Ensuring OSGi Component Based Properties at
Runtime with Behavioral Types

Jan Olaf Blech

RMIT University, Melbourne fortiss GmbH, Munich

Abstract. We present work on using automata based behavioral descriptions (be-
havioral types) of OSGi components for monitoring their specified behavior at
runtime. Behavioral types are associated with OSGi components. We are focusing
on behavioral types that specify protocols defined by possible orders of method
calls of and between components and specifications based on the maximal ex-
ecution time of these method calls. Behavioral runtime monitors for detecting
deviations from a specified behavior are generated for components automatically
out of their behavioral types. We sketch the integration of our behavioral runtime
monitors into a behavioral types framework and present implementation and eval-
uation work on the behavioral runtime monitoring part.

1 Introduction

In our work, we are extending the basic typing concepts of traditional software com-
ponent systems with means for specifying possible behavior of components. As with
traditional types, like primitive datatypes and their composition, our behavioral types
can be used for eliminating possible sources of errors at development time of software
systems. This is analog to classical static type checks performed by a compiler. Further-
more, we can use behavioral types for eliminating possible sources of errors at runtime.
This is analog to dynamic type checks performed when accessing pointers that reference
data with types that can not be statically determined in some classical programming lan-
guages. Behavioral types also provide additional information about components which
can be used for further tool based operations. Ensuring behavioral type correctness at
runtime of an OSGi system is the main focus of this paper.

In this paper, we are using finite automata based descriptions of method call or-
ders and maximal execution times of methods. Programmers even outside the academic
community seem to be familiar with finite automata and thus, we believe that it is a
good candidate for the acceptance of our specification formalism. We present a first
version of an implementation ' for the OSGi [14] framework 2. OSGi allows dynamic
reconfiguration of Java based software systems. In this paper, we concentrate on check-
ing / ensuring of behavioral type safety at runtime of a system using behavioral runtime
monitors generated from our behavioral types. We monitor a system’s execution and
throw behavioral types exceptions in case of deviations from the specified behavior.

! The parts of our behavioral types framework concerning behavioral runtime monitors as de-
scribed in this paper are available at http://sourceforge.net/p/beht/wiki/Home
2 Among other aspects of the framework, additional implementation details are described in [7]

Proceedings of MoDeV'Va 2013 51

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

Our work features the following highlights: 1) The use of multi-purpose automata
based behavioral types. The same specification files can be used for other operations at
compile time, e.g., static analysis of component compatibility, and runtime, e.g., dis-
covery of components in a SOA like scenario, dynamic adaptation of components [6].
2) The enforcement of these types at runtime by generating behavioral runtime moni-
tors out of the types, using aspect oriented programming and an integration into Java by
throwing runtime exceptions in case of deviation, and ensuring of maximal execution
time of methods by using aspect oriented programming and runtime exceptions. There
is no need to modify or add special comments to the source code files of the system.
We think that this is highly beneficial for the acceptance of our approach since existing
practices in Eclipse can still be used, people who are not interested in using behavioral
types may still work on the same code base.

Overview Related work is discussed in Section 2. Our behavioral types are introduced
in Section 3 together with behavioral runtime monitors. Section 4 describes the monitor
integration with Java and Aspect]. Section 5 presents an example and a conclusion is
given in Section 6.

2 Related Work

Interface automata [1] are one form of behavioral types. Like in this work, component
descriptions are based on automata. The focus is on communication protocols between
components which is one aspect that we also address in this paper. While the used
formalism for expressing behavior in interface automata is more powerful (timed au-
tomata vs. automata vs. timing annotation per method), interface automata do not target
the main focus of this paper: checking the behavior at runtime of a component by using
some form of monitoring. They are especially aimed at compatibility checks of differ-
ent components interacting at compile time of a system. The term behavioral types is
used in the Ptolemy framework [12]. Here, the focus is on real-time systems.

The runtime verification community has developed frameworks which can be used
for similar purpose as our behavioral type based monitors. The MOP framework [15]
allows the integration of specifications into Java source code files and generates As-
pect] aspects which encapsulate monitors. Compared to this work, the intended goals
are different. While we keep the specification and implementation part separate, in or-
der to be able to use the specification for different purposes at development, compile
and runtime, a close integration of specification and code is often desired and realized
in the runtime verification frameworks. A framework taking advantage of the trade-off
between checking specifications at runtime and at development time has been studied
in [9]. A framework that generates independent Java monitors leaving the instrumen-
tation aspect to the implementation is described in [3]. Other topics explored in this
context comprise, e.g., the efficiency and expressiveness of monitoring [2,4] but are
less focused on software engineering aspects compared to this paper.

Monitoring of performance and availability attributes of OSGi systems has been
studied in [17]. Here, a focus is on the dynamic reconfiguration ability of OSGi. Another
work using the .Net framework for runtime monitor integration is described in [11].

Proceedings of MoDeV'Va 2013 52

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

bundle bundle
serV|ce

serwce
serV|ce

OSGi framework implementation

Operating System

Fig. 1: OSGi framework

Runtime enforcement of safety properties was initiated with security automata [16]
that are able to halt the underlying program upon a deviation from the expected behav-
iors. In our behavioral types framework, the enforcement of specifications is in parts left
to the system developer, who may or may not take potential Java exceptions resulting
from behavioral type violations into account.

Means for ensuring OSGi compatibility of bundles realized by using an advanced
versioning system for OSGi bundles based on their type information is studied in [5].
Some investigations on the relation between OSGi and some more formal component
models have been done in [13]. Aspects on formal security models for OSGi have been
studied in [10].

3 Behavioral Types for OSGi

We present an overview on OSGi and describe our behavioral types. We present our
vision for integrating behavioral types in the development and life-cycle of OSGi sys-
tems. Furthermore, we present the implemented generation of runtime monitors from
behavioral types.

3.1 OSGi Overview

The OSGi framework is a component and service platform for Java. It allows the ag-
gregation of services into bundles (cf. Figure 1) and provides means for dynamically
configuring services, their dependencies and usages. It is used as the basis for Eclipse
plugins but also for embedded applications including solutions for the automotive do-
main, home automation and industrial automation. Bundles can be installed and unin-
stalled during runtime. For example, they can be replaced by newer versions. Hence,
possible interactions between bundles can in general not be determined statically.
Bundles are deployed as .jar files containing extra OSGi information. Bundles gen-
erally contain a class implementing an OSGi interface that contains code for managing
the bundle, e.g., code that is executed upon activation and stopping of the bundle. Upon
activation, a bundle can register its services to the OSGi framework and make it avail-
able for use by other bundles. Services are implemented in Java and typically realized

Proceedings of MoDeV'Va 2013 53

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

by registering a service object implementing a special interface. The bundle may itself
start to use existing services. Services can be found using dictionary-like mechanisms
provided by the OSGi framework. Typically one can search for a service which is pro-
vided using an object with a specified Java interface.

In the context of this paper, we use the term OSGi component as a subordinate
concept for bundles, objects and services provided by bundles.

The OSGi standard only specifies the framework including the syntactical format
specifying what bundles should contain. Different implementations exist for different
application domains like Equinox? for Eclipse, Apache Felix* or Knopflerfish’. If bun-
dles do not depend on implementation specific features, OSGi bundles can run on dif-
ferent implementations of the OSGi framework.

Services can run in parallel and are — if not explicitly synchronized — asynchronous.
Method calls, even between objects in different bundles — are non-blocking. In the con-
text of behavioral runtime monitoring using behavioral types, we are interested on how
to monitor relevant semantics features of the runtime behavior rather than reasoning
about the semantics features themself. For this paper, the monitoring of the order of
method calls within and between components and their timing behavior and the dy-
namic creation and handling of monitors in accordance with the dynamic handling of
bundles and objects are relevant.

3.2 Behavioral Types

Our behavioral types provide an abstract description of a components behavior and thus
provide a way of formalizing specifications associated with the component. They can be
used as a basis for checking the compatibility of components — for composing compo-
nents into new ones, and interaction of different components — and for providing ways
to make components compatible using coercion. Type conformance can be enforced at
compile time (e.g., like primitive datatypes int and float in a traditional typing system)
— if decidable and feasible — or at runtime of a system — e.g., like whether a pointer is
assigned to an object of a desired type at runtime in a traditional typing system.

In our work behavioral types are realized as files that contain a description of (parts
of the) behavior of an OSGi component. Typically, there should be one file per bundle,
or class definition. But different aspects of behavior may also be realized using different
files. In Eclipse the files are associated with an OSGi bundle by putting them in the same
project folder in the Eclipse workspace. Here, behavioral types are formally defined
using the following ingredients.

Behavioral Type Automaton A behavioral type automaton is a finite automaton repre-
sented as a tuple (X, L, ly, F') comprising an alphabet of labels X, a set of locations
L, an initial location [y and a set of transition edges £ where each transition is a tuple
(l,0,") with [,I’ € L and 0 € X. A consistency condition on our types is that all
o € X appear in some transition in E.

3 http://www.eclipse.org/equinox/
4 http://felix.apache.org/site/index.html
3 http://www.knopflerfish.org/

Proceedings of MoDeV Va 2013 54

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

In this paper, since we are interested in method calls, X' is the set of method names
of components. The definition presented here can be used for specifying the behavior
of single objects, all objects from a class, bundles and their interactions. It can be used
for monitoring incoming method calls, outgoing method calls, or both.

Maximal Execution Time Table In addition to the protocol defined by the behavioral
type automaton, we define the maximal execution time of methods as a mapping 2" —
long U L from the set of method names X’ to their maximal execution time in mil-
liseconds. The specification of a maximal execution time is optional, thus, the _L entry
indicates that no maximal execution time is set.

The behavioral type automaton together with the corresponding maximal execution
time table form a behavioral type. Additional descriptive information is optionally avail-
able, but not used for the behavioral runtime monitoring aspects that are described here.
Other representations such as X' comprising method signatures and timing information
are possible future extensions.

3.3 Behavioral Types at Development and Runtime of a System

A potential major advantage of using behavioral types is the support of a seamless inte-
gration of behavioral specification throughout the development phase and the life cycle
of a system. Our behavioral types can be used for different purposes (we proposed them
in [8]) at development and runtime. A main idea of using behavioral types at develop-
ment time is to derive them from requirements and use them for refinement checking of
different forms of specification for the same entity that are supposed to have some se-
mantical meaning in common. For example, the abstract specification, source code and
compiled code of the same component represent different abstraction levels and should
fulfill the same behavioral type. Checking this could be done by using static analysis at
development time. At the end of a development process, a developed OSGi bundle is
deployed including the behavioral type files. These can now be used for additional (dy-
namic) operations in the running system. Figure 2 shows two operations which can be
carried out at runtime of a system: the registration and discovery of components using
the OSGi framework, the compatibility, e.g., deadlock checking of bundle interaction
protocols. Behavioral runtime monitors and their derivation from the development pro-
cess are shown in Figure 3. The Figure shows the generation of the behavioral runtime
monitor and its connection using aspects at development time and the actual monitoring
at runtime. Up till now, we have implemented editors, registration of OSGi components,
compatibility (deadlock freedom) of specifications, some form of dynamic adaptation
as proposed in [6], and the behavioral runtime monitors which are new to this paper.

3.4 Monitor Generation

Regardless of what we intend to monitor, the monitor generation from a specification
is the same. It is done automatically from a behavioral type file and generates a single
Java file that defines a single monitor class.

Figure 4 shows a generated monitor. Monitors are generated as classes bearing a
name derived from the original behavioral type. They comprise a map maxt imes that

Proceedings of MoDeV'Va 2013 55

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

2) discover components

1) start of a bundle

bundle with behavior

bundle with behavior

register ask for
- BT
behavioral specification -

descriptions

OSGi infrastructure

compatibility
checker

(bundle)
get behavior ¢ /
bundle with behavior

3) checking compatibility and reacting

bundle with behavior

E

Fig. 2: Behavioral types at runtime

Development Phase Eclipse Based Tool Support

requirements

model or text
based documents

Behavioral Type

Y

specification

¢ Java project / files - 1
Behavioral Type
implementation monitor connection
aspects

i generated monitors
GRS bundle with behavioral runtime monitor

v

Behavioral

classes /packages /

Type

bundle MANIFEST

running

behavioral
runtime | g

monitor connection f==++
aspects+weaving

monitors

Fig. 3: Derivation of behavioral runtime monitors

Proceedings of MoDeV Va 2013

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

maps method names to their maximal execution time in milliseconds. This entry is op-
tional. If present, this map is initialized by the constructor —
public clientinstance_out_realistic_simple_mon ()

in the example — of the monitor with the values specified for methods in the behavioral
type file. Generated from an automaton from the behavioral type our behavioral runtime
monitors comprise a static enumeration type with the location names of the automaton.
In the automaton, the locations LOCs0, LOCs1 are present. Using this type a state
transition function generated from the transition relation is generated. The state tran-
sition function takes a string encoding a method name — event name — and updates a
state field protected LOCATION state of the method. This field is initialized on
object creation with the name of the initial state: LOCsO0 in the example.

package monitors;

import
public class clientinstance_out_realistic_simple_mon {
public Map<String, Long> maxtimes = new HashMap<String,Long>();

public clientinstance_out_realistic_simple_mon () {
maxtimes.put ("listFlights",new Long(1000)); }
public static enum LOCATION { LOCsO , LOCsl }
protected LOCATION state = LOCATION.LOCsO;
public boolean nextState (String event) {
boolean rval = false;
switch (state) {
case LOCsO:
break;
case LOCsl:
if (event.equals("listFlights")) {
state = LOCATION.LOCsl;
rval = true;

}

if (event.equals("listFlight")) {
state = LOCATION.LOCsl;
rval = true;

}

break;

}

return rval;

Fig. 4: Generated example monitor

4 Behavioral Runtime Monitor Integration using Aspect]J

The generated monitors are connected to the component that shall be observed using
Aspect] aspects. Aspect] is an extension of Java that features aspect oriented program-
ming. Aspects are specified in separate files and feature pointcuts that allow the speci-
fication of locations where Java code specified in the aspect shall be added to existing
Java code. This weaving of aspect code into existing Java code is done on bytecode
level.

Proceedings of MoDeV'Va 2013 57

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

Monitors are created and called from aspects. All extra code needed to integrate the
monitors is defined in the Aspect] files or in libraries accessed through the Aspect] files.
There is no need to touch the source code of a component. This independence of source
code and specification is a design goal of our framework. We distinguish different kinds
of monitor deployment. Each kind requires its own aspect template and its instantiation.

Singleton monitors In some cases it is sufficient to use a singleton instance of a monitor.
This is the case when monitoring all the method calls that occur in a bundle, within all
objects of a class, or within a singleton object. For monitoring method call orders, we
use a before pointcut in Aspect]. Figure 5 shows an example aspect: Here, before
the calls to methods — specified in the execution pattern after the “:” in the pointcut —
of all objects of class MiddlewareProc an update on the state transition function —
the com.nextState — is inserted. We extract the name of the called method using
reflection and a helper method AdJMonHelpers.getMethodName and pass it to the
state transition function. In addition to updating the state field in the monitor we get a
boolean value indicating whether the monitored property is still fulfilled. In case of a
deviation the BehavioralTypeViolationException — a runtime exception is
thrown. The implementation of the MiddlewareProc class may or may not catch
this exception and react to it.

package bookingsystem.middleware;

import java.util.HashMap;

import java.util.Map;

import monitors.x;

public aspect CallincprotocolMiddlewareProc {
pointcut myMethod (MiddlewareProc p): this(p) &&

within (MiddlewareProc) && execution(x =*(..));
before (MiddlewareProc p): myMethod(p) {

boolean verdict = com.nextState (
AJMonHelpers.getMethodName (
thisJoinPointStaticPart.getSignature()));
if (!verdict) throw new BehavioralTypeViolationException();

}

Fig. 5: Example aspect

Multiple monitor instances In same cases we want to monitor each object of a class
with an independent monitor. Here, we create on call of the object’s constructor an
individual monitor for the object. It is added to a (hash)map (Object — Monitor). Since
the Aspect] pointcuts are defined with respect to the static control flow information
specified in the source code of a class, on each call of a method belonging to the class
to be monitored, we use the same code in each object and chose the monitor for the
particular object by looking it up from the map and advance the respective monitor
state.

Proceedings of MoDeV'Va 2013 58

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

Monitoring of time Monitoring time is done using Java timers within the Java code
associated with the pointcuts. On call of a method we create a timer that is scheduled
to throw an exception after the specified maximal execution time. Using the after
pointcut, the timer is canceled if the method’s execution finishes on time and thus, no
exception is thrown in this case.

The adaptation of an aspect for monitoring a particular component is simple. One
has to take the appropriate Aspect] .aj file and adapt it, by inserting the names of the
classes and packages that shall be monitored and the correct monitor names. Weaving of
the aspects is done automatically on Java bytecode level and no additional configuration
needs to be done.

S Example and Evaluation

One example scenario regarded by us is the flight booking system (our set-up com-
prises only the functionality necessary for our monitoring experiments) shown in Fig-
ure 6. OSGi components and their interactions are shown. Clients are represented as
proxy components in the system and served by middleware processes which are cre-
ated and managed by a coordination process. Middleware processes use concurrently
a flight database and a payment system which are represented by proxy OSGi com-
ponents. We have investigated the communication structure between the components
and investigated deployment of monitors. This comprises the following cases: 1) The
use of multiple monitors running in parallel and being created at runtime for different
objects which are created dynamically. In the example system this is the case for the
middleware processes, where processes are created as separate objects on demand and
are monitored independently of each other. 2) The monitoring of all objects of a single
class using a single monitor and the monitoring of singleton objects and the monitoring
of bundle behavior. This is, e.g., the case in the payment subsystem. 3) Furthermore, we
have investigated the monitoring of maximal execution time of methods. In the example
system this is the case in the payment subsystem and access to the flight database. We
did not find any major problems in our approach.

Client Client

middleware | | middleware -
process process | | coordination
I process
flight payment
database subsystem

Fig. 6: Components of our flight booking system

Proceedings of MoDeV'Va 2013 59

Ensuring OSGi Component Based Properties at Runtime with Behavioral Types

6

Conclusion

We presented work on behavioral types for Java / OSGi components and the monitoring
of behavioral type based specifications at runtime of a system. Our Eclipse based imple-
mentation allows the behavioral runtime monitoring of components without modifying
their source code by using aspect oriented programming. In addition to the behavioral
runtime monitoring work, the same behavioral types can be used for other operations
at compile time, e.g., static analysis of component compatibility, and runtime, e.g., dis-
covery of components in a SOA like scenario, dynamic adaptation of components [6].

References

1

2.

10.

11.

13.

14.
. P. O’Neil Meredith, D. Jin, D. Griffith, F. Chen, G. Rosu. An Overview of the MOP Runtime

16.

17.

L. de Alfaro, T.A. Henzinger. Interface automata. Symposium on Foundations of Software
Engineering, ACM , 2001.

H. Barringer, Y. Falcone, K. Havelund, G. Reger, D. Rydeheard. Quantified event automata:
Towards expressive and efficient runtime monitors. Formal Methods, vol. 7436 of LNCS,
Springer-Verlag, 2012. (FM’12)

. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Verification, Model Checking, and

Abstract Interpretation, vol. 2937 of LNCS, Springer-Verlag, 2004. (VMCATI’04)
Bauer, A., Leucker, M.: The theory and practice of SALT. NASA Formal Methods, vol.
6617 of LNCS, Springer-Verlag, 2011.

. J. Bauml and P. Brada. Automated Versioning in OSGi: A Mechanism for Component Soft-

ware Consistency Guarantee. Euromicro Conference on Software Engineering and Advanced
Applications, 2009.

J. O. Blech, Y. Falcone, H. Ruef3, B. Schitz. Behavioral Specification based Runtime Moni-
tors for OSGi Services. Leveraging Applications of Formal Methods, Verification and Vali-
dation (ISoLA), vol. 7609 of LNCS, Springer-Verlag, 2012.

J. O. Blech, H. RueB, B. Schitz. On Behavioral Types for OSGi: From Theory to Implemen-
tation. http://arxiv.org/abs/1306.6115. arXiv.org 2013.

. J. O. Blech and B. Schitz. Towards a Formal Foundation of Behavioral Types for UML

State-Machines. UML and Formal Methods. ACM SIGSOFT Soft. Eng. Notes, 2012.

E. Bodden, L. Hendren. The Clara framework for hybrid typestate analysis. Software Tools
for Technology Transfer (STTT), vol. 14, 2012.

O. Gadyatskaya, F. Massacci, A. Philippov. Security-by-Contract for the OSGi Platform.
Information Security and Privacy Conference, IFIP Advances in Information and Communi-
cation Technology, vol. 376, 2012.

K.W. Hamlen, G. Morrisett, F.B. Schneider. Certified in-lined reference monitoring on .NET.
Programming languages and analysis for security, ACM 2006.

. E.A. Lee, Y. Xiong. A behavioral type system and its application in ptolemy ii. Formal

Aspects of Computing, 2004.

M. Mueller, M. Balz, M. Goedicke. Representing Formal Component Models in OSGi. Proc.
of Software Engineering, Paderborn, Germany, 2010.

OSGi Alliance. OSGi service platform core specification (2011) Version 4.3.

Verification Framework. Software Techniques for Technology Transfer, Springer, 2011.
F.B. Schneider. Enforceable security policies. ACM Transactions on Information and System
Security, vol. 3, ACM, 2000.

F. Souza, D. Lopes, K. Gama, N. Rosa, R. Lima. Dynamic Event-Based Monitoring in a SOA
Environment. On the Move to Meaningful Internet Systems, vol. 7045 of LNCS, Springer-
Verlag, 2011.

Proceedings of MoDeV'Va 2013 60

