
CUD@ASP: Experimenting with GPUs in ASP solving?

Flavio Vella1, Alessandro Dal Palù2, Agostino Dovier3,
Andrea Formisano1, and Enrico Pontelli4

1 Dip. di Matematica e Informatica, Univ. di Perugia
2 Dip. di Matematica, Univ. di Parma

3 Dip. di Matematica e Informatica, Univ. di Udine
4 Dept. of Computer Science, NMSU

Abstract. This paper illustrates the design and implementation of a prototype
ASP solver that is capable of exploiting the parallelism offered by general pur-
pose graphical processing units (GPGPUs). The solver is based on a basic conflict-
driven search algorithm. The core of the solving process develops on the CPU,
while most of the activities, such as literal selection, unit propagation, and conflict-
analysis, are delegated to the GPU. Moreover, a deep non-deterministic search,
involving a very large number of threads, is also delegated to the GPU. The initial
results confirm the feasibility of the approach and the potential offered by GPUs
in the context of ASP computations.

1 Introduction

Answer Set Programming (ASP) [22, 20] has gained momentum in the logic program-
ming and artificial intelligence communities as a paradigm of choice for a variety of ap-
plications. In comparison to other non-monotonic logics and knowledge representation
frameworks, ASP is syntactically simpler and, at the same time, very expressive. The
mathematical foundations of ASP have been extensively studied; in addition, there exist
a large number of building block results about specifying and programming using ASP.
ASP has offered novel and highly declarative solutions in several application areas, in-
cluding intelligent agents, planning, software verification, complex systems diagnosis,
semantic web services composition and monitoring, and phylogenetic inference.

An important push towards the popularity of ASP has come from the development
of very efficient ASP solvers, such as CLASP and DLV. In particular, systems like CLASP
and its variants have been shown to be competitive with the state of the art in several
domains, including competitive performance in SAT solving competitions. In spite of
the efforts in developing fast execution models for ASP, execution of large programs re-
mains a challenging task, limiting the scope of applicability of ASP in certain domains
(e.g., planning). In this work, we offer parallelism as a viable approach to enhance
performance of ASP inference engines. In particular, we are interested in devising tech-
niques that can take advantage of recent architectural developments in the field of Gen-
eral Purpose Graphical Processing Units (GPGPUs). Modern GPUs are multi-core
platforms, offering massive levels of parallelism; vendors like NVIDIA have started

? Research partially supported by GNCS-13 project.

supporting the use of GPUs for applications different from graphical operations, provid-
ing dedicated APIs and development environments. Languages and language extensions
like OpenCL [16] and CUDA [29] support the development of general purpose applica-
tions on GPUs, beyond the limitations of graphical APIs. To the best of our knowledge,
the use of GPUs for ASP computations has not been explored and, as demonstrated in
this paper, it opens an interesting set of possibilities and issues to be resolved.

The work proposed in this paper builds on two existing lines of research. The ex-
ploitation of parallelism from ASP computations has been explored in several research
works, starting with seminal papers by Pontelli et al. and Finkel et al. [25, 9], and
later continued in several other projects (e.g., [26, 12, 24]). Most of the existing pro-
posals have primarily focused on parallelization of the search process underlying the
construction of answer sets, by distributing parts of the search tree among different
processors/cores; furthermore, the literature focused on parallelization on traditional
multi-core or Beowulf architectures. These approaches are not applicable in the con-
text of GPGPUs—the models of parallelization used on GPGPUs are deeply different
(e.g., GPGPUs are designed to operate with large number of threads, operating in a syn-
chronous way; GPGPUs have significantly more complex memory organizations, that
have great impact on parallel performance) and existing parallel ASP models are not
scalable on GPGPUs. Furthermore, our focus on this work is not primarily on search
parallelism, but on parallelization of the various operations associated to unit propaga-
tion and management of nogoods.

The second line of research that supports the effort proposed in this paper is the
recent developments in the area of GPGPUs for SAT solving and constraint program-
ming. The work in [6] illustrates how to parallelize the search process employed by
the DPLL procedure in solving a SAT problem on GPGPUs; the outcomes demonstrate
the potential benefit of delegating to GPGPUs the tails of the branches of the search
tree—an idea that we have also applied in the work presented in this paper. Several
other proposals have appeared in the literature suggesting the use of GPGPUs to par-
allelize parts of the SAT solving process—e.g., the computation of variable heuristics
[18]. The work presented in [4] provides a preliminary investigation of parallelization
of constraint solving (applied to the specific domain of protein structure prediction) on
GPGPUs. The work we performed in [4] provided inspiration for the ideas used in this
paper to parallelize unit propagation and other procedures.

The main contribution of the research presented in this paper is the analysis of a
state of the art algorithm for answer set computation (i.e., the algorithm underlying
CLASP) to identify potential sources of parallelism that are suitable to the peculiar par-
allel architecture provided by CUDA.

2 Background

2.1 Answer Set Programming

Syntax. In this section we will briefly review the foundations of ASP, starting with its
syntax. Let us consider a language composed of a set of propositional symbols (atoms)
P . An ASP rule has the form

p0 ← p1, . . . , pm, not pm+1, . . . , not pn (1)

164 Flavio Vella, A. Dal Palù, Agostino Dovier, Andrea Formisano and Enrico Pontelli

where pi ∈ P .5 Given a rule r of type (1), p0 is referred to as the head of the rule
(head(r)), while the set of atoms {p1, . . . , pm, not pm+1, . . . , not pn} is referred to as
the body of the rule (body(r)). In particular, body+(r) = {p1, . . . , pm} and body−(r) =
{pm+1, . . . , pn}. We identify particular types of rules: a constraint is a rule of the form

← p1, . . . , pm, not pm+1, . . . , not pn (2)

while a fact is a rule of the form p0 ←. A program Π is a collection of ASP rules.
We will use the following notation: atom(Π) denotes the set of all atoms present in Π ,
while bodyΠ(p) denotes the set {body(r) | r ∈ Π, head(r) = p}.

LetΠ be a program; its positive dependence graphD+
Π = (V,E) is a directed graph

satisfying the following properties:
- The set of nodes V = atom(Π);
- E = {(p, q) | r ∈ Π,head(r) = p, q ∈ body+(r)}.

In particular, we are interested in recognizing cycles in D+
Π ; the number of non-self

loops in D+
Π is denoted by loop(Π). A program Π is tight (non-tight) if loop(Π) = 0

(loop(Π) > 0). A strongly connected component (scc) of D+
Π is a maximal subgraph

of X of D+
Π such that there exists a path between each pair of nodes in X .

Semantics. The semantics of ASP programs is provided in terms of answer sets. Intu-
itively, an answer set is a minimal model of the program which supports each atom in
the model—i.e., for each atom there is a rule in the program that has such atom in the
head and whose body is satisfied by the model. Formally, a set of atomsM is an answer
set of a program Π if M is the minimal model of the reduct program ΠM , where the
reduct is obtained from Π as follows:

- remove from Π all rules r such that M ∩ body−(r) 6= ∅;
- remove all negated atoms from the remaining rules.

ΠM is a definite program, i.e., a set of rules that does not contain any occurrence of
not. Definite programs are characterized by the fact that they admit a unique minimal
model. Each answer set of a program Π is, in particular, a minimal model of Π .

Example 1. The following program Π has two answer sets: {a, c} e {a, d}.
Π =

{
a← c← a, not d e← b
b← ¬a d← not c, not e e← e

}

Answer Set Computation. In the rest of this section, we provide a brief overview
of techniques used in the computation of the answer sets of a program; the mate-
rial presented is predominantly drawn from the implementation techniques used in
CLASP [11, 10].

Several ASP solvers rely directly or indirectly on techniques drawn from the domain
of SAT solving, properly extended to include procedures to determine minimality and
stability of the models (these two procedures can be quickly performed in time linear
in the number of occurrences of atoms in the program, namely |Π|)). Several ASP

5 A rule that includes first-order atoms with variables is simply seen as a syntactic sugar for all
its ground instances.

CUD@ASP: Experimenting with GPGPUs in ASP solving 165

solvers (e.g., CMODELS [13]) rely on a translation of Π into a SAT problem and on
the use of SAT solvers to determine putative answer sets. Other systems (e.g., CLASP)
implement native ASP solvers, that combine search techniques with backjumping along
with techniques drawn from the field of constraint programming [27].

The CLASP system relies on a search in the space of all truth value assignments to
the atoms in Π , organized as a binary tree. The successful construction of a branch in
the tree corresponds to the identification of an answer set of the program. If a, possibly
partial, assignment fails to satisfy the rules in the program, then backjumping proce-
dures are used to backtrack to the node in the tree that caused the failure. The design
of the tree construction and the backjumping procedure in CLASP is implemented in
such a way to guarantee that if a branch is successfully constructed, then the outcome
is indeed an answer set of the program. CLASP’s search is also guided by special as-
signments of truth values to subsets of atoms that are known not to be extendable into
an answer set—these are referred to as nogoods [7, 27]. Assignments and nogoods are
sets of assigned atoms—i.e., entities of the form Tp (Fp) denoting that p has been
assigned true (false). For assignments it is also required that for each atom p at
most one between Tp and Fp is contained. Given an assignment A, we denote with
AT = {p |Tp ∈ A} and AF = {p |Fp ∈ A}. A is total if it assigns a truth value to ev-
ery atom, otherwise it is partial. Given a (possibly partial) assignment A and a nogood
δ, we say that δ is violated if δ ⊆ A. In turn, a partial assignment A is a solution for a
set of nogoods ∆ if no δ ∈ ∆ is violated by A.

The concept of nogood can be also used during deterministic propagation phases
(a.k.a. unit propagation) to determine additional assignments. Given a nogood δ and a
partial assignmentA such that δ\A = {Fp} (δ\A = {Tp}), then we can infer the need
to add Tp (Fp) toA in order to avoid violation of δ. In the context of ASP computation,
we distinguish two types of nogoods: completion nogoods [8], which are derived from
Clark’s completion of a logic program (we will denote with ∆Πcc the set of completion
nogoods for the program Π), and loop nogoods [17], which are derived from the loop
formula of Π (denoted by ΛΠ). Before proceeding with the formal definitions of these
two classes of nogoods, let us review the two fundamental results associated to them
(see [10]). Let Π be a program and A an assignment:

– If Π is a tight program then: atom(Π) ∩ AT is an answer set of Π iff A satisfies
all the nogoods in ∆Πcc .

– If Π is a non-tight program, then: atom(Π) ∩ AT is an answer set of Π iff A
satisfies all the nogoods in ∆Πcc ∪ ΛΠ .

Let us now proceed in the formal definitions of nogoods. Let us start by recalling the
notion of Clark completion of Π (Π):

Πcc =
{
βr ↔

∧
a∈body+(r) a ∧

∧
b∈body−(r) ¬b | r ∈ Π

}
∪{

p↔ ∨
r∈bodyΠ(p) βr | p ∈ atom(Π)

} (3)

Where βr is a new variable, introduced for each rule r ∈ Π , logically equivalent to the
body of r. Assignments need to deal with βr variables, as well. The completion nogoods
reflect the structure of the implications present in the definition of Πcc. In particular:

166 Flavio Vella, A. Dal Palù, Agostino Dovier, Andrea Formisano and Enrico Pontelli

• the implication present in the original rule p← body(r) implies the nogood {Fβr}∪
{Ta | a ∈ body+(r)} ∪ {Fb | b ∈ body−(r)}.

• the implication in each rule also implies that the body should be false if any of its
element is falsified, leading to the set of nogoods of the form: {Tβr, Fa} for each
a ∈ body+(r) and {Tβr, T b} for each b ∈ body−(r).

• the closure of an atom definition (as disjunction of the rule bodies supporting
it) leads to a nogood expressing that the atom is true if any of its rule is true:
{Fp, Tβr} for each r ∈ bodyΠ(p).

• similarly, the atom cannot be true if all its rules have a false body. This yields the
nogood {Tp} ∪ {Fβr | r ∈ bodyΠ(p)}.

∆Πcc is the set of all the nogoods defined as above.
The loop nogoods derive instead from the need to capture loop formulae, thus

avoiding cyclic support of truth. Let us provide some preliminary definitions. Given
a set of atoms U , we define the external bodies of U (denoted by EBΠ(U)) as the set
{βr | r ∈ Π, body+(r) ∩ U = ∅}. Furthermore, let us define U to be an unfounded set
with respect to an assignment A if, for each rule r ∈ Π , we have (i) head(r) 6∈ U , or
(ii) body(r) is falsified by A, or (iii) body+(r) ∩ U 6= ∅. The loop nogoods capture the
fact that, for each unfounded set U , its elements have to be false. This is encoded by the
following nogoods: for each set of atoms U and for each p ∈ U , we create the nogood
{Tp} ∪ {Fβr | βr ∈ EBΠ(U)}. We denote with ΛΠ the set of all loop nogoods, and
with ∆Π the whole set of nogoods: ∆Π = ∆Πcc ∪ ΛΠ .

2.2 CUDA

Our proposal focuses on exploring the use GPGPU parallelism in ASP solving.
GPGPU is a general term indicating the use of the multicores available within modern
graphical processing units (GPUs) for gen-
eral purpose parallel computing. NVIDIA is
one of the pioneering manufacturers in pro-
moting GPGPU computing, especially thanks
to its Computing Unified Device Architec-
ture (CUDA) [29]. The underlying conceptual
model of parallelism supported by CUDA is
Single-Instruction Multiple-Thread (SIMT), a
variant of the SIMD model, where, in general,
the same instruction is executed by differ-
ent threads that run on identical cores, while
data and operands may differ from thread to
thread. CUDA’s architectural model is repre-
sented in Figure 1.

HOST
GLOBAL MEMORY

CONSTANT MEMORY

Shared
memory

Thread Thread

regs regs

Block

Shared
memory

Thread Thread

regs regs

Block

GRID

Fig. 1: CUDA Logical Architecture

Different NVIDIA GPUs are distinguished by the number of cores, their organization,
and the amount of memory available. The GPU is composed of a series of Streaming
MultiProcessors (SMs); the number of SMs depends on the specific characteristics of
each family of GPU—e.g., the Fermi architecture provides 16 SMs. In turn, each SM
contains a collection of computing cores; the number of cores per SM may range from

CUD@ASP: Experimenting with GPGPUs in ASP solving 167

8 (in the older G80 platforms) to 32 (e.g., in the Fermi platforms). Each GPU provides
access to both on-chip memory (used for thread registers and shared memory—defined
later) and on-chip memory (used for L2 cache, global memory and constant memory).
Notice that the architecture of the GPU also determines both the GPU Clock and the
Memory Clock rates. A logical view of computations is introduced by CUDA, in order
to define abstract parallel work and to schedule it among different hardware configura-
tions (see Figure 1). A typical CUDA program is a C/C++ program that includes parts
meant for execution on the CPU (referred to as the host) and parts meant for parallel
execution on the GPU (referred as the device). A parallel computation is described by a
collection of kernels—each kernel is a function to be executed by several threads.

The host program contains all instructions to initialize the data in GPUs, to define the
threads number and to manage the kernel. Instead, a kernel is a set of instruction per-
formed in GPUs across a set of concurrent threads. The programmer or compiler or-

Fig. 2: Generic workflow in CUDA

ganizes these threads in thread blocks and
grids of thread blocks. A grid is an array
of thread blocks that execute the same ker-
nel, read data input from global memory,
write results to global memory. Each thread
within a thread block executes an instance
of the kernel, and has a thread ID within
its thread block. When a CUDA program
on the host CPU invokes a kernel grid, the
blocks of the grid are enumerated and dis-
tributed to multiprocessors with available
execution capacity; the kernel is executed
in N blocks, each consisting of M threads.
The threads in the same block can share
data, using shared high-throughput on-chip
memory; on the other hand, the threads be-

longing to different blocks can only share data through global memory. Thus, the block
size allows the programmer to define the granularity of threads cooperation. Figure 1
shows the CUDA threads hierarchy [23].

CUDA provides an API to interact with GPU and C for CUDA, an extension of C
language to define kernels. Referring to Figure 2, a typical CUDA application can be
summarized as follow:

Memory data allocation and transfer: The data before being processed by kernels, must
be allocated and transferred to Global memory. The CUDA API supports this operations
through the functions cudaMalloc() and cudaMemcpy(). The call cudaMalloc()
allows the programmer to allocate the space needed to store the data while the call
cudaMemcpy() transfers the data from the memory of the host to the space previously
allocated in Global Memory, or vice versa. The transfer rate is dependent on the bus
bandwidth where the Graphics Card is physically connected.

Kernels definition: Kernels are defined as standard C functions; the annotation used to
communicate to the CUDA compiler that a function should be treated as kernel has the

168 Flavio Vella, A. Dal Palù, Agostino Dovier, Andrea Formisano and Enrico Pontelli

form: global void kernelName (Formal Arguments) where global is
the qualifier that shows to the compiler that the next statement is a kernel code.
Kernels execution: A kernel can be launched from the host program using a new:
kernelName <<< GridDim, ThreadsPerBlock >>> (Actual Arguments)

execution configuration syntax where kernelName is the specified name in kernel
function prototype, GridDim is the number of blocks of the grid and ThreadsPerBlock
specifies the number of threads in each block. Finally, the Actual Arguments are typ-
ically pointer variables, referring to the previously allocated data in Global Memory.
Data retrieval: After the execution of the kernel, the host needs to retrieve the data—
representing results of the kernel. This is performed with another transfer operation
from Global Memory to Host Memory, using the function cudaMemcpy().

3 Design of an conflict-based CUDA ASP Solver

In this section, we will present the CUD@ASP procedure. This procedure is based on the
CDNL-ASP procedure adopted in the CLASP system [11, 10]. The procedure assumes
that the input is a ground ASP program. The novelty of CUD@ASP is the off-loading
of several time consuming operations to the GPU—with particular focus on conflict
analysis, exploration of the set of possible assignments and execution of the phases of
unit-propagation. The rest of this section is organized as follows: we will start with
an overview of the serial structure of the CUD@ASP procedure (Subsection 3.1). In
the successive subsections, we will illustrate the parallel versions of the key procedures
used in CUD@ASP: literal selection (Subsection 3.2), nogoods analysis (Subsection 3.3),
unit propagation (Subsection 3.4), conflict analysis (Subsection 3.5), and analysis of
stability (Subsection 3.7). In addition, we illustrate a method to use the GPU to handle
the search process in the tail part of the search tree (Subsection 3.6).

3.1 The General CUD@ASP Procedure

The overall CUD@ASP procedure is summarized in Algorithm 3.2. The procedures that
appear underlined in the algorithm are those that are delegated to the GPU for paral-
lel execution. The algorithm makes use of the following notation. The input (ground)
program is denoted by Π; Πcc denotes the completion of Π (eq. 3). The overall set
of nogoods is denoted by ∆Π , composed of the completion nogoods and the loop no-
goods. For each program atom p, the notation p represents the atom with a truth value
assigned; ¬p denotes, instead, the complement truth value with respect to p.

Lines 1–5 of Algorithm 3.2 represent the initialization phase of the ASP compu-
tation. In particular, the Parsing procedure (Line 5) is in charge of computing the
completion of Π and extracting the nogoods. The set A will keep track of the atoms
that have already been assigned a truth value. It is initialized to the empty set in Line 1
and updated by the Selection procedure at Line 22. Two variables (current dl
and k) are introduced to support the rest of the computation. In particular, the vari-
able current dl represents the decision level; this variable acts as a counter that keeps
track of the number of “choices” that have been made in the computation of an an-
swer set. Line 6 invokes the procedure StronglyConnectedComponent, which

CUD@ASP: Experimenting with GPGPUs in ASP solving 169

Algorithm 3.2 CUD@ASP
Input Π ground ASP program
Output An answer set, or null
1: A := ∅ . Atoms assignment
2: ∆Π := ∅ . Nogoods
3: current dl := 0 . Current Decision Level
4: k := 32 . Threshold for Exhaustive Procedure
5: (∆Π , k,Πcc) := Parsing(Π) . Initialize ∆Π as ∆Πcc

6: scc := StronglyConnectedComponent(Π)
7: loop
8: Violation := NoGoodCheck(A,∆Π)
9: if (Violation is true) ∧ (current dl = 0) then return no answer set

10: end if
11: if Violation is true then
12: (current dl, δ) = ConflictAnalysis(∆Π , A)
13: ∆Π = ∆Π ∪ {δ}
14: A := A \ {p ∈ A | current dl < dl(p)}
15: else
16: if ∃ δ ∈ ∆Π such that δ \A = {p} and p /∈ A then
17: A := UnitPropagation(A,∆Π)
18: end if
19: end if
20: if There are atoms not assigned then
21: if Number of atoms to assign > k then
22: p := Selection(Πcc, A)
23: current dl := current dl + 1
24: dl(p) := current dl
25: A := A ∪ {p}
26: else . At most k unassigned atoms: Non-deterministic GPU computation
27: if There is a successful thread for Exhaustive(A) then
28: for each successful thread returning A := Exhaustive(A) do
29: if StableTest(A,Πcc) is true then return AT ∩ atom(Π)
30: end if
31: end for
32: end if
33: end if
34: else return AT ∩ atom(Π)
35: end if
36: end loop

determines the positive dependence graph and its strongly connected components; in
absence of loops, the program Π is tight, thus not requiring the use of loop nogoods
(ΛΠ). We have implemented the classical Tarjan’s algorithm, running in O(n+e), on
CPU (where n and e are the numbers of nodes and edges, respectively). The loop in
Lines 7–36 represents the core of the computation. It alternates the process of testing
consistency and propagating assignments (through the nogoods), and of guessing a pos-
sible assignment to atoms that are still undefined. Each cycle starts with a call to the

170 Flavio Vella, A. Dal Palù, Agostino Dovier, Andrea Formisano and Enrico Pontelli

procedure NoGoodCheck (Line 8)—which, given a partial assignment A, validates
whether all the nogoods in ∆Π are still satisfied. If a violation is detected, then the
procedure ConflictAnalysis is used to determine the decision level causing the
nogood violation, backtrack to such point in the search tree, and generate an additional
nogood to prune that branch of the search space (Lines 11–14). If p is the assignment at
the decision level determined by ConflictAnalysis, then the nogood will prompt
the unit propagation process to explore the branch starting with the truth assignment ¬p
(thus ensuring completeness of the computation [10]).

If the ConflictAnalysis procedure does not detect nogood violations, then the
procedure might be in one of the following situations:

- If there is a nogood that is completely covered by A except for one element p,
then the UnitPropagation procedure is called to determine assignments that
are implied by the nogoods (starting with the assignment ¬p) (Lines 16–17). Note
that this procedure does not modify the decision level. In the case of non-tight
programs, the UnitPropagation procedure will also execute a subroutine in
charge of validating the loop nogoods.

- If there are atoms left to assign (Line 20), then additional selections will need to
be performed. We distinguish two possibilities. If the number of unassigned atoms
is larger than a threshold k, then one of them, say p, is selected and the current
decision level is recorded (by setting the value of the variable dl(p)—see Line 24).
The Selection procedure is in charge for selecting a literal. The assignment
is extended accordingly and the current decision level is increased (Lines 23–25).
If the number of unassigned atoms is small, then a specialized parallel procedure
(Exhaustive) systematically explores all the possible missing assignments. For
each possible assignment of the remaining atoms, the procedure StableTest
validates that all nogoods are satisfied and that the overall assignment A is stable
(necessary test in the case of non-tight programs). This is described in Lines 27–32.

3.2 Selection Procedure

The purpose of this procedure is to determine an unassigned atom in the program and a
truth value for it. A number of heuristic strategies have been studied to determine atom
and assignment, often derived from analogous strategies developed in the context of
SAT solving or constraint solving [27, 2]. As soon as an atom has been selected, it is
necessary to assign a truth value to it. A traditional strategy [10] consists of assigning
at the beginning the value true to bodies of rules, while atoms are initially assigned
false—aiming at maximizing the number of resulting implications.

There is no an optimal strategy for all problems, of course. In the current imple-
mentation, we provide three selection strategies: the most frequently occurring literal
strategy which selects the atom that appears in the largest number of nogoods (that aims
at determining violations as soon as possible or to lead to early propagations through
the nogoods), the leftmost-first strategy (which selects the first unassigned atom found),
and the Jeroslow-Wang strategy (also based on the frequency of occurrence of an atom,
but placing a greater value on smaller nogoods). All the three strategies are implemented
by allowing kernels on the GPU to concurrently compute the rank of each atom; these
rankings are re-evaluated at each backjump.

CUD@ASP: Experimenting with GPGPUs in ASP solving 171

Algorithm 3.3 NoGoodCheck . Kernel executed by thread i
Input A, ∆Π = {δ1, . . . , δm} . An assignment A and a set of nogoods ∆Π

Output True or False
1: if i ≤ m then
2: state := 0
3: covered := 0
4: Atom to propagate := NULL
5: for all p ∈ δi do
6: if ¬p ∈ A then state := 1
7: else if p ∈ A then covered := covered+ 1
8: else Atom to propagate := p
9: end if

10: end for
11: if covered = |δi| then return V iolation := True
12: else if covered = |δi| − 1 and state = 0 then
13: Make Atom to propagate global
14: end if
15: return V iolation := False
16: end if

3.3 NoGoodCheck Procedure

The NoGoodCheck procedure (see Algorithm 3.3) is primarily used to verify whether
the current partial assignmentA violates any of the nogoods in a given set∆Π . The pro-
cedure plays also the additional rôle of identifying opportunities for unit propagation—
i.e., recognizing nogoods δ such that δ \A = {p} and ¬p 6∈ A. In this case, the element
p will be the target of a successive unit propagation phase.

The pseudocode in Algorithm 3.3 describes a CUDA kernel (i.e., running on GPU)
implementing the NoGoodCheck. Each thread handles one of the nogoods in ∆Π and
performs a linear scan of its assigned atoms (Lines 5–10). The local flag state keeps
track of whether the nogood is satisfied by the assignment (state equal to 1). The
counter covered keeps track of how many elements of δi have already been found
in A. The condition of state equal to zero and the covered counter equal to the
size of the nogood implies that the nogood is violated by A. The first thread to detect a
violation will communicate it to the host by setting a variable (Violation—Line 11)
in global memory (used in Lines 9 and 11 of the general CUD@ASP procedure).

Lines 12–13 implement the second functionality of the NoGoodCheck procedure—
by identifying and making global the single element of the nogood that is not covered by
the A assignment. Note that the identification of the element Atom to Propagate
can be conveniently performed in NoGoodCheck since the procedure is already per-
forming the scanning of the nogood to check its validity.

3.4 UnitPropagation Procedure

The UnitPropagation procedure is performed only if the NoGoodCheck has de-
tected no violations and has exposed at least one atom for propagation (as in Lines

172 Flavio Vella, A. Dal Palù, Agostino Dovier, Andrea Formisano and Enrico Pontelli

12–13 of Algorithm 3.3). UnitPropagation is implemented as a CUDA kernel—
which allows us to distribute the different nogoods among threads, each in charge of
extending the partial assignment A with one additional assignment. The procedure is
iterated until a fixpoint is reached. The extension of A is an immediate consequence
of the work done in NoGoodCheck: if the check of a nogood δi identifies p as the
only element in δi not covered by A (i.e., {p,¬p} ∩ A = ∅), then A is extended as
A := A ∪ {¬p}.

If the program Π is non-tight, then the UnitPropagation procedure includes
an additional phase aimed at performing the computation of the unfounded sets deter-
mined by the partial assignment A and the corresponding loop nogoods ΛΠ . This pro-
cess is implemented by the procedure UnfoundedSetCheck and follows the gen-
eral structure of the analogous procedure used in the implementation of CLASP [10].
This procedure performs an analysis of the strongly connected components of the pos-
itive dependence graph D+

Π (already computed at the beginning of the computation of
CUD@ASP—Line 6). For each p ∈ atoms(Π), scc(p) denotes the set of atoms that
belong to the same strongly connected component as p. An atom p is said to be cyclic if
there exists a rule r ∈ Π such that: head(r) ∈ scc(p) and body+(r)∩ scc(p) 6= ∅, oth-
erwise p is acyclic. Cyclic atoms are the core of the search for unfounded sets—since
they are the only ones that can appear in the unfounded loops. Cyclic atoms along with
the knowledge of elements assigned by A allow the computation of unfounded sets, as
discussed in [17, 10]. In the current implementation UnfoundedSetCheck runs on
the host. Some parts are inherently parallelizable (e.g., the computation of the external-
support, or a splitting to different threads of the analysis of each scc component)—their
execution on the device is work in progress.

3.5 ConflictAnalysis Procedure

The ConflictAnalysis procedure is used to resolve a conflict detected by the
NoGoodCheck by identifying a level dl and assignment p the computation should
backtrack to, in order to remove the nogood violation. This process allows classical
backjumping in the search tree generated by the Algorithm 3.2 [28, 27]. In addition
to this, the procedure produces a new nogood to be added to the nogoods set, in or-
der to prevent the same assignments in future. This procedure is implemented by a
sequence of kernels, and it is executed after some nogood violations have been detected
by NoGoodCheck. This procedure works as follows:
• Each thread is assigned to a unique nogood (δ).
• The thread determines the last two assigned literals in δ, say `M (δ) and `m(δ).

The two (not necessarily distinct) decision levels of these assignments are stored in
dlM (δ) = dl(`M (δ)) and dlm(δ) = dl(`m(δ)), respectively.

• The thread verifies whether δ is violated.
• Then, the violated nogood δ with lowest value of dlM is determined.

At this point, a nogood learning procedure is activated. A kernel function (again, one
thread for each existing nogood) determines each nogood ε, such that: (a) ¬`M (δ) ∈ ε
and (b) ε \ {¬`M (δ)} ⊆ A. Heuristic functions (see, e.g., [1]) can be applied to select
one of these ε. Currently, the smallest one is selected in order to generate small new

CUD@ASP: Experimenting with GPGPUs in ASP solving 173

nogoods—as future work, we will consider all the set of these nogoods. The next step
performs a sequence of steps, by repeatedly setting δ := (ε\{¬`M (δ)})∪(δ\{`M (δ)})
and coherently updating the values of dlM (δ) and dlm(δ), until dlM (δ) 6= dlm(δ). This
procedure ends with the identification of a unique implication point (UIP [21]) that de-
termines the lower decision level/literal among those causing the detected conflicts. We
use such value for backjumping (Line 14 of Algorithm 3.2). The last nogood obtained
in this manner is also added to the set of nogoods.

3.6 Exhaustive Procedure

GPU are typically employed for data parallelism. However, as shown in [6], when the
size of the problem is manageable, it is possible to use them for massive search paral-
lelism. We have developed the Exhaustive procedure for this task. It is called when
at most k atoms remains undecided—where k is a parameter that can be set by the user
(by default, k = 32). The nogood set is simplified using the current assignment (this is
done in parallel by a kernel that assigns each nogood to a thread). This simplified sets
will be then processed by a second kernel with 2k threads, that non-deterministically
explores all of the possible assignments. Each thread verifies that the assignments do
not violate the nogoods set. If this happens, in case of a tight program, we have found
an answer set. Otherwise the StableTest procedure (Sect. 3.7) is launched (Lines
27–28 of Algorithm 3.2). The efficiency of this procedure is obtained by a careful use of
low-level data-structures. For example, the Boolean assignment of 32 atoms is stored in
a single integer variable. Similarly, the nogood representation is stored using bit-strings,
and violation control is managed by low-level bit operations.

3.7 StableTest Procedure

In order to verify whether an assignment found by the Exhaustive procedure is a
stable model, we have implemented a GPU kernel that behaves as follows:
• It computes the reduct of the program: each thread takes care of an individual rule;

as result, some threads may become inactive due to rule elimination, threads dealing
with rules with all negative literals not in the model simply ignore them, while all
other threads are idle.
• A computation of the minimum fixpoint is performed. Each thread handles one rule

(internally modified by the first step above) and, if the body is satisfied, updates the
sets of derived atoms. Once a rule is triggered, it becomes inactive, speeding-up the
consecutive computations.
• When a fixpoint is reached, the computed and the guessed models are compared.

4 Concluding discussion

We have reported on our working project of developing an ASP solver running (par-
tially) on GPGPUs. We implemented a working prototypical solver. The first results
in experimenting with different GPU architectures are encouraging. Table 1 shows an

174 Flavio Vella, A. Dal Palù, Agostino Dovier, Andrea Formisano and Enrico Pontelli

excerpt of the results obtained on some instances (taken from the Second ASP Compe-
tition). The differences between the performance obtained by exploiting different GPUs
are evident and indicates the strong potential for enhanced performance and the scala-
bility of the approach.

Table 2 reports on the performance of different serial ASP solvers, on the same col-
lection of instances. Far from being a deep and fair comparison of these solvers against
the GPU-based prototype, these results show that even at this stage of its development,
the parallel prototype can compete, in some cases, with the existing and highly op-
timized serial solvers. Notice that the GPU-based prototype does not benefit from a
number of refined heuristics and search/decision strategies exploited, for instance, by
the state of the art solver CLASP.

It should be noticed that, in order to profitably exploit in full the computational
power of the GPUs, one has to carefully tune its parallel application w.r.t. the charac-
teristics of the specific device at hand. The architectural features and characteristics of
the specific GPU family has to be carefully taken into account. Moreover, even consid-
ering a given GPU, different options can be adopted both in partitioning tasks among
threads/warps and in allocating/transferring data on the device’s memory. Clearly, such
choices sensibly affect the performance of the whole application. This can be better ex-
plained by considering Table 3. It shows the performance obtained by three versions of
the GPU-based solver, differing in the way the device’s global memory is used. Apart
from the default allocation mentioned in Sect. 2.2, CUDA provides two other basic
kind of memory allocation. A first possibility uses page-locking to speed up address
resolution. Mapped allocation allows one to map a portion of host memory into the
device global memory. In this way the data transfer between host and device is im-
plicitly ensured by the system and explicit memory transfers (by means of the function
cudaMemcpy()) can be avoided. The first column of Table 3 shows the performance of
a version of the prototype that allocates all data by using mapped memory. The behavior
of a faster version of the solver which exploits page-locking to deal with the main data
structures (essentially those representing the set of nogoods), is shown in the second
column. Clearly, this approach requires additional programming effort (in optimizing
and keeping track of memory transfers). Even better performance has been achieved by
a third version of the solver that adopts page-locking to allocate all data structures, only
on the device. This solution may appear, in some sense, unappealing, because it im-
poses to implement on the device also some intrinsically-serial functionalities. Even if
these functions cannot fully exploit the parallelism of the cores, considerable advantage
is achieved by avoiding most of the memory transfer between host and device.

In this work we made initial steps towards the creation of a GPU-based ASP-
solver; however, further effort is needed to improve the solver. In particular, some pro-
cedures need to be optimized in order to take greater advantage from the high data-
/task-parallelism offered by GPGPUs and the different types of available memories.
Moreover, some parts of the solver currently running on the host, should be replaced by
suitable parallel counterparts (examples are the computation of the strongly connected
components of the dependence graph and the computation of the unfounded sets). We
plan to develop the stability test that avoids analyzing the whole program and the im-
plementation of the NoGoodCheck that makes use of watched literals.

CUD@ASP: Experimenting with GPGPUs in ASP solving 175

Instance GT520 GT640 GTX580
channelRoute 3 5.44 1.73 0.37
knights 11 11 0.70 0.23 0.06
knights 13 13 1.70 0.51 0.12
knights 15 15 1.71 0.51 0.12
knights 17 17 2.40 0.69 0.16
knights 20 20 8.57 2.34 0.46
labyrinth.0.5 0.08 0.08 0.05
schur 4 41 0.24 0.16 0.07
schur 4 42 0.31 0.20 0.07

Table 1. Results obtained with three different Nvidia GeForce GPUs: GT520 (48 cores, capability
2.0, GPU clock 1.62 GHz, memory clock rate 0.50 GHz, global memory 1GB), GT640 (384
cores, capability 3.0, GPU clock 0.90 GHz, memory clock rate 0.89 GHz, global memory 2GB),
GTX580 (512 cores, capability 2.0, GPU clock 1.50 GHz, memory clock rate 2.00 GHz, global
memory 1.5GB). The timing is in seconds.

References

[1] C. Anger, M. Gebser, and T. Schaub. Approaching the Core of Unfounded Sets. Proceedings
of the International Workshop on Nonmonotonic Reasoning. 2006.

[2] A. Biere. Handbook of Satisfiability, IOS Press, 2009.
[3] H. Blair and A. Walker. Towards a theory of declarative knowledge. IBM Watson Research

Center, 1986.
[4] F. Campeotto, A. Dovier, and E. Pontelli. Protein Structure Prediction on GPU: an experi-

mental report. Proc. of RCRA, Rome, June 2013.
[5] K. Clark. Negation as Failure. Logic and Databases, Morgan Kaufmann, 1978.
[6] A. Dal Palù, A. Dovier, A. Formisano, E. Pontelli. Exploiting Unexploited Computing

Resources for Computational Logics. Proc. of CILC, CEUR, vol 857, 2012.
[7] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[8] F. Fages. Consistency of Clark’s Completion and Existence of Stable Models. Journal of

Methods of Logic in Computer Science, 1(1):51–60, 1994.
[9] R. Finkel et al. Computing Stable Models in Parallel. Answer Set Programming, AAAI

Spring Symposium, 2001.
[10] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven Answer Set Solving: From Theory

to Practice. Artificial Intelligence 187: 52–89, 2012.
[11] M. Gebser et al. Answer Set Solving in Practice. Morgan & Claypool, 2012.
[12] M. Gebser et al. Multi-Threaded ASP Solving with CLASP. TPLP, 12(4-5), 2012.
[13] E. Giunchiglia et al. Answer Set Programming Based on Propositional Satisfiability. Jour-

nal of Automated Reasoning, 36(4):345–377, 2006.
[14] J. Herbrand. Recherches sur la théorie de la démonstration. Doctoral Dissertation, Univ. of

Paris, 1930.
[15] R. Jeroslow and J. Wang. Solving Propositional Satisfiability Problems. Annals of Math

and AI, 1:167-187, 1990.
[16] Khronos Group Inc. OpenCL Reference Pages. http://www.khronos.org, 2011.
[17] F. Lin and Y. Zhao. Assat: Computing Answer Sets of a Logic Program by SAT Solvers.

Artificial Intelligence, 157(1):115–137, 2004.
[18] P. Manolios and Y. Zhang. Implementing Survey Propagation on Graphics Processing Units.

SAT, Springer Verlag, 2006.

176 Flavio Vella, A. Dal Palù, Agostino Dovier, Andrea Formisano and Enrico Pontelli

Instance SMODELS CMODELS CLASP-None CLASP GTX580
channelRoute 3 2.08 1.42 69.27 0.24 0.37
knights 11 11 0.34 0.11 0.03 0.03 0.06
knights 13 13 1.12 0.21 0.06 0.06 0.12
knights 15 15 1.12 0.24 0.05 0.07 0.12
knights 17 17 0.91 1.99 0.05 0.06 0.16
knights 20 20 9.61 3.85 0.22 0.20 0.46
labyrinth.0.5 0.02 0.01 0.01 0.01 0.05
schur 4 41 0.05 0.70 0.02 0.02 0.07
schur 4 42 0.07 0.60 0.02 0.05 0.07

Table 2. Results obtained with different solvers. All experiments where run on the same machine
(host: QuadCore Intel i7 CPU, 2.93GHz, 4GB RAM; device GTX580). Serial solvers: SMODELS

v. 2.34; CMODELS v. 3.85 exploiting minisat; CLASP v. 2.1.0. The column ‘CLASP-None’ shows
results obtained with CLASP by inhibiting its decision heuristics. This makes its selection strategy
analogous to the one used in our implementation. The timing is in seconds.

Instance All data mapped ∆Π page-locked All data page-locked
knights 11 11 0.87 0.16 0.06
knights 13 13 2.50 0.34 0.12
knights 15 15 2.49 0.35 0.12
knights 17 17 3.60 0.50 0.16
knights 20 20 14.14 1.60 0.46
labyrinth.0.5 0.82 0.03 0.05
schur 4 41 19.71 0.09 0.07
schur 4 42 24.75 0.12 0.07

Table 3. Results obtained with GTX580 with different use of memory resources.

[19] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM (JACM),
38(3):587–618, 1991.

[20] W. Marek and M. Truszczyński. Stable Models as an Alternative Programming Paradigm.
The Logic Programming Paradigm, Springer Verlag, 1999.

[21] J. Marques-Silva and K. Sakallah. GRASP: A Search Algorithm for Propositional Satisfia-
bility. IEEE Transactions on Computers, 48:506-521, 1999.

[22] I. Niemela. Logic Programming with Stable Model Semantics as a Constraint Programming
Paradigm. Annals of Math and AI, 25:241-273, 1999.

[23] J. Nickolls and W.J. Dally. The GPU Computing Era. In IEEE Micro, 30(2):56-59, 2010.
[24] S. Perri, F. Ricca, and M. Sirianni. Parallel Instantiation of ASP Programs: Techniques and

Experiments. TPLP, 13(2), 2013.
[25] E. Pontelli and O. El-Khatib. Exploiting Vertical Parallelism from Answer Set Programs.

Answer Set Programming, AAAI Spring Symposium, 2001.
[26] E. Pontelli, H. Le and T. Son. An Investigation in Parallel Execution of ASP on Distribute

Memory Platforms. Computer Languages, Systems & Structures, 36(2):158-202, 2010.
[27] F. Rossi, P. Van Beek, and T. Walsh. Handbook of Constraint Programming, Elsevier, 2006.
[28] S. Russell et al. Artificial Intelligence: A Modern Approach. Prentice Hall, 2010.
[29] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU

Programming. Addison Wesley, 2011.
[30] A. Van Gelder et al. The Well-founded Semantics for General Logic Programs. Journal of

the ACM, 38(3):619–649, 1991.

CUD@ASP: Experimenting with GPGPUs in ASP solving 177

