An Architecture for Collaborative Ontology
Library Development

Tuomas Korpilahti and Eero Hyvonen

University of Helsinki, Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)

FIN-00014 UNIVERSITY OF HELSINKI, Finland
Semantic Computing Research Group
http://www.cs.helsinki.fi/group/seco/

tuomas.korpilahti@cs.helsinki.fi, eero.hyvonen@cs.helsinki.fi

Abstract. We consider collaborative ontology library development,
where ontologies are re-used by including their resources in other on-
tologies. When an included ontology is changed the ontology including
resources from the modified one may become obsolete. This paper ana-
lyzes the effects of ontology change operations to dependent ontologies
and metadata. A client-server architecture for co-operative ontology li-
brary development is presented that helps to make ontology changes in
such a way that the ontology versions remain backwards compatible as
much as possible. The system also tells the developers the effects of a
change to other dependent ontologies and repositories. In this way acci-
dentally destructive modifications can be avoided and the other develop-
ers of the ontology library can find out what modifications are necessary
in their own ontologies for interoperability. A prototype of the system
on top of the Protégé-2000 ontology editor has been implemented and
preliminary tests for using it are presented.

1 Towards Collaborative Ontology Development

Ontologies [1,2] are machine comprehensible knowledge models that explicitly
model real world concepts and relatons. They should be publicly shared and
interoperable in order to make possible the full benefits of the Semantic Web [1].
According to Gruber’s ontology design principles [3], each real world concept is
defined only in one ontology, and all systems use the same definition for that
concept. Ontologies should hence be reusable to let ontology engineers benefit
from the increasing number of different domain-specific ontologies.

1.1 Ontology Life Cycle

A common way to reuse ontologies is to include them in other ontologies, and
then add new concepts and relations. However, when the included ontology is
modified according to the evolving prototype model [4], the changes may prove
critical for the including ontology and introduce inconsistencies that make the

latter obsolete or even unusable. The problem originates largely from the fact
that mutually dependent ontologies are developed co-operatively in geographi-
cally distributed locations by different people. A co-operative ontology library
development and maintenance architecture needs to be established in order to
manage the evolution of dependent ontologies [5—7]. Nevertheless, methods and
tools to support this complex task completely are missing [8].

Ontology management consists of development, publishing, evolution, and
maintenance processes (cf. figure 1). During the development process the ontol-
ogy developer creates a new ontology by (possibly) re-using existing ones. The
publishing process is used to control public access to the ontology; it ensures that
the correct version of the ontology is available in different contexts. For exam-
ple, the ontology developers may want to work with a different version of the
ontology than the application developers or the end-users. After publishing the
ontology for the first time, the maintenance process begins. Here the ontology is
modified due to various needs. For example, the domain modeled or the needs
of the ontology users may change, and the ontology must be adopted to the
changed use conditions. When ontologies are mutually dependent, i.e., when on-
tologies include resources from each other, changes need to be propagated from
one ontology to another. This is supported by the ontology evolution process that
includes ontology change and change propagation processes. The maintenance
process includes successive evolution and publishing processes, which react to
the changed user needs of the ontologies and keep feeding the ontology users
with up-to-date versions of the ontology. Decommission ends ontology’s life.

Development H Publishing H Evolution HDecnmmlsslor\

Fig. 1. Ontology life cycle processes.

1.2 State of the Art

There are approaches and systems that aim to solve the problems presented.
KAON [6,9, 5] is an ontology development environment developed at the Univer-
sity of Karlsruhe. In KAON architecture the included ontologies are duplicated.
Changes are allowed only to the original ontology and are propagated to the
duplicates, causing more changes in the ontologies that are re-using them. The
re-users are asked if they would like to accept the proposed changes or keep the
older version of the included ontology. KAON propagates the changes between
the remote ontology copies fluently. It provides tools to help the re-user to un-
derstand the impacts of the proposed changes and lets them decide if the changes
are to be executed. However, KAON does not provide means for the user who

made the original change to understand what problems his change will cause
for others. This means that the developer of a re-used ontology is not capable
of getting information for evaluating different modeling decisions. The system is
not capable of notifying the developer when he makes a change that breaks the
backwards compatibility of his ontology. KAON also lacks the functionality to
support ontology publishing process, which is one of the key components of the
ontology management process. The system presented later in this paper attacks
these problems by providing an integrated tool to support ontology engineering
workflow.

Protégé-2000 [10] is a popular ontology editor. It offers an intuitive graphical
user interface, and its support for ontology inclusion is one of the best in the
field. Protégé-2000 can store ontologies in files and in relational databases, but
ontology inclusion is supported only in file-based ontologies. The system main-
tains ontological consistency by preventing users from modifying the included
ontologies. All changes must therefore be made to the original ontology. Changes
appear in the including ontologies as soon as the including projects are loaded.
However, Protégé-2000 does not provide means to see what effects the change
has in the including ontologies. Developers can thus easily break the including
ontologies. No evolution support is available. Publishing and other management
related issues are not considered, either. Our system extends Protégé-2000 by
managing the ontological dependencies and by adding ontology evolution and
publishing support.

Ontolingua [11] is a collaborative ontology development tool that supports
even cyclical ontology inclusion. Despite of its powerful inclusion mechanism, it
does not provide support for changing the original ontology and then propagating
the changes to the including ontologies.

WebODE [7] is a web based ontology editor initially developed for editing OIL
ontologies. It uses a database to store ontologies. WebODE utilizes the concept
of user groups to establish access control to ontologies, and has synchronization
mechanisms to prevent errors from concurrent access. In a wide sense, this could
be though of as a way to publish an ontology by allowing public access to it.
The mechanism does not support concurrent use of multiple ontology versions
for different interest groups, such as ontology re-users, application developers,
and end-users. The authors of WebODE state that it supports collaborative
ontology editing at the knowledge level, but do not explain more precisely what
this means. According to our understanding, WebODE does not provide means to
propagate ontology changes to dependent ontologies in a well-controlled manner.

OntoEdit [12] is an ontology engineering environment, which concentrates on
tasks related to ontology requirements specification, refinement, and evaluation.
It combines methodology-based ontology development with collaboration and
inference. Due to its focus on the early phases of the ontology life cycle, it does
not offer any support for ontology publishing or evolution.

To contribute to the research above, our paper presents a solution approach

that integrates the aspects of consistent ontology development, ontology pub-
lishing, and ontology life cycle management into one tool. The tool provides

ontology developers a way to evolve any re-used ontologies in a backwards com-
patible way and stay informed about the relevant changes in ontologies that
they are re-using. New ontology versions can be published in a controlled man-
ner. Distributed ontology development is supported, and ontology publishing
and maintenance processes can be put in place.

In the following, we first present an analysis of ontology change operations
with respect to ontology dependencies, class and property hierarchies and in-
stance data preservation. Based on the analysis, solutions are suggested for the
needs of each process presented, and a prototype implementation is described.
The paper concludes with a discussion and a summary of our findings.

2 Ontology Change Operations

Ontology inclusion means in this paper (as in Protégé-2000 [10]) that ontolo-
gies are explicitly imported into another ontology in a predefined order with-
out duplicating resources. Cyclic dependencies and ontology alignment are not
considered. An included ontology O is considered backwards compatible if the
ontologies that include a previous version of O can replace the previous version
with the new version without conflicts or data loss. Our goal is to create a sys-
tem that helps the developer to develop backwards compatible ontologies while
allowing maximal freedom of ontology modification. The definition of ontology
inclusion allows us to change the included ontology if the change does not affect
the parts that are re-used in other ontologies. However, sometimes an ontol-
ogy requires so profound changes that it is not possible to keep it backwards
compatible. In this case the system should inform the user what consequences
his change would cause, and use this information to help solve the dependency
problems if the change is executed.

Noy and Klein [13] identified 22 ontology change operations and analyzed
them with respect to the instance-data preservation dimension. They describe
what data would be lost at the instances in the changed ontology and would there
be means to avoid the data loss. However, a closer inspection of the change oper-
ations they have identified reveals that some of them can be composed from the
other operations by performing the other operations in a certain sequence. As a
consequence, the same results are presented several times for different composed
operations in their analysis. This suggests that a more expressive solution would
be to define a set of atomic change operations that perform fundamental changes
to the ontology structure, and then analyze the more complex operations by an-
alyzing the combined effects of the atomic operations that are used to compose
them. Qur more concise set of 16 atomic operations [14] is based on the change
operations of Noy and Klein [13]. In the set we have selected the operations
that can be used to compose the other operations. In addition to the instance-
data preservation dimension, their effects on the class and property hierarchies
are also analyzed, and the change effects on the ontological dependencies are
considered when a re-used ontology is changed. The analysis is limited to the
dependencies of concepts in RDF(S) context. We do not consider the semantic

effects of e.g. changing documentation or concept labels. Table 1 summarizes
the atomic change operations and the analysis results fully described in [14]. We
demonstrate the idea here by presenting the analysis of the operation Removing
a property from a class.

Table 1. Change operations and their effects. C = class hierarchy, P = property
hierarchy, I = instance data, DEP = ontology dependencies.

Operation Critical for
C|P|I|DEP

Creating a class, a property or an instance

Deleting a class X X X

Deleting a property X|X| X

Deleting an instance X| X

Adding a property to a class

Removing a property from a class X X X
Adding a superclass

Removing a superclass X X X
Adding a superproperty

Removing a superproperty X

Re-classifying an instance as a class
Re-classifying a class as an instance
Declaring two classes disjoint

Defining a property transitive or symmetric| |X
Widening a restriction for a property
Narrowing a restriction for a property X

> >4

| | | | 4
X[> | | e

ol
>

Removing a property P from a class C' removes it from the subclasses of C,
too. Instances of C' (and of its subclasses) lose their values for P. The class C' is
no longer inherited to the domain of P’s subproperties, and the instances of C'
and of the subclasses of C lose all values for those properties. If the range of P is
a class or an instance R, removing P from C removes a semantic relation between
C and the range class or instance R. The situation becomes very unclear here,
because the key idea of re-using an ontology is to re-use and enrich the semantic
information stored in it. When this information is altered, the context of the
ontology changes. As a consequence, the semantics of the change in the including
ontologies are unknown. At worst, the change can break the semantics of the
ontologies including the changed ontology. In addition, the including ontologies
continue to refer to P from the instances of C' and of its subclasses. These
references are broken. The change loses data on instance level, may break the
semantics of the class model, and may introduce invalid references in referring
ontologies.

The analysis results of atomic changes can be used to analyze more complex
ontology change operations. A complex ontology change operation can be de-
composed into atomic operations. The effect of the composite change cannot be

greater than the combined effects of the individual changes composing it. How-
ever, in some cases the effect can be smaller. For example, when a class is moved
to another branch in the class tree it first loses the properties it inherited from
the old superclasses and then inherits the properties from the new superclasses.
Some of the lost properties may be re-inherited in the second phase. This hap-
pens if the new superclasses have those properties. The values of those properties
need not be lost. The system would need to remove and add only a subset of the
properties that the atomic changes would require. Therefore, there is an upper
limit to the effects of a composite change. The effects cannot be greater than
the effects of each atomic change performed sequentially on the ontology.

The composite change approach allows us to minimize the effects of different
composite changes by breaking them into atomic changes and then eliminating
redundant changes from the change sequence. This equals to calculating the dif-
ference between the state of the ontology before and after the composite change.

3 Ontology Change Process

The ontology developer performs edit operations on the knowledge base. An edit
operation is defined as a set of atomic change operations grouped together. The
changes can be performed sequentially or in parallel. The mode of execution
is determined by the edit’s designer. Some changes need to be performed in a
specific order to accomplish the desired result. Performing them in another order
would produce different post operation state. Sometimes there is freedom in the
execution order. For example, when merging several classes into one, the result is
the same regardless of which two classes are merged first. In these cases, allowing
parallel execution allows knowledge base performance optimizations.

The edit operations that the ontology developer does must be captured and
their effects validated before they are executed on the underlying knowledge base.
Figure 2 presents a model on how to do this in a distributed environment. A
change identification layer is needed between the ontology editor user interface
and the knowledge base. Listeners that are registered to this layer receive all
user operations and can cancel them before they are performed. The listeners
form a chain of validators that the operation must pass in order to be executed.
The identification layer acts as a checkpoint through which all edit operations
must pass. It allows one to intervene and evaluate the safety of the edits before
they are written in the knowledge base. The identification layer must guarantee
that the atomic changes are correctly grouped into edits. Without grouping,
it is not possible to compute the post operation state. Having intercepted an
edit operation, the identification layer forwards it to a change filtering layer. It
checks if the edit causes conflicts in the including ontologies. If not, the edit
can be safely performed and it is forwarded to the knowledge base, otherwise
corrective measures should be taken.

Each change in an edit operation affects a certain number of concepts in the
ontology to be changed. The change filtering layer first determines the concepts
that will be affected by the edit’s changes in the ontology to be changed and

‘ONKI Client
Oniolusy e R !
Editor 1. Trtes Layer Checking
E ept L
user's edit Mechanism

operations

2. Getde
Change Network
Filtering = Al i
Layer Module
3. Allow
safe edits l G Do
Koowledge ‘ Problem Distribution Intetface S

l 5. Distribute problems to solvers
v
H } Problem Solver ”“
7. Write confirmed b
edits 6. Solve problems, ask for

confirmation if needed

Fig. 2. Ontology change process.

calculates what the difference in their state would be before and after the edit.
The layer checks from the server if the concepts whose state would be changed
are referenced in the including ontologies. If they are, the change effects in the
including ontologies are calculated starting from the referencing elements. If the
effects would cause a conflict or loss of data in the including ontologies, the sys-
tem has found a problem. The user cannot see these problems by looking only
at the ontology he is changing. Identifying them needs information on how the
ontology is re-used in the including ontologies. This implies that there must be
a common access point to all ontologies and to the dependency information. A
server based ontology library is suggested for this purpose. One should note that
our approach includes a compromise. It is not possible to guide the develop-
ment of re-used ontologies without knowledge on what in them is essential for
the re-users. Confidential ontologies may not want to publish this information.
Complete change logs could be used to support their development.

An edit operation that causes problems is forwarded to a problem dispatching
interface. There different solvers can listen to problems and attempt to find
solutions to them. Each edit may cause several problems. The problems and their
effects are grouped together with the edit to identify the root of the problem.
The interface dispatches the edit to a chain of registered problem solvers. Each
solver may solve any number of problems associated with the edit, cancel the
edit completely or force the edit to be performed. Automatic or semi-automatic
problem solving methods could be used. The force operation is meant for allowing
the user to perform the edit despite of the effects it causes to other ontologies. If
the edit is canceled in the solver, its processing ends. If the edit is forced to be
accepted, it first passes all solvers and is then directed to the knowledge base.
The edit and the problems it causes are recorded to a log that can be used to
identify and help solve the problems in the including ontologies. Unless forced
to be accepted, the edit is canceled if all problems are not solved. Finally, the

edits that pass all validators in the filtering layer are written to the knowledge
base. A notification is generated for a knowledge base modification interface to
let the user interface components refresh their view of the knowledge base.

4 Ontology Management Process and Change
Propagation

A system required for ontology dependency management is depicted in Figure
3. Tt is a client-server architecture acknowledged to be the key to successful
collaborative editing [8]. The client-server model needs only be a logical model,
which allows distributing the knowledge base itself as the ontologies in the library
grow larger and the system gains more users.

The server side knowledge base allows wrapping the persistent ontology stor-
age inside a version control mechanism that is considered a very important on-
tology library service [8]. Consistent versioning is a prerequisite for successful
dependency checking. It is imperative to know which version of an included
ontology should be used with the referencing ontology. There are two funda-
mentally different possibilities here. One is to try to keep the including ontology
always up to date and use the most recent included ontology version available.
This is the situation when a large ontology is divided into smaller modules. Each
module must be working with the newest version of the other modules in order
for the entire ontology to be consistent and usable. The other possibility for
ontology inclusion is to refer to a version older than the most recent one. This
case is also very common, as applications and domain specific ontologies may
not need to be of the most bleeding edge technology but rather to be guaranteed
to work without problems. In this context developers often opt for older versions
of software and technology, arguing that it is better tested and its problems are
better known. If this is the case, the change filtering layer need not worry about
the references coming from such an ontology — as the user is making a change
in the included ontology, he is implicitly creating a new version of it. It is thus
not necessary to worry about being backwards compatible with ontologies that
are not committed to keep up with the development of the modified ontology.

As a new version of an included ontology is committed to the library, the
system can automatically send notifications to the developers of the ontologies
that include the changed ontology. A flood of notifications should not occur,
because both parties want to minimize their number. The developers of re-usable
ontologies want to avoid changes having an impact beyond local scope. Re-
users want to minimize the number of modifications required in their ontology
after a change in an included ontology. A log of problems was created when the
developers of the included ontology made modifications that cause problems to
other users. Based on this log, the messenger can include in the notifications
personalized instructions for each ontology developer on what the new version
of the included ontology has broken in their ontology. The messenger should
implement an abstraction of the notification carrier — email, short messages,
instant messages, or even multimedia messaging could be used. The message

Ontology Editor
Developement Dependency
Checkout/ Library Undsic dependensics Management

ot - System
ONKI . Versior Poject |

Notify developers of
broken ortologies

User Management
System ONKI Messenger
Server component Get developers of e
] |
|] cumnons [[l
e I

Fig. 3. Ontology management process and change propagation.

carrier could be selected based on the importance of the notification. As the
change filtering layer determines the effects of an edit for the including ontologies,
it can assign a priority or severity metric for the edit’s effects. This metric can be
used to determine the message carrier. In order to be able to send the messages,
the system needs to register which developers are developing which ontologies,
and record contact information for the developers. The same module could be
used for user authentication and for providing communication security, which
are needed in a network architecture.

When the developer of an including ontology receives the notification that a
change in an included ontology has caused his ontology to break, he can use the
message to identify the problem and consider the changes required to make his
ontology compatible with the new version. If he decides to adapt the ontology
to the changes, the message details can be used to help him do the changes
semi-automatically. He may also wish to keep the older version, in which case
the decision is written in the dependency system. [6]

5 Ontology Publishing Process

The ontologies under development should be kept apart from the published on-
tologies freely available to the wide audience as illustrated in Figure 4. The
reason for this is twofold. On one hand, application development needs the same
ontology version to be used widely in applications in order to maximize software
interoperability. This requires that a specific ontology version is published as
the one to be referenced and re-used, and then promoted to the wide audience.
Otherwise, it is highly likely that each application would use a version of the
ontology that is different from and possibly incompatible with the versions used
by the other applications. Reference ontology versions would undoubtedly arise,
but it would take longer as they would need to accumulate a certain mass of
interoperable applications to become de facto standards. On the other hand, an
ontology, as any software, needs to be updated and is likely to contain bugs. The
end users should be protected against the possibility of accidentally upgrading

to a beta quality product. Therefore, allowing one to publish an ontology and
thereby declare it to be complete, tested, and supported becomes an essential
requirement for an ontology library.

Ontology Editor

Developement
2 Qet cortect

Publisher

Publish oxtology 5
| Leyer

Fig. 4. Ontology publishing process.

Publishing an ontology from the development library to a public ontology
library means that a specific ontology version, together with the correct versions
of the ontologies it includes, is made publicly available. The ontology library
should support this process. The interface to the public ontology library should
abstract the different implementations of the library. For example, the ontologies
could be browsed via WWW, queried through an interface, and downloaded via
different software APIs. When a new version of an ontology is inserted, it should
be linked with the previous version. Despite all this, the interface to add an
ontology to the library should not be affected.

6 ONKI Prototype

An architecture supporting the processes discussed above is presented in Figure
5. A prototype implementation of the architecture called ONKI [14] has been
built at the University of Helsinki as a part of the National Ontology Project in
Finland!. ONKI uses Protégé 2.0 [10] as the ontology editor. The identification
layer, the change filtering layer, and the problem dispatching layer are imple-
mented as a Protégé plug-in. Combined they serve as an editor to demonstrate
the ontology change process.

The ONKI server prototype is based on Jena 2.02 [15]. The dependency re-
lations from a concept in an including ontology to a concept in an included on-
tology are stored into a Dependency Ontology in Jena. As the included ontology

! http://www.cs.helsinki.fi/group/seco/ontologies/
% http://jena.sourceforge.net

Public Ontology Developement Dependency
Library Library Management
System
library
|Queryable|
e
llibrary control | | information

Registered service Registered service

Publisher Registered service
—‘ﬂhﬁmy

Locate services.

ONKI Messenger

Registered service

Authenticate user

User Management
System

Protégé client

[] sovercompmn
[] oo

Fig. 5. ONKI architecture.

is changed, the change filtering layer calculates the affected ontology elements
in the changed ontology and checks from the server if they are referenced from
other ontologies. If they are, a warning message is displayed to the user and
the details of the edit operation and of the reference are written into a log file.
The centralized knowledge base and the publishing process are prototyped with
CVS [16] and with a Perl script that tags a specific version of the ontologies and
copies it to a WWW server. The prototype does not yet include the messenger
notification service.

The ONKI prototype was tested with ontologies and metadata from the se-
mantic portal MUSEUMFINLAND [17, 18]. In the tests, the development was simu-
lated using the prototype. The primary goal was to demonstrate the architecture
in action and show that it is capable of correctly recognizing problems.

Fig. 6. ONKI prototype test data.

The test data totals 9 ontologies divided into 4 upper level ontologies, 2 ref-
erencing ontologies that include the same top level ontology, and 3 bottom level
ontologies that include all the upper level ontologies. The sizes and character-
istics of the ontologies can be found in Table 2. The inclusion structure of the
data is presented in Figure 6.

The museum domain ontology MAO is used to structurize the domain of
museum collection items. The Actors ontology introduces different organizations
and individuals that have some role with respect to the items in the museum
collections. The Locations ontology defines different geographic locations. The
Collections ontology stores information about the different collections in different
museums. The museums had indexed their collection items using a terminology
specific for each museum. To add the collection items of a museum into the sys-
tem, a mapping ontology was created to connect the terms used in the museum
indexing to the concepts used in MAO. Mapping ontologies for museum A and
B were available for the test. Similar mapping ontologies had been created for
other top level ontologies, too, but they were not available.

To annotate the items of the museum collections, a bottom level ontology
had been created for each museum. Each item ontology included all top level
ontologies. One instance in the item ontology corresponded to an object in a
museum collection. The information about the item was converted to references
to other elements in the ontology and in the included ontologies.

The ontological dependencies were first loaded into the Dependency Manage-
ment System’s Dependency Ontology. The mapping ontologies had been used as
a bridge between MAO terminology and the corresponding museum’s local ter-
minology, so they were heavily connected to MAQ. The item ontologies defined
solely new instances that had an included class as their direct type. The in-
stances possibly referenced each other or other included instances and thus were
also heavily dependent on the included ontologies.

After the initial setup operations the Dependency Ontology contained 12979
instances and 50955 dependency relations. The test setup is presented in Table
2. Columns C, P and I indicate the number of classes, properties, and instances
the ontology defines. Column RE shows the number of referenced elements in
the upper level ontologies, and the number of referencing elements in the bottom
level ontologies. Column R shows the number of dependency relations towards
the upper level ontologies, and the number of dependency relations from the
bottom level ontologies. For the Dependency Ontology, R shows the number
of dependency relations stored in the model. Column R/RE shows the average
number of dependency relations per referenced element in the top level ontolo-
gies, and the average number of dependency relations per referencing element
in the bottom level ontologies. The last line in the table shows the size of the
Dependency Ontology in the server. The values RE and R/RE are not applicable
to the Dependency Ontology.

Ontology development was simulated by performing a series of edit operations
to the largest upper level ontology. When MAO was opened and modified, a
warning was displayed for all modifications that caused a referencing ontology

Table 2. Performance test setup. C=classes, P=properties, I=instances,
RE=referenced/referencing elements, R=dependency relations, R/RE=relations
per element.

Ontology C |P| I |RE| R |R/RE
MAO 675711 0 (210131149 14
Actors 14 | 6| 1715 |1368| 8949 6
Locations 21 |9 862 3505996 | 17
Collections 10 |23| 123 | 15 | 4861 | 324
Mapping A 31 | 6| 2584 (2563| 2918 1
Mapping B 34 162473 |1680| 1835 1
Items A 1 (38| 1192 |1192({11956 9
Items B 1 (38| 1592 (1591({17398| 10
Items C 1 |38]| 2110 (2110{20270| 10

|Dependency Ontology| 10 [17]12979] - [50955] -]

to break. Checking any individual edit took less than 500 milliseconds, even if
an entire top level branch was deleted from MAQ. The number of dependency
relations in the Dependency Ontology and the number of relations the system
must handle at any client request are functions of the number of ontologies
stored in the Development Library and of the level of dependencies between
the ontologies. These figures depend on how the ontologies are reused, and vary
heavily with the specific use case of the ontology. In this case the bottom level
ontologies had a relatively high level of dependency. The amount of referenced
elements compared to the total amount of elements in the ontology varied from
ten to eighty percent.

These figures were caused by the way the ontologies were re-used in the
museum project that served as the test data. Such high levels of dependency
suggest problems to ontology maintenance and consistency as the ontologies
evolve. They also underline the need for serious process and product management
practices in ontology development in order to prevent chaos in the ontology
library. However, the results were caused by the data that came from one project
only. The sample data might cause bias in the results. Nevertheless, if similar
results would be obtained from a more detailed dependency analysis of other
ontologies, it would be an important issue for ontology re-use.

The system was found to function as expected with the given test data.
The ONKI prototype successfully identifies the changes that cause problems in
distributed ontology development. In the prototype implementation updating
the Jena ontology inside the prototype of the Dependency Management System
turned out to be very slow, but otherwise the performance is high enough to
be used in real ontology development. Scalability issues are likely to come up in
the function of the performance limitations of the ontology engine used in the
Dependency Management System.

We expect to start the development of a modular upper level ontology using
this prototype. The aim of the project is to create a general upper level ontology

that can be used as a basis for domain specific ontology development in Finland.
The work requires a solid framework that supports the ontology life cycle from
both development and management points of view. We expect to further test the
processes and architecture described in this paper and validate the requirements
for tomorrow’s ontology engineering environment. The prototype serves as a
framework to test the analysis of the effects of ontology change operations on
dependencies between ontologies and to test different problem solving methods
to solve conflicts in distributed, collaborative development.

7 Discussion

Ontology re-use can be based on the modularization of ontologies and on the in-
clusion of those modules to form larger ontologies. However, in order to support
controlled ontology evolution over time, the resulting ontological dependencies
must then be managed in order to keep the ontologies mutually consistent in a
library. This paper presented analysis of ontology change operations that form a
basis to understand the effects of an edit operation on the ontological dependen-
cies. It is essential that the ontology developers are kept up to date on the effects
of their edits, because in the case of inter-dependent ontologies a seemingly small
change in one ontology can cause massive effects in several other ontologies.

Inter-dependent ontology libraries are typically developed by communities
of collaborators. Collaborative ontology re-use in a distributed environment re-
quires tool support to guarantee the consistency of the ontology library. To imple-
ment such tools, it is necessary to integrate together different aspects of ontology
development: creation, versioning, publishing, re-use, and evolution. To support
collaborative, distributed ontology development, a client-server based ontology
library architecture and its prototype ONKI was presented. ONKI helps the de-
velopment of backwards compatible ontologies and lets the developers to find
out and compare the effects of different edit operations. In our view, consis-
tent ontology development, versioning, and publishing should be supported in
industry-quality tools for developing ontology oriented applications. However,
current solutions are mostly concerned with ontology creation and re-use, and
lack efficient maintenance and process support that is required for long-term
ontology usage. ONKI integrates managed ontology publishing and evolution
processes in order to support developers in ontology maintenance problems.

In our further work, we plan to investigate ways to automatically solve the
conflicts identified during editing, and to more accurately reflect the processes
of ontology development in an integrated tool.

References

1. D. Fensel. Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag, 2001.

2. R. Struder, V.R. Benjamins, and D. Fensel. Knowledge engineering: Principles and
methods. IEEE Transactions on Data and Knowledge Engineering 25(1-2), pages
161-197, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

T. R. Gruber. Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual
Analysis and Knowledge Representation, Deventer, The Netherlands, 1993. Kluwer
Academic Publishers.

Asuncion Gomez-Pérez, Mariano Ferndndez-Lopez, and Oscar Corcho, editors. On-
tological Engineering. Springer-Verlag, 2004.

Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Stojanovic. User-
driven ontology evolution management. In European Conf. Knowledge Eng. and
Management (EKAW 2002), pages 285-300. Springer-Verlag, 2002.

A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. An infrastructure
for searching, reusing and evolving distributed ontologies. In Proceedings of the
twelfth international conference on World Wide Web, pages 439-448. ACM Press,
2003.

Julio C. Arpirez, Oscar Corcho, Mariano Fernandez-Lopez, and Asuncién Gomez-
Pérez. WebODE: a scalable workbench for ontological engineering. In Proceedings
of the international conference on Knowledge capture, pages 6—13, Victoria, British
Columbia, Canada, 2001. ACM Press.

Ying Ding and Dieter Fensel. Ontology library systems: The key to successful on-
tology re-use. In The first Semantic web working symposium (SWWS1), Stanford,
USA, July 29-August 1 2001.

Maedche, Alexander and Motik, Boris and Stojanovic, Ljiljana and Studer, Rudi
and Volz, Raphael. Ontologies for enterprise knowledge management. IEEE Intel-
ligent Systems, 18(02):26-33, 2003.

W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen. Knowledge
modeling at the millennium — the design and evolution of protege-2000. In Pro-
ceedings of the 12 th International Workshop on Knowledge Acquisition, Modeling
and Mangement (KAW’99), Banff, Canada, October 1999.

A. Farquhar, R. Fikes, and J. Rice. The Ontolingua server: A tool for collaborative
ontology construction. Technical report, Stanford KSL 96-26, 1996.

Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
Collaborative ontology development for the semantic web. In Proceedings of the
first International Semantic Web Conference 2002 (ISWC 2002), June 9-12 2002,
Sardinia, Italia. Springer, LNCS 2342, 2002.

N. Noy and M. Klein. Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems, 5, 2003.

Tuomas Korpilahti. Architecture for Distributed Development of an Ontology Li-
brary. Master’s thesis, Helsinki University of Technology, Department of Computer
Science, April, 2004.

Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: Implementing the semantic web recommendations.
Technical Report HPL-2003-146, HP Labs, December 24, 2003.

Free Software Foundation. Concurrent versions system, http://www.cvshome.org,
accessed February 23, 2004.

E. Hyvonen, M. Junnila, S. Kettula, E. Maikeld, S. Saarela, M. Salmi-
nen, A. Syreeni, A. Valo, and K. Viljanen. Finnish Museums on the
Semantic Web. User’s perspective on museumfinland. In Proceedings of
Museums and the Web 2004 (MW2004), Arlington, Virginia, USA, 2004.
http://www.archimuse.com/mw2004/papers/hyvonen/ hyvonen.html.

E. Hyvonen, M. Salminen, S. Kettula, and M. Junnila. A content creation process
for the Semantic Web, 2004. Proceeding of OntoLex 2004: Ontologies and Lexical
Resources in Distributed Environments, May 29, Lisbon, Portugal (forthcoming).

