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Abstract. We will present some results and open problems on an exten-
sion of the Ackermann encoding of Hereditarily Finite Sets into Natural
Numbers. In particular, we will introduce and discuss a simple modifica-
tion of the above mentioned Ackermann encoding, that should naturally
generalize from Hereditarily Finite Sets to Hereditarily Finite Hypersets.
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Introduction

This work is related with an attempt to (sensibly) extend the following function
(map) introduced by Ackermann in 1937 (see [Ack37]) :

Definition 1.

NA(x) = Σy∈x2NA(y) (1)

The above map is a bijection between Hereditarily Finite Sets (denoted by HF:
the collection of sets obtained starting from ∅ and closing with respect to finite
set formation) and Natural Numbers (denoted by N).

The usage of 2 as base for the exponentiations in Definition 1 allows us to see
the binary expansion of the natural number NA(x) as a full description—that is
the list of its elements—of x in terms of NA: the presence of a 1 in position i of
the binary expansion of NA(x) is equivalent to saying that the element y such
that NA(y) = i belongs to x.

Example 1. NA(∅) = 0,NA({∅}) = 20 = 1,NA({∅, {∅}}) = 20 + 21 = 3, the
binary code of NA({∅, {∅, {∅}}}) is 1001, that is 9.

NA is a simple and natural encoding of sets, hence a powerful tool for rep-
resenting and manipulating objects that are suitable to represent any kind of
mathematical information.

Two sets are equal if and only if they have the same elements and the “trans-
lation” of this in terms of NA corresponds to observing that two natural numbers
are equal if and only if they have the same binary code. The previously men-
tioned set-theoretic principle for testing equality—a basic axiom in classical Set
Theory called extensionality—can be applied only if the membership relation ∈



does not admit cycles. A “set” u such that u belongs to itself, for example, can-
not be tested for equality using extensionality against another set v: among the
equalities to be checked we would need ... to take u into account! Nevertheless,
non well-founded set theories (whose elements are called hypersets) are useful
and very expressive tools. Especially in Informatics. They add the ability to rep-
resent circular phenomena by blending the basic set-theoretic machinery with
the notion of bisimulation used in place of extensionality (see [Acz88]). There-
fore, for example, it becomes important to find (fast) algorithms to compute
hyperset-equality. In [PP04] a number of examples of usages and extensions of
the Ackermann map are given, exploring the possibility of computing hyeperset
equality by comparing Ackermann-like encodings.

Here we discuss a possible extension of NA whose aim is to maintain formal
elegance while using as codomain a number system larger than N.

We mention the fact that, along the same line, we already proposed extensions
QA of NA mapping the collection HF of rational hereditarily finite hypersets into
dyadic rational numbers (see [DOPT10]). Dyadic rational numbers are rational
numbers that can be denoted by finitely many (binary) digits and our proposal
can be illustrated by a simple example: if QA(z) = 1010, 0111, then z is the
hyperset whose well-founded elements are the second and the fourth (that is
those having Ackermann code equal to 2 and 4), while z’s non well-founded
elements are the second, the third, and the fourth. Clearly, to build QA an
ordering of the hereditarily finite hypersets must enter into play. The set Ω =
{Ω} is—naturally—the first non well-founded set and, consequently, QA(Ω) =
0, 1.

The extension of Ackermann map discussed below is more direct than QA,
as it does not require any (somehow arbitrary) ordering of hereditarily finite
sets. This feature opens the way to an usage of the newly proposed map for
bisimulation computation based on code comparison, as well as to a large array
of numerically-based (hyper)set manipulation techniques.

1 Extending Ackermann map

Consider the following definition, obtained from Definition (1) by simply adding
a minus sign at exponent.

Definition 2.

RA(x) = Σy∈x2−RA(y) (2)

As a first and very basic motivation to consider the above map, notice that
the above definition allows a (unique) solution to the following equation:

x = 2−x (3)

To see this, it suffices to observe that the two curves y = x and y = 2−x are
increasing and decreasing, respectively, and intersect in the first quadrant of R.
Let Ω be the solution of (3) over R. It is not difficult to see that Ω /∈ Q.
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Our first objective would be to show that (2) is injective on the collection of
Hereditarily Finite Sets.

Conjecture 1. The function RA is injective on HF.

A second, more challenging, point will consist in establishing the fact that
RA is injective on the full collection of rational hereditarily finite hypersets.

Conjecture 2. The function RA is injective on HF.

We only have partial results related with the above conjectures that are
mostly related with a study of the codes of the elements of the following sub-
family of HF:

Definition 3. The elements of the family S of super-singletons

S =
{
{∅}i | i ∈ N

}
,

are defined recursively as follows: {∅}0 = ∅ and {∅}n+1 = {{∅}n}.

Super-singletons were first introduced by Zermelo in [Zer08] as a set-theoretic
representation for ordinals and they have been recently discussed by Kirby in
[Kir13].

The following figure shows the disposition of the first few code values of
super-sigletons (let si denote the code of the i-th super-singleton).
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Fig. 1: The RA-code of the first 5 super-singletons

The RA-code of super-singletons is easily determined and seen to converge
to the above defined value Ω.

Proposition 1. The following hold:

0 = s0 < s2 < · · · s2i < s2i+2 · · · < Ω < · · · s2i+3 < s2i+1 · · · < s3 < s1 = 1,

and

lim
i→∞

s2i = lim
i→∞

s2i+1 = Ω.

Proof. To see the above result it suffices to observe that 2−2
−x

is increasing and
therefore, since s0 = 0 < s2 = 1/2 and since s1 = 1 > s3 = 1/

√
2, we have:

s0 < s2 < · · · s2i < 2−2
−s2i

= s2i+2 · · ·
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and
s1 > s3 > · · · s2i+1 > 2−2

−s2i+1
= s2i+3 · · · .

Moreover, since s0 < Ω = 2−Ω and since s2i+2 = 2−2
−s2i

< 2−2
−Ω

= Ω, we have
that all even-indexed super-singletons are smaller than Ω.

Similarly, all odd-indexed super-singletons are larger than Ω.

To conclude we must prove that both even and odd indexed sequences of
super-singletons converge to Ω.

This is a consequence of the fact that (2−x − 2−y) < (y − x)/2, for all
x, y ∈ [1/2, 1]. This, in turn, follows from Lagrange theorem stating that (f(b)−
f(a))/(b − a) = f ′(z), for some z ∈ (a, b). In fact, assuming y > x, the value
(2−x−2−y)/(y−x) is equal to (2−z)′ = −2−z ln(2), for some z ∈ [x, y] ⊆ [1/2, 1],
and this value is always smaller than −1/2. To conclude it is sufficient to consider
the sequence for i > 0, with x = s2i and y = s2i−1. ut

With some extra observations and using the above result we can prove the
injectivity of RA on the codes of arbitrary unions of super-singletons.

Definition 4. Given j pairwise distinct indexes i1, . . . , ij, let si1,...,ij be the code
of {∅}i1 ∪ · · · ∪ {∅}ij , that is si1 + · · ·+ sij .

Moreover, let

Si1,...,ij =
{
si1,...,ij ,k | k > ij

}
.

On the grounds of the above definition, we have that the codes of non-null
super-singletons in S are in S0. If we imagine (codes of) super-singletons in S0
as obtained from the intersection of a spiral with the x-axis, as in the Figure 2,

S0

0 1

1

Fig. 2: The spiral of S0
then the arrangement of the subsequent spirals can be seen to be a spiral of
smaller and smaller spirals, as in Figure 3.

Notice that the points of convergence of all the above spirals—that is Ω +
si = RA(Ω ∪ {∅}i), for i > 0—are, in fact, codes of hypersets. This is not the
case for the point of convergence of all the points of convergence, that turns
out to be 2Ω. Looking at the point of convergence of 2−(Ω+si) for i > 0, one
obtains the sequence of si+1Ω that—no wonder—converges at Ω2. Starting from
the sequence of spirals Si,j , whose points of convergence bring us at 3Ω, by

exponentiating we get to Ω3, and so on.
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Fig. 3: The spirals of S0,S1,S2,S3,S4

Proposition 2. If {i1, . . . , ij} 6= {h1, . . . , hk}, then Si1,...,ij ∩ Sh1,...,hk
= ∅.

The above proposition is proved by first reducing the general case to the case
in which j = k, since a padding of 0’s on the left can always be performed. Then,
proving that the leftmost difference among indexes in two elements belonging to
Si1,...,ij and Sh1,...,hj

, respectively, can never be compensated by the following

differences.

By letting hi be the set belonging to HF whose Ackermann code is i, that
is such that NA(hi) = i, an ordering among the elements in HF is naturally (!)
induced by NA

3.
Looking at indexes that do not necessarily belong to the collection of super-

singletons or to sums of such sets, the following result holds.

Proposition 3. For all i ∈ N:

1. RA(hi) 6= RA(hi+1);
2. RA(hi) 6= RA(hi+2).

We can prove the above proposition by rather ad-hoc arguments based on
the specific value that a difference between two subsequent codes can assume.

Conclusions

We proposed a new numerical encoding for hereditarily finite hypersets that is a
natural extension of the celebrated Ackermann map establishing a bijection be-
tween natural numbers and hereditarily finite (well-founded) sets. Our proposed
encoding differs from Ackermann’s one only for a minus sign in the exponent.
Such a small difference in the definition, however, radically changes the encoding
that now maps the hypersets universe on real numbers. The map seems to have
elegant analytical properties guaranteeing its injectivity on both well-founded
and non well-founded hereditarily finite sets. Both injectivities, however, are

3 Such ordering can be seen to correspond to the ordering holding on binary represen-
tation of natural numbers: given two strings of bits α and β, if the leftmost difference
is such that a 1 appears in α, then α > β.
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just conjectured here and our opinion is that once proved RA to be 1-1 on well-
founded sets, Conjecture 2 could/should be attacked by proving that the code
of a hyperset is the unique accumulation point of the codes of the well-founded
sets obtained by its unfolding. Notice that this is the case for Ω, as well as for
other cases briefly mentioned above.
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