
with K, that is to say: if v is compatible with K, then there exists a world w inW , such
that for all propositional formulas BM, w |= B iff v(B) = true.

It can be shown that for any knowledge base a minimal canonical model exists: this is
any canonical model in which every possible world w has the rank associated to the
conjunction of all atoms and negated atoms in L that it satisfies. We can also prove that
the canonical models that are minimal with respect to FIMS are an adequate semantic
counterpart of rational closure.

Theorem 1. Let K be a knowledge base andM be a canonical model of K minimal
w.r.t. <FIMS . We show that, for all conditionals A |∼ B,M |= A |∼ B if and only if
A |∼ B ∈ K, where K is the rational closure of K.

3 Rational closure in Description Logics
As mentioned, the interest towards non-monotonic reasoning in DLs has grown in the
last years. In this section, we extend to ALC the notion of rational closure proposed
by Lehmann and Magidor [20], recalled in Section 2.2, and we define a semantic
characterization of this notion of rational closure by introducing a minimal model
semantics for ALC with defeasible inclusions. This semantics is a direct generalization
of the minimal (canonical) model semantics introduced in Section 2.3

To express defeasible inclusions, ALC is extended with a typicality operator T,
following the approach in [10, 14]. Differently from [14], here we consider special
kinds of preferential models, namely, rational models, to define the semantics of the
T operator, and we use a different notion of preference between models, namely, the
preference relation <FIMS , introduced in Section 2.3. Given the typicality operator,
the defeasible assertion T(C) v D (all the typical C’s are D’s) plays the role of the
conditional assertion C |∼ D in R.

3.1 The logic ALCRT

Similarly to rational closure which is a non-monotonic mechanism built over R, our
application of rational closure to DLs is done in two steps. First, similarly to what done
in [10], we extend the standard ALC by a typicality operator T that allows to single out
the typical instances of a concept T. Since we are dealing here with rational closure (that
builds over R), we attribute to T properties related to R. The resulting logic is called
ALCRT. As a second step, we build over ALCRT a rational closure mechanism.

Our starting point is therefore the extension of logic ALC with a typicality operator
T. The intuitive idea is to extend the standard ALC allowing concepts of the form T(C)
whose intuitive meaning is that T(C) selects the typical instances of a concept C. We
can therefore distinguish between the properties that hold for all instances of concept C
(C v D), and those that only hold for the typical such instances (T(C) v D).
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Definition 9. We consider an alphabet of concept names C, of role names R, and of
individual constants O. Given A ∈ C and R ∈ R, we define CR := A | > | ⊥ | ¬CR |
CR u CR | CR t CR | ∀R.CR | ∃R.CR, and CL := CR | T(CR). A KB is a pair
(TBox, ABox). TBox contains a finite set of concept inclusions CL v CR. ABox contains
assertions of the form CL(a) and R(a, b), where a, b ∈ O.

The T operator satisfies a set of postulates that are essentially a reformulation of rational
logic R: in this respect, the T-assertion T(C) v D is equivalent to the conditional
assertion C |∼ D in R.

A first semantic characterization of T can be given by means of a set of postulates
that are essentially a restatement of axioms and rules of non-monotonic entailment
in rational logic R. Given a domain ∆ and a valuation function I one can define the
function fT(S) that selects the typical instances of S, and in case S = CI for a concept
C, it selects the typical instances of C. In this semantics, (T(C))I = fT(CI), and fT
has the following intuitive properties for all subsets S of ∆:

(fT − 1) enforces that typical elements of S belong to S. (fT − 2) enforces that if there
are elements in S, then there are also typical such elements. (fT − 3) expresses a weak
form of monotonicity, namely cautious monotonicity. The next properties constraint the
behavior of fT wrt ∩ and ∪ in such a way that they do not entail monotonicity. Last,
(fT−R) corresponds to rational monotonicity, and forces again a form of monotonicity:
if there is a typical S having the property R, then all typical S and Rs inherit the
properties of typical Ss.

The semantics of ALCRT can be equivalently formulated in terms of rational
models: models of ALC are equipped by a preference relation < on the domain, whose
intuitive meaning is to compare the “typicality” of domain elements, that is to say x < y
means that x is more typical than y. Typical members of a concept C, that is members of
T(C), are the members x of C that are minimal with respect to this preference relation
(s.t. there is no other member of C more typical than x). This semantics with one single
preference relation < is the one that, as we will show, corresponds to rational closure5.

Definition 10 (Semantics ofALCRT). A modelM ofALCRT is any structure 〈∆,<
, I〉 where: ∆ is the domain; < is an irreflexive, transitive and modular relation over
∆ (< is modular if, for all x, y, z ∈ ∆, if x < y then either x < z or z < y); I
is the extension function that maps each concept C to CI ⊆ ∆, and each role R to
RI ⊆ ∆I × ∆I . For concepts of ALC, CI is defined in the usual way. For the T
operator, we have (T(C))I = Min<(CI), where Min<(S) = {u : u ∈ S and @z ∈ S

5 One may think of considering a sharper semantics with several preference relations. We aim to
explore this possibility in future works, for the moment, we just notice that (i) the definition
of such a semantics is not straightforward (what does differentiate one preference relation
from another? What are the dependencies between the different preference relations? Has
the typicality operator to be made parametric?) (ii) it cannot be expected that the resulting
semantics, being stronger than the one just proposed, can correspond to rational closure below.
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s.t. z < u}. Furthermore, < satisfies the Smoothness Condition, i.e., for all concepts C,
CI is smooth. For S ⊆ ∆, we say that S is smooth iff for all x ∈ S, either x ∈ Min<(S)
or ∃y ∈ Min<(S) such that y < x,

Theorem 2. [Theorem 1 in [9]] A KB=(TBox,ABox) is satisfiable in a model described
in Definition 10 iff it is satisfiable in a model 〈∆, I, fT〉 where fT satisfies (fT − 1)−
(fT − 5) and (fT −R), and (T(C))I = fT(CI).

In the following, we will refer to the definition of the semantics given in Definition 10.

Definition 11 (Model satisfying a Knowledge Base). Given a modelM, I is extended
to assign a distinct element aI of ∆ to each individual constant a of O (i.e. we assume
the unique name assumption).
We say that: a modelM satisfies an inclusion C v D if it holds CI ⊆ DI ;M satisfies
an assertion C(a) if aI ∈ CI ; andM satisfies an assertion R(a, b) if (aI , bI) ∈ RI .
We say that:M satisfies a knowledge base K=(TBox,ABox), if it satisfies both its TBox
and its ABox, where:M satisfies TBox ifM satisfies all inclusions in TBox andM
satisfies ABox ifM satisfies all assertions in ABox.

From now on, in this section, we restrict our attention to ALCRT and to finite models.
Given a knowledge base K and an inclusion CL v CR, we say that the inclusion is
derivable from K (we write K |=ALCRT CL v CR) if CI

L ⊆ CI
R holds in all models

M = 〈∆,<, I〉 satisfying K.

Definition 12 (Rank of a domain element). The rank kM of a domain element x in a
modelM is the length of the longest chain x0 < · · · < x from x to a minimal x0 (s.t.
for no x′, x′ < x0).

Finite ALCRT models can be equivalently defined by postulating the existence of a
function k : ∆→ N, and then letting x < y iff k(x) < k(y).

Definition 13 (Rank of a concept). Given a modelM = 〈∆,<, I〉, the rank kM(CR)
of a concept CR in the modelM is i = min{kM(x) : x ∈ CI

R}. If CI
R = ∅, then CR

has no rank and we write kM(CR) =∞.

Proposition 3. For any M = 〈∆,<, I〉, we have that M satisfies T(C) v D iff
kM(C uD) < kM(C u ¬D).

As already mentioned, although the typicality operator T itself is non-monotonic (i.e.
T(C) v D does not imply T(CuE) v D), the logicsALC+T andALCRT are mono-
tonic: what is inferred from K can still be inferred from any K ′ with K ⊆ K ′. This is a
clear limitation in DLs. As a consequence of non-monotonicity in ALCRT one cannot
deal with irrelevance for instance. So one cannot derive from K = {Penguin v Bird ,
T(Bird) v Fly , T(Penguin) v ¬Fly} that K |=min T(Penguin u Black) v ¬Fly ,
even if the property of being black is irrelevant with respect to flying. In the same way if
we added to K the information that jim is a bird (Bird(jim)), in ALCRT one cannot
non-monotonically derive that it is a typical bird and therefore flies ( T(Bird)(jim) and
Fly(jim) ). We investigate the possibility of overcoming this weakness by extending
to ALCRT the notion of rational closure. We first consider the rational closure of the
TBox alone. Next we will consider rational closure that also takes into account the ABox.
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3.2 Rational Closure of the TBox in ALCRT

Let us first define the notion of query. Intuitively, a query is either an inclusion relation
or an assertion of the ABox; we want to check whether it is entailed from a given KB.

Definition 14 (Query). A query F is either an assertion CL(a) or an inclusion relation
CL v CR. Given a modelM = 〈∆,<, I〉, a query F holds inM ifM satisfies F .

Definition 15. Let TB be a TBox and C a concept. C is said to be exceptional for TB
iff TB |=ALCRT T(>) v ¬C. A T-inclusion T(C) v D is exceptional for TB if C is
exceptional for TB . The set of T-inclusions of TB which are exceptional in TB will be
denoted as E(TB).

Given a DL knowledge base K=(TBox,ABox), it is possible to define a sequence of
non-increasing subsets of TBox E0 ⊇ E1, . . . by letting E0 = TBox and, for i > 0,
Ei = E(Ei−1) ∪ {C v D ∈ TBox s.t. T does not occurr in C}. Observe that, being K
finite, there is an n ≥ 0 such that for all m > n,Em = En or Em = ∅. Observe also
that the definition of the Ei’s is the same as the definition of the Ci’s in Lehmann and
Magidor’s definition of rational closure in Section 2.2, except for the fact that here, at
each step, we also add all the strict inclusions.

Definition 16. A concept C has rank i (denoted by rank(C) = i) for K=(TBox,ABox),
iff i is the least natural number for which C is not exceptional for Ei. If C is exceptional
for all Ei then rank(C) =∞, and we say that C has no rank.

As for propositional logic, the notion of rank of a formula allows to define the rational
closure of the TBox of a knowledge base K.

Definition 17 (Rational closure of TBox). Let K=(TBox,ABox) be a DL knowledge
base. We define, TBox , the rational closure of TBox, as

TBox = {T(C) v D | either rank(C) < rank(C u ¬D)
or rank(C) =∞} ∪ {C v D | K |=ALC C v D}

It can be easily seen that the rational closure of TBox is a non-monotonic strengthening
ofALCRT. For instance it allows to deal with irrelevance. If TBox = {Penguin v Bird ,
T(Bird) v Fly , T(Penguin) v ¬Fly}, then it can be verified that T(BirduBlack) v
Fly ∈ TBox . This is a non-monotonic inference that does no longer follow if we
knew that indeed black birds are non typical birds that do not fly: in this case from
TBox’= TBox ∪{T(Bird u Black) v ¬Fly} (in this case T(Bird u Black) v Fly 6∈
TBox ′). Similarly, as for the propositional case, rational closure is closed under rational
monotonicity: from T(Bird) v Fly ∈ TBox and T(Bird) v ¬LivesEurope 6∈ TBox
it follows that T(Bird u LivesEurope) v Fly ∈ TBox .

As for the propositional case, in order to semantically characterize the rational
closure, we first restrict our attention to minimal rational models that minimize the rank
of domain elements. Informally, given two models of K, one in which a given domain
element x has rank 2 (because for instance z < y < x) , and another in which it has
rank 1 (because only y < x), we would prefer the latter, as in this model the element x
is “more normal” than in the former.
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From now on, we restrict our attention to canonical minimal models. First, we define
a set of concepts S closed under negation and subconcepts. We assume that all the
concepts in K and in the query F belong to S. In order to define canonical models, we
consider all the sets of concepts {C1, C2, . . . , Cn} ⊆ S that are consistent with K, i.e.,
s.t. K 6|=ALC C1 u C2 u · · · u Cn v ⊥.

Definition 18 (Canonical model w.r.t. S). Given K=(TBox,ABox) and a query F ,
a model M = 〈∆,<, I〉 satisfying K is canonical w.r.t. S if it contains at least a
domain element x ∈ ∆ s.t. x ∈ (C1 u C2 u · · · u Cn)I , for each set of concepts
{C1, C2, . . . , Cn} ⊆ S that are consistent with K.

Definition 19 (Minimal canonical models (w.r.t. S)). Consider two models M =
〈∆,<, I〉 andM′ = 〈∆′, <′, I ′〉, canonical w.r.t. S . We say thatM is preferred toM′
(M < M′) if ∆ = ∆′, and for all x ∈ ∆, kM(x) ≤ kM′(x) whereas there exists
y ∈ ∆ such that kM(y) < kM′(y). Given a knowledge base K, we say thatM is a
minimal canonical model of K if it is a canonical model satisfying K and there is no
canonical modelM′ satisfying K such thatM′ <M.

The following results hold (more details and proofs can be found in [15, 16]):

Theorem 3. For any K there exists a minimal canonical model w.r.t. TBox.

Theorem 4. Let K=(TBox,ABox) be a knowledge base and C v D a query. We have
that C v D ∈ TBox if and only if C v D holds in all minimal canonical models of K
with respect to S.

Theorem 5 (Complexity of rational closure over the TBox). Given a knowledge base
K =(TBox,ABox), the problem of deciding whether T(C) v D ∈ TBox is in EXPTIME.

3.3 Rational Closure Over the ABox
In this section we extend the notion of rational closure defined in the previous section
in order to take into account the individual constants in the ABox. We address this
question by first considering the semantic aspect, in order to treat individuals explicitly
mentioned in the ABox in a uniform way with respect to the other domain elements: as
for all the domain elements we would like to attribute to each individual constant named
in the ABox the lowest possible rank. So we further refine Definition 19 of minimal
canonical models with respect to TBox by taking into account the interpretation of
individual constants of the ABox: given two minimal canonical modelsM andM′,
we preferM toM′ if there is an individual constant b occurring in ABox such that
kM(bI) < kM(bI

′
) (whereas kM(aI) ≤ kM(aI

′
) for all other individual constants

occurring in ABox).

Definition 20 (Minimal canonical model of K minimally satisfying ABox). Given
K=(TBox,ABox), letM = 〈∆,<, I〉 andM′ = 〈∆′, <′, I ′〉 be two canonical models
of K which are minimal w.r.t. Definition 19. We say thatM is preferred toM′ with
respect to ABox (M <ABox M′) if for all individual constants a occurring in ABox,
kM(aI) ≤ kM(aI

′
) and there is at least one individual constant b occurring in ABox

such that kM(bI) < kM(bI
′
).
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Theorem 6. For any K = (TBox,ABox) there exists a minimal canonical model of
K minimally satisfying ABox.

In order to see the power of the above semantic notion, consider the standard birds and
penguins example.

Example 3. Suppose we have a knowledge base K where TBox = {T(Bird) v Fly,
T(Penguin) v ¬Fly, Penguin v Bird}, and ABox = {Penguin(pio), Bird(tweety)}.
Knowing that tweety is a bird and pio is a penguin, we would like to be able to assume,
in the absence of other information, that tweety is a typical bird, whereas pio is a typ-
ical penguin, and therefore tweety flies whereas pio does not. Consider any minimal
canonical modelM of K. Being canonical,M will contain, among other elements:

– x ∈ (Bird)I , x ∈ (Fly)I , x ∈ (¬Penguin)I , kM(x) = 0;
– y ∈ (Bird)I , y ∈ (¬Fly)I , y ∈ (¬Penguin)I , kM(y) = 1;
– z ∈ (Penguin)I , z ∈ (Bird)I , z ∈ (¬Fly)I , kM(z) = 1;
– w ∈ (Penguin)I , w ∈ (Bird)I , w ∈ (Fly)I , kM(w) = 2;

Notice that in the definition of minimal canonical model there is no constraint on the
interpretation of the ABox constants tweety and pio. As far as Definition 19 is concerned
for instance tweety can be mapped onto x ((tweety)I = x) or onto y ((tweety)I = y):
the minimality ofM with respect to Definition 19 is not affected by this choice. However
in the first case it would hold that tweety is a typical bird, in the second tweety is not a
typical bird. We want to prefer the first case, and this is what derives from Definition 20:
if inM tweetyI = x whereas inM1 (which for the rest is identical toM) it holds that
tweetyI = y, thenM is preferred toM1. The same for pio. As a result in all models
of K minimal with respect to both TBox and ABox (Definition 20), it holds what we
wanted: that tweety is a typical bird (T (Bird)(tweety)), and therefore it flies, whereas
pio is a typical penguin (T (Penguin)(pio)), and therefore it does not fly.

We conclude this section by providing an algorithmic construction for the rational
closure of ABox, whose idea is that of considering all the possible minimal consistent
assignments of ranks to the individuals explicitly named in the ABox. Each assignment
adds some properties to named individuals which can be used to infer new conclusions.
We adopt a skeptical view of considering only those conclusions which hold for all
assignments. The equivalence with the semantics shows that the minimal entailment
captures a skeptical approach when reasoning about the ABox.

More formally, in order to calculate the rational closure of ABox (ABox ) for all
individual constants of the ABox we find out what is the lowest possible rank they can
have in minimal canonical models w.r.t. Definition 19, with the idea that an individual
constant ai can have a given rank (kj(ai)) just in case it is compatible with all the
inclusions of the TBox whose antecedent A’s rank is ≥ kj(ai) (the inclusions whose
antecedent A’s rank is < kj(ai) do not matter. The minimal possible rank assignment
kj for all ai is computed in the algorithm below: µj

i computes all the concepts that ai
would need to satisfy in case it had the rank attributed by kj (kj(ai)). The algorithm
verifies whether µj

i is compatible with (TBox , ABox) and whether it is minimal. Notice
that in this phase all constants are considered simultaneously (indeed the possible ranks
of different individual constants depend on each other). For this reason µj takes into
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account the ranks attributed to all individual constants, being the union of all µj
i for

all ai, and the consistency of this union with (TBox , ABox) is verified (instead of the
consistency of all separate µj

i ). Once computed the minimal rank assignments these are
used to define ABox ) as the set of all assertions derivable in ALC from ABox ∪µj for
all minimal consistent rank assignments kj .

Definition 21 (ABox : rational closure of ABox). Let a1, . . . , am be the individuals
explicitly named in the ABox. Let k1, k2, . . . , kh be all the possible rank assignments
(ranging from 1 to n) to the individuals occurring in ABox.
• Given a rank assignment kj we define:

– for each ai: µ
j
i = {(¬C t D)(ai) s.t. C,D ∈ S, T(C) v D in TBox , and

kj(ai) ≤ rank(C)} ∪ {(¬C tD)(ai) s.t. C v D in TBox };
– let µj = µj

1 ∪ · · · ∪ µj
m for all µj

1 . . . µ
j
m just calculated for all a1, . . . , am in the

ABox
• kj is minimal and consistent with (TBox , ABox) if:

– ABox ∪µj is consistent in ALC;
– there is no ki consistent wih (TBox , ABox) s.t. for all ai, ki(ai) ≤ kj(ai) and for

some b, ki(b) < kj(b).
• The rational closure of ABox (ABox ) is the set of all assertions derivable in ALC
from ABox ∪µj for all minimal consistent rank assignments kj , i.e:

ABox =
⋂

kjminimal consistent{C(a) : ABox ∪µj |=ALC C(a)}

The following theorems hold (again, see [15, 16] for details and proofs):

Theorem 7 (Soundness and Completeness of ABox ). Given K=(TBox, ABox), for
all individual constant a in ABox, we have that C(a) ∈ ABox if and only if C(a) holds
in all minimal canonical models of K minimally satisfying ABox.

Theorem 8 (Complexity of rational closure over the ABox). Given a knowledge base
K =(TBox,ABox), an individual constant a and a concept C, the problem of deciding
whether C(a) ∈ ABox is EXPTIME-complete.

4 Related work
In [14] non-monotonic extensions of DLs based on the T operator have been proposed.
In these extensions, the semantics of T is based on preferential logic P. Non-monotonic
inference is obtained by restricting entailment to minimal models, where minimal models
are those that minimize the truth of formulas of a special kind. In this work, we have
presented an alternative approach. First, the semantics underlying the T operator is R .
Moreover and more importantly, we have adopted a minimal model semantics, where, as
a difference with [14], the notion of minimal model is completely independent from the
language and is determined only by the relational structure of models.

Casini and Straccia [4] study the application of rational closure to DLs. They extend
to ALC the algorithmic construction proposed by Freund for capturing the rational
closure in the propositional calculus. While in the propositional calculus this construction
is proved to be equivalent with the notion of rational closure in [20], the equivalence
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is not known to hold for the case of ALC. While Casini and Straccia prove axiomatic
properties of their notion of rational closure, here we focus on an extension of Lehmann
and Magidor definition of rational closure for ALC and we define a semantics for it. [4]
also keeps the ABox into account, and defines closure operations over individuals. It
introduces a consequence relation  among a knowledge base K and assertions, under
the requirement that the TBox is unfoldable and the ABox is closed under completion
rules, such as, for instance, that if a : ∃R.C ∈ ABox, then both aRb and b : C (for some
individual constant b) must belong to the ABox too. Under such restrictions they are
able to define a procedure to compute the rational closure of the ABox assuming that the
individuals explicitly named are linearly ordered, and different orders determine different
sets of consequences. The authors show that, for each order s, the consequence relation
s is rational and can be computed in PSPACE. In a subsequent work [5], the authors
introduce an approach based on the combination of rational closure and Defeasible
Inheritance Networks (INs).

5 Conclusions
In the first part of the paper we have provided a semantic reconstruction of the well
known rational closure, in detail a minimal model semantics based on the idea that
preferred rational models are those ones in which the height of the worlds is minimized.
Adding suitable possibility assumptions to a knowledge base, such a minimal model
semantics corresponds to rational closure.

The correspondence between the proposed minimal model semantics and rational
closure suggests the possibility of defining variants of rational closure by varying the
ingredients underlying our approach, namely: (i) the properties of the preference relation
<: for instance just preorder, or multi-linear or weakly-connected; (ii) the comparison
relation on models: based for instance on the rank of the worlds or on the inclusion
between the relations <, or on negated boxed formulas satisfied by a world, as in the
logic Pmin [12]. The systems obtained by various combinations of these ingredients are
largely unexplored and may give rise to useful non-monotonic logics.

In the second part of the paper we have defined a rational closure construction for
the Description Logic ALC extended with a typicality operator and provided a minimal
model semantics for it, based on the idea of minimizing the rank of objects in the domain,
that is their level of “untypicality”. This semantics corresponds to a natural extension
to DLs of Lehmann and Magidor’s notion of rational closure. We have also extended
the notion of rational closure to the ABox, by providing an algorithm for computing it
that is sound and complete with respect to the minimal model semantics. Last, we have
shown an EXPTIME upper bound for the algorithm.

In future work, concerning Description Logics, we will consider further ingredients
in the recipe for non-monotonic DLs. First, we aim to study stronger versions of rational
closure that allow to overcome the weaknesses of the basic one, for instance the fact
that we cannot reason separately on the inheritance of different properties. Furthermore,
non-monotonic extensions of low complexity DLs based on the T operator have been
recently provided [13]. In future works, we aim to study the application of the proposed
semantics to DLs of the EL and DL-Lite families, in order to define a rational closure
for low complexity DLs.
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