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Abstract. In this paper, we consider incremental development of state
transition diagrams by adding features, which add new states and transi-
tions. The goal is to capture when properties of a state transition diagram
are preserved when adding a feature. We classify several typical cases of
such state transition diagram extensions and show when commonly used
properties are preserved. In some cases, we add restrictions to the input
events. In others, we need to transform properties to account for new
failure cases. Properties are specified on the externally visible input and
output events. To formalize the properties and to reason about internal
state transition diagram extensions we use a computation tree logic with
states and events.

1 Introduction

The idea of incremental development is to start with a base model and then
to add small features in succession, which add previously unspecified behavior.
Here, we extend state transition diagrams (SDs) by features, which means to add
new states and transitions. With extension of an SD we refer to such a syntactic
extension. The core question addressed here is whether properties are preserved
when incrementally extending an SD by a new feature which adds new states
and transitions.

As an example consider Figure 1, where a new, alternative path is added
to an SD. By convention, added features are shown in red, with bold lines and
bold labels. In this example, consider the main property that the output ”Issue
ticket” occurs eventually. As can be seen easily, the extension by this new path
preserves this property. As a second example, consider the example in Figure 2,
which adds a new loop. In this case, the above property (i.e., that a ticket is
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Fig. 4. Adding Failure Paths

issued eventually) is not preserved, as the loop may be traversed infinitely many
times. Next, consider Figure 4, which adds two new failure paths. In this case,
the above property that a ticket is issued is not preserved. We have two options
here. As the first option, we may assume that such a failure does not occur.
Alternatively, we may also transform the property to account for this new case.

More precisely, we consider the case where an SD is extended by a new
feature, which adds new states and transitions. We classify several typical cases
of such SD extensions and show when commonly used properties are preserved.
In some cases, we also transform properties to account for new failure cases.

Our approach is, on a conceptual level, similar to adding aspects on a pro-
gramming language level. For this, [3] has analyzed typical patterns of aspects
w.r.t properties expressed in temporal logic. However, to our knowledge, such
an approach has not yet been pursued for state transition diagrams. The main
advantage here is that we can formalize properties on the control flow to deter-
mine when a property is preserved. Also, we adapt properties for expressiveness,
unlike [3].

We formalize properties in a specific computation tree logic (CTL) which
considers both states and events, following the logic in [9, 6]. Properties are
specified on the externally visible traces of input and output events. To analyze
when properties are preserved, we also need to capture the possible traversals
of the state transition diagram, i.e., the internal view of states. This is why
conventional CTL logics with consider either states or events are insufficient
(see e.g. [7] for a comparison).

There exists ample work on refinement for SDs, e.g. [8], which aims to pre-
serve all properties of an existing system, which is however not applicable in
many cases. Hence we present custom solutions for specific features of SDs and
specific classes of properties.

Other work on modularity for model checking [2, 5] considers the problem
of extending automata models by new states and transitions. In these works,
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composition of statecharts leads to proof obligations for specific properties to
maintain. These are in turn to be validated by a model checker. Similar goals
have been pursed in the context of aspect-modeling for state machines in [10].
These approaches require the specification and establishment of each individual
property after the extension.

2 State Transition Diagrams and Event/State-based
Temporal Logic

We model software systems by SDs, which we formalize as labeled transition
systems.

Definition 1 (Labelled Transition System). A labelled transition system
(or LTS) is a structure L = (S, s0, A,→) where

– S is a set of states.
– s0 ∈ S is the initial state.
– Two disjoint sets I and O of input and output events and the silent event τ

is not in I nor O.
– Pairs of input and output events A = (I ∪ {τ})× (O ∪ {τ}), called labels.
– →⊆ S ×A× S is the transition relation; an element (r, α, s) ∈→ is called a

transition, and is usually written as r
α−→ s.

To model practical examples we use explicit labels with a pair of input and
output events. We write (s, (i, o), s′) or (s, α, s′), where α = (i, o), for transitions.
We let Aτ = A ∪ {τ}. We let α, β, . . . range over Aτ . As I and O are disjoint,
we also write i instead of (i, τ) and o instead of (τ, o).

Let L = (S, s0, A,→) be an LTS. A sequence (s0, α0, s1)(s1, α1, s2) . . . ∈→∞

is called a path from s0; if a path cannot be extended anymore because it is either
infinite or ends in a state without outgoing transitions, it is called a maximal
path. We write statei(π) for the i’th state of the path, i ≥ 0. We write eventi(π)
for the i’th event of the path, i ≥ 0.

In the following, we briefly introduce a computation tree logic (CTL) based
on both states and events. This is needed as we aim to separate the external
view on an SD, in terms of events, and the internal view in terms of states, as
discussed below.

Our logic, called ESCTL, is a special case of the UMC logic presented in [9].
In more detail, UMC permits multiple labels on a transition; here we use pairs
of input and output events, which is easily embedded in UMC.

Definition 2 (ESCTL). The syntax of the logic ESCTL(Event/State-based
CTL) is defined by the following grammar where we let φ, φ′, . . . range over
ESCTL-state formulas: φ ::= T | s | ¬φ | φ ∧ φ′ | Eϕ | Aϕ where s ∈ S
and ϕ is a path formula. ESCTL-path formulae are formed according to the
following grammar: ϕ ::= Xφ | Xχφ | φχUχ′φ′ | φχWχ′φ′ where φ and φ′ are
ESCTL-state formula and χ and χ′ are event formulae. An event formula is
defined by the following grammar where we let χ, χ′ range over event formulas:
χ ::= true | α | ¬χ | χ ∧ χ′
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In the following we will say state and path formula instead of ESCTL-state
and ESCTL-path formula.

Let L = (S, s0, A,→) be an LTS. The satisfaction relation |= between states
s ∈ S and state formulae is defined as usual. For a detailed treatment, we refer
to [9]. Satisfaction of path formulae by maximal paths is defined as follows:

π |= Xφ iff state1(π) |= φ;

π |= Xχφ iff event0(π) |= χ and state1(π) |= φ;

π |= ϕχUχ′ϕ′ iff ∃j ≥ 0 : statej(π) |= ϕ ∧ statej+1(π) |= ϕ′ ∧ eventj(π) |= χ′∧
∀0 ≤ k < j.statek(π) |= ϕ ∧ eventk(π) |= χ;

π |= ϕχWχ′ϕ′ iff π |= ϕχUχ′ϕ′ or ∀k ≥ 0.statek(π) |= ϕ ∧ eventk(π) |= χ;

Satisfaction of event formulae by events is defined as usual [9]. Informally, π |=
ϕχUχ′ϕ′ holds if for some path π, the property ϕ holds on the states and χ holds
on the events, until a transition with (sj , α, sj+1) occurs, where χ′ holds for α
and ϕ′ holds for sj+1.

We define the usual operators F and G, as well as Fχ, for a event χ,
as follows: F = ¬T,EFφ = E(TtrueUφ), AFφ = A(TtrueUφ), EFχφ =
E(TtrueUχφ), EFχ = E(TtrueUχT ), AGφ = ¬EF¬φ,AGχ = ¬EF¬χ, EGφ =
AG¬φ,E(ϕφUϕ

′) = ϕ′ ∨ E(ϕφUφϕ
′). Without ambiguity, we omit T in formu-

lae. Similarly, we write eUχ instead of TeUχ.
Note that our combined event/state logic treats events and state separately,

and many properties on states are easier to formalize than similar ones on events.
For instance consider a property state s implies state s′; we denote this as
AG(s→ AFs′), which is defined as AG(¬s∨AFs′). On the other hand, an event
e implies P is denoted as AG(e→ P ), defined as AG((Xe(AFP )) ∨X¬eT ).

3 SD Composition and Property Preservation

In the following, we first motivate our specifications in state/event logic and
then classify properties on SDs. This is followed by a detailed analysis of SD
composition for different cases.

We use our event/state logic in order to specify externally visible behavior
and internal behavior, respectively. Assume an SD S and a set of input traces I
consisting only of input events.

– We express properties on externally visible behavior by properties on in-
put and output events. No formulae with states are permitted, as these are
considered internal.

– (Full) behavior specifications use properties over states, input and output
events created by S, using all of the above.

One reason why we use externally visible events for behavior is that two com-
posed SDs may share input or output events. This is not possible if only names
of states are considered. On the other hand, we need states to reason about
internals of a composition, as discussed below.
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3.1 Specification Patterns

Our goal is to study what properties are preserved when adding a new feature
to an SD. For the properties to consider, we use the specification patterns as in
[4]. From the extensive study in [4], it was observed that around 80%-90% of
all properties in specifications are of the three kinds. First, we have the pattern
”a leads to b”, called response in [4]. Formally, we have, AG(a → AFb). The
other two classes, called universality and absence, are invariants stating that a
property holds globally or something never happens. Such invariants must hold
for all states and/or transitions, which means that validation is compositional in
this sense. We should note here that the properties in [4] also consider different
temporal scopes for the validity of the formulae. This is not considered here for
simplicity.

In this paper, we hence focus on leads to or response properties. Together
with the invariants, this covers a significant amount of specifications. The other
pattens in [4] formalize precedence of states and chained response and prece-
dence. We conjecture that other patterns can be handled in a similar way, but
detailed analysis is left to further work.

3.2 SD Composition

In the following, we define formally how to extend an SD by a new feature.
We also use SDs to denote such extensions, which are then glued together at
specified join states. Based on join states, similar to join points in aspect-oriented
languages, we use graphical notation to denote the composition of SDs. For a
more formal definition, we refer to [8].

For adding a new path, consider the schematic view in Figure 5. By conven-
tion, the SD E in red color represents the path to be added to the blue, base SD
S. We assume that E and S have disjoint states, and further that E has initial
state s′ and a state j′. In S, we assume a start state s and a join state j for
adding a path. The two SDs will be composed by merging these two states, s′

and j′, with the states s and j, respectively. This is denoted by the light dashed
lines. In the merged state, we use the states s and j for these. Formally, the
states s′ and j′ are renamed to s and j in E, and the two SDs are then merged
to obtain S∪E. Note that we do not use the same names for the states i and j in
S and E to be merged in order to avoid confusion when expressing preconditions
on E or S.

We also consider refinement of transitions as follows. We write S−E, where
E denotes a set of transitions in S which are removed. Based on this, we can
express transition refinement by S−E∪E′ as shown in Figure 3. If E removes a
single transition for which a corresponding path with same start and end states
and the same trigger event in the first transition in this path, then we denote this
as a transition refinement by S ∪r E′ and leave E implicit (without ambiguity).
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Fig. 5. Adding an Alternative Path (Schematic view)

3.3 Property Preservation for Response/Leadsto Properties

The main goal of this section is to define rules for the extension of an SD. As
defined above, assume an SD S which is extended to S ∪ E by an extension E.
The goal is now to define criteria when a property for S, e.g. S |= P , also holds
for S ∪ E, i.e., S ∪ E |= P .

This achieves modularity on properties w.r.t. extension, and also simplifies
formal proofs as S ∪ E is larger than S and E. Furthermore, we will see that
many properties can be obtained easily by local analysis of the state diagram.
We should observe also that some properties are not preserved by extensions.
For this, we will transform the properties into extended properties with extra
conditions.

Adding Alternative Paths We consider the schematic view of adding an
alternative path in Figure 5. We use the states s, s′ and j, j′ as shown in this
figure. However, the schematic case as in Figure 5 is simplified for illustration
and does not show all cases covered by this rule. More precisely, this case is
specified by the following assumptions: First, there is a path from s to j in S,
i.e., S |= AG(s → EFj). This means that j is reachable from s on at least one
path; thus we add an alternative path to this. Second, E |= AG(s′ → AFj′). This
means that j′ is reached eventually when entering E. Furthermore, we assume
s 6= j to avoid trivial loops which are covered in a separate case below. Third,
we assume that j′ is a final state in E. Hence we have no newly added infinite
loops and termination only in state j for E.

We consider first a property of the form AG(a→ AFb). The main idea here
is to identify cases when an alternative path does not obstruct this property.
In other words, the event b is observed in any path after a, even with the new
alternative path.

Assuming S,E with states s, s′ and j, j′ as specified above for Figure 5. In
case S |= AG(a→ AFb) holds for S, we obtain S ∪E |= AG(a→ AFb) if one of
the following holds:

– S |= AG(a→ (¬sUb))
– or S |= AG(s→ (¬jWb))

– or E |= AG(s′ → AFb).
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Fig. 7. Adding a Fallback Path

Adding a Failure Path We consider the schematic view of adding a failure
path in Figure 6. The assumptions for this case are as follows: there is a failure
event c which occurs in E, E is entered by event e and furthermore that there
is no paths back to the SD S. Formally, we have no j′ in this case and E |=
AG(e→ AFc).

In case of leadsto properties, we have several cases. The base case happens
when the property is not affected by the failure, i.e., if the added path is not
taken before b, formally a→ (¬sUb). Then, we have the case that b always occurs
in E, similar to above.

If these simple cases do not hold, we have the option to weaken the property.
Assuming S |= AG(a → AFb) and AG(E |= e → AFc), we obtain S ∪ E |=
AG(a→ AFc∨b).

Adding Fallback Paths The idea of a fallback path is that a new path is
added, similar to the alternative path case. Here, the new path leads to a state
already traversed earlier. Thus we fall back to an earlier state and create a
possible loop, which is different from the above cases.

We consider the schematic view of adding an alternative path in Figure 7.
As above, the SD E in red color represents the path to be added to the blue,
base SD S, with join states s and j. We assume that E has initial state s′ and
a final state j′.

The fallback case, as illustrated schematically in Figure 7, is specified by the
following assumptions: First, there is a path from j to s in S, i.e., S |= AG(j →
EFs). Secondly, E |= AG(s′ → AFj′). Third, j′ is a final state in E. The main
problem in this case is that the fallback path adds a loop which may be traversed
infinitely often.

Consider a response property of the form a leads to b. The main idea here
is to identify cases when an alternative path does not obstruct this property.
In other words, the event b is observed in any path after a, even with the new
alternative path.

Assuming S,E with states s, s′ and j, j′ as specified above for Figure 7.
Assuming S |= AG(a→ AFb), we obtain S ∪ E |= AG(a→ AFb) if

– S |= AG(a→ (¬sWb))
– or E |= AG(s′ → AFb).

For adding a fallback path, we have another important case. If we can avoid
non-termination by the added loop of the fallback path, we can also establish
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the desired property. It is sufficient to express that in state s, the input e does
not occur infinitely often.

The problem is that we cannot express such fairness properties in a CTL-
logic. We can formalize this as S ∪ E |= ¬AG(s ∧ Xe), but this is a CTL*
formula and not a CTL formla. Fortunately, for our state/event logic, there
also exists an extension, including model checking, for the µ-calculus, which can
embed CTL* [6]. Another, suitable solution is to add fairness conditions on the
permitted input events, as done for CTL-logic in [1]. We expect that this can
also be transferred to action/state CTL logics, but this goes beyond the scope
of the paper.

Refining Transitions In this case, a transition is refined into several new states
and new transitions. This is typical when moving from a higher level model
to a more detailed model, which shows more details by refining a transition
into several transitions. Note that removing transitions is a special case of this
refinement. An example is shown in Figure 9.

The schematic case is illustrated in Figure 9. Formally, it is specified by
the following assumptions: First, there is a transition from s to j in S. Second,
E |= AG(s′ → Aj′). This means that j is reached eventually when entering
E. Hence we have no infinite loops and termination only in state j. Refining a
transition could be modeled by removing a transition and adding a new path;
for refinement it is however more effective to consider this in conjunction.

We consider first a property of the form a → AFb. The main idea here is
to identify cases when the added path does not obstruct this property. In other
words, the event b is observed in any path after a, even with the new alternative
path.

Assuming S |= AG(a→ AFb), we obtain S ∪r E |= AG(a→ AFb) if

– S |= AG(a→ (¬sWb))
– or S |= AG(s→ (¬jWb))
– or E |= AG(s′ → AFb).

The cases above are as in the case of adding a transition: In the first case,
(¬sUb) means s never happens before b. Hence b occurs always before the alter-
native path is taken. In the second case, s → (¬jWb) means this: if s happens,
then b happens after j. This is to avoid the case that b only occurs between s
and j. Finally, E |= AG(s′ → AFb) means that b happens in E when the path
is taken. Hence the property also holds for the combined SD.
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3.4 Example

In the following, we apply the above results to the example in the introduc-
tion. We consider the base SD as in Figure 1 and the property AG(start →
AFIssue ticket). Combining the examples from Section 1, we obtain the SD in
Figure 10

1. Adding the voucher option in Figure 1 preserves this property.
2. Adding the discount option in Figure 2 does not preserve this property. As-

suming a fairness precondition, this turns into AG(start → AFIssue ticket).
More formally, we need to assume in the following that enter discount does
not occur infinitely often in sequence.

3. Refining the credit transition in Figure 3 preserves this last property.
4. Adding the failure cases as in Figure 4 does not preserve this prop-

erty. We need to weaken the property as follows: AG(start →
AFdeclined∨cancel∨Issue ticket), assuming the above fairness precondition re-
garding enter discount.

4 Conclusions

In this paper, we have presented a new approach for incremental development
of state transition diagrams. We have developed a classification of individual
features to be added to an SD, and then discussed when properties can be
established. In some failure cases, we had to modify the properties to account
for failure cases. In case of loops, we may need a notion of fairness for some
properties. The conditions for the rules only assume properties of the SDs to be
composed, which means that the rules are modular. Hence, one benefit is that
we can validate the rules more efficiently. In many cases the conditions can be
checked by simple analysis on the SD level.

We have formalized our rule by using a recently developed Event/State CTL
logic. This permits us to express properties on externally visible behavior in
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terms of input and output events, while expressing composition conditions by
internal states. We have validated our rules by several examples in a workflow
example. We assume that our rules and examples are easy to express in a model
checker for our state/event logic, e.g. in the UMC tool [6].

The main novelty is to focus on different kinds of properties individually,
which permits new ways for incremental development. Regarding other works
on refinement, we note that usual notions of refinement preserve all properties,
which is too strong for our case. Further work will address other patterns of
property specifications, also including different scopes.
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