
BPAL: A Platform for Managing Business Process
Knowledge Bases via Logic Programming?

Fabrizio Smith, Dario De Sanctis, Maurizio Proietti

National Research Council, IASI “Antonio Ruberti” - Viale Manzoni 30, 00185 Roma, Italy
{fabrizio.smith, dario.desanctis, maurizio.proietti}@iasi.cnr.it

1 Introduction

The adoption of structured approaches for the management of the Business Processes
(BPs) operating within an organization is constantly gaining popularity. Nevertheless,
their further automation is severely hampered by the fact that standard approaches are
an insufficient means for capturing the complex process-related knowledge and making
it available in a machine-accessible form [1]. As a result, many tasks, such as process
analysis, verification, retrieval and composition, still require great manual efforts. In
this scenario, the application of well-established techniques stemming from the area of
Knowledge Representation has been shown as a promising approach for the enhance-
ment of BP and Web Service [1, 2] management systems.

While several tools are today available for the modeling, verification, simulation,
and execution (e.g., Intalio, Tibco, YAWL, Enhydra Shark), no commercial tool en-
ables the semantic annotation of BP models, nor semantics-based reasoning services.
Although several approaches have been proposed in literature to enable the exploita-
tion of semantic facilities (see, e.g., the seminal work in [2, 3], and recent proposals [4,
5]), very few implemented tools (e.g., [6, 7]) give a (limited) support to the integrated
management of the structural definition of a flow model, the formal definition of its
behavior, and the domain knowledge related to the business scenario where it operates.

The BPAL platform implements a BP modeling and reasoning environment where
the procedural knowledge of a BP can be enriched through ontology-based annotations.
The theoretical basis of the tool is the Business Process Abstract Language [8], a lan-
guage grounded in Logic Programming (LP) for representing and reasoning on various
facets of process knowledge: (i) the meta-model of a BP schema (BPS), which covers
a core of the BPMN notation, (ii) the BPS execution semantics, specified in a special-
ized version of the Fluent Calculus, a well-known LP-based action language, (iii) the
behavioral properties of process executions, expressed by means of the CTL temporal
logic, and (iv) the domain specific semantics of individual activities occurring in a BP,
defined via OWL annotations (falling within the OWL 2 RL fragment) along the line of
Semantic Web Services proposals.

The BPAL platform provides a graphical user interface to ease the definition of a BP
Knowledge Base (BPKB) that collects the various pieces of process knowledge. BPAL
also provides a reasoner implementing services for the enactment, verification, retrieval,

? A video demonstration is available at http://www.youtube.com/watch?v=xQkapzjhO7g



and composition of processes in the BPKB. Complex queries combining different as-
pects of process knowledge can be expressed in QuBPAL [9], a query language based on
the SELECT-WHERE paradigm. QuBPAL queries are translated into clausal form and
answered through an efficient, sound and complete LP query evaluation mechanism.

2 An Overview of the Functionalities of BPAL

Management of BP Repositories. The platform provides functionalities for managing
BP repositories, such as: (1) creating a new BPS, (2) importing an existing BPS from
an XML serialization of a BPMN diagram, and (3) editing a BPS via a graphical editor.
Semantic Annotation. Two kinds of annotations enable the enrichment of a BPS with
domain related knowledge defined in a given reference ontology: (1) terminological an-
notations, which associate BPS elements with concept expressions, and (2) functional
annotations, which define the conditions under which flow elements can be executed
and the effects of their execution on the state of the world.
Enactment. The execution of a BP is modeled as an execution trace, corresponding to
a plan in the Fluent Calculus, i.e., a sequence of actions of the form [begin(e1), . . . ,
complete(en)] where ei represents a flow elements. Execution traces correspond to
process logs, which are commonly stored by BPM systems to record the enactment of
BP instances. BPAL can verify whether a trace can be generated by a BP enactment
(i.e., the compliance of a trace w.r.t. a given BPS) and, by exploiting the LP inference
mechanism, the rules defining the trace semantics can also be used to generate the traces
of a BPS satisfying some given (behavioral and/or ontological) property.
Verification. BPAL enables the verification of properties that depend on the interac-
tion between the operational behavior of the process and the ontology-based semantic
annotation. Thus, besides well-known correctness criteria typically addressed in the
workflow community (e.g., soundness), the tool is also able to verify that, during a BP
enactment, no semantics-related constraint is violated. For instance, given a BPS named
p, we can define the following predicate:

holds(not(ef(false)),bps(p))
meaning that no state is reachable (expressed by the temporal operator ef ‘exists fi-
nally’) where the false concept can be inferred from functional annotations specify-
ing the effects of execution (e.g., o : approvedPO and o : rejectedPO) and execution-
independent OWL axioms (e.g., approvedPOurejectedPOv false).
Compliance. Temporal queries can also be used for analyzing the compliance with
business rules, i.e., directives expressing internal policies and regulations of an enter-
prise. In an eProcurement scenario, one such compliance rule may be that every order
is eventually closed. This rule can be expressed by the following predicate meaning that
it is not possible to reach the final state of the process where some order is not closed:

holds(not(ef(final(p) and nonclosedP0)),bps(p))
Here nonclosedP0 holds in a given state if, for some O, the OWL assertion O : order
holds and the OWL assertion O : closedP0 does not hold.
Retrieval. The LP inference mechanism based on resolution can be also used for com-
puting, via unification, substitutions for variables occurring in queries. BPAL exploits
this query answering mechanism and provides a reasoning service for the retrieval of
process fragments described in a declarative way. In particular, the WHERE clause of

248 Fabrizio Smith, Dario De Sanctis and Maurizio Proietti



a QuBPAL query can specify a combination of ontological, structural, and behavioral
properties. For instance, if we want to retrieve all activities that must precede a deliv-
ery and require an authorization by the sales manager, then we may issue the following
query (names prefixed by ‘?’ denote variables):

SELECT ?a
WHERE precedes(?a,delivering,p) AND requiresSalesMgrAuth(?a)

where (i) precedes(a,b,p) is a predicate, defined by using the CTL temporal opera-
tors, which means that in any enactment of process p, activity a precedes activity b,
and (ii) requiresSalesMgrAuth(?a) holds if the (terminological) annotation of ?a is
a concept subsuming the OWL assertion ∃ requiresAuth.salesMgr.
Composition. The tool allows the user to specify a process skeleton, which constitutes
a high level definition of a new BP to be composed by retrieving subprocesses from
a given BP repository [10]. Tasks appearing in the skeleton are associated with local
constraints, which express requirements for the selection of the corresponding subpro-
cesses to be retrieved, and global constraints, specifying the requirements on the com-
posed BPS as a whole. Local and global constraints are expressed as QuBPAL queries
and evaluated over the BPKB in order to compute possible compositions.

Fig. 1: GUI of the BPAL platform

3 Tool Description

The BPAL platform is implemented as an Eclipse Plug-in1, whose main components
are depicted in the functional view in Figure 2.

The BPKB Editor provides a graphical user interface to define a BPKB and to
interact with the BPAL Reasoner. It encompasses: a tree view of the available resources
(Fig. 1a), the STP2 BPMN Modeler (Fig. 1b), a browser for the visualization of OWL

1 http://www.eclipse.org/
2 http://www.eclipse.org/soa

BPAL: A Platform for Managing Business Process Knowledge Bases 249



ontologies (Fig. 1c), an annotation panel (Fig. 1d), and finally a query prompt (Fig. 1e)
to submit queries and collect the results (Fig. 1f).

The BPAL Reasoner provides the means to process and query the BPKB. Process
schemas are imported into the BPKB from BPMN process models via the BPMN2BPAL
interface. In order to ease the sharing and re-use of semantic meta-data, semantic infor-
mation used and produced during the annotation process (i.e., reference ontologies and
semantic annotations) can be exported and imported from OWL/RDF files by means
of the RDF I/O module. The underlying rule-based reasoner can deal indifferently with
RDF, RDFS and OWL (restricted to the RL profile). The BPKB Manager handles the
set-up and the interaction with the LP engine by initializing and updating a BPKB. After
populating the BPKB, inference is essentially performed by posing queries to the XSB
Prolog engine3, connected through a Java/Prolog interface. XSB extends conventional
Prolog systems with an operational semantics based on tabling, i.e., a mechanism for
storing intermediate results and avoiding to prove sub-goals more than once. In our set-
ting, XSB has a crucial advantage with respect to other Prolog systems, because tabling
ensures the termination of query evaluation over a BPKB. Finally, the Query Manager
exposes functionalities to translate QuBPAL queries into LP queries, evaluate them, and
collect the results in a textual form or export them in an XML serialization.

Fig. 2: Functional view of the BPAL platform

4 Discussion

The BPAL platform presented in this paper enables the combination of the procedural
and ontological perspectives related to process knowledge in a very smooth and natural
way. BPAL provides a uniform framework for modeling and semantically enriching BP
models, in order to reason on properties that depend on the sequence of operations that
occur during process enactment and also on the domain where the process operates. In
doing this, our approach does not introduce a new BP modeling paradigm, but provides
a framework where one can map and integrate knowledge represented by means of
existing formalisms. This is very important from a pragmatic point of view, as one
can express process-related knowledge by using standard modeling languages such as

3 http://xsb.sourceforge.net/

250 Fabrizio Smith, Dario De Sanctis and Maurizio Proietti



BPMN for BP models and OWL for ontologies, and then automatically translate this
knowledge into logic programs (see [8] for details), thus allowing the use of standard LP
methods and tools to perform reasoning. This LP translation also enables the application
of further, very sophisticated reasoning techniques recently developed in the field of
logic programming. In this respect, interesting directions of future work include the
enhancement of our framework with: (i) process mining facilities, by adopting Inductive
Logic Programming techniques, such as the ones presented in [11], and (ii) verification
techniques for BPs in the presence of data constraints, by following approaches based
on Constraint Logic Programming such as, for instance, the one proposed in [12].

The approach has been applied to real-world scenarios coming from end-users in-
volved in the European Project BIVEE4 and from the pilot conducted within a collab-
oration between the italian CNR and SOGEI (ICT Company of the Italian Ministry of
Finance). The former is related to the modeling of production processes in manufac-
turing oriented networked-enterprises, while the latter regards the procedural modeling
of legislative decrees in the tax domain. The experiments we have conducted are en-
couraging and revealed the practical usability of the tool and its acceptance by business
experts. On a more technical side, the LP reasoner based on the XSB system shown a
significant efficiency, since very sophisticated reasoning tasks have been performed on
BPs of small-to-medium size (about one hundred of activities and several thousands of
reachable states) in an acceptable amount of time and memory resources.

References
1. Hepp, M., et al. (2005). Semantic Business Process Management: A Vision Towards Using

Semantic Web Services for BPM. In Proc. of Int. Conf. on e-Business Engineering, IEEE.
2. Fensel, D., et al. (2006). Enabling Semantic Web Services: The Web Service Modeling Ontol-

ogy, Springer.
3. Burstein, M., et al. (2004). OWL-S: Semantic Markup for Web Services. W3C Member Sub-

mission, http://www.w3.org/Submission/OWL-S/.
4. Baryannis, G., Plexousakis, D. (2013). WSSL: A Fluent Calculus-Based Language for Web

Service Specifications. In Proc. of the 25th CAiSE Conference, LNCS 7908, Springer.
5. Calvanese, D., et al. (2012). Ontology-Based Governance of Data-Aware Processes. In Proc.

of the 6th Int. Conf. on Web Reasoning and Rule Systems, LNCS 7497, Springer.
6. Dimitrov, M., et al. (2007). WSMO Studio: A Semantic Web Services Modelling Environment

for WSMO. In Proc. of the 4th European Conf. on the Semantic Web. LNCS 4519, Springer.
7. Born, M., et al. (2009). Supporting Execution-level Business Process Modeling with Semantic

Technologies. In Proc. of the 14th DASFAA Conference. LNCS 5463, Springer.
8. Smith, F., Proietti, M. (2013). Rule-based Behavioral Reasoning on Semantic Business Pro-

cesses. In Proc. of the 5th Int. Conf. on Agents and Artificial Intelligence, SciTePress.
9. Smith, F., Missikoff, M., Proietti, M. (2012). Ontology-Based Querying of Composite Ser-

vices. In Business System Management and Engineering, BSME 2010, LNCS 7350, Springer.
10. Smith, F., Bianchini, D. (2012). Semi-Automatic Process Composition via Semantics-

Enabled Sub-Process Selection and Ranking. Enterprise Interoperability V, I-ESA’12, Springer.
11. Lamma, E., et al. (2008). Applying Inductive Logic Programming to Process Mining. In

Proc. of the 17th Int. Conf. on Inductive Logic Programming, LNCS 4894, Springer.
12. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies for the veri-

fication of infinite state systems. Theo. Pract. Log. Prog., 13(2):175–199, 2013.

4 BIVEE: Business Innovation and Virtual Enterprise Environment (FoF-ICT-2011.7.3-285746)

BPAL: A Platform for Managing Business Process Knowledge Bases 251


