
Identifying Guidelines for Designing and
Engineering Human-Centered Context-Aware

Systems
(Position paper)

Emilian Pascalau

Conservatoire National des Arts et Métiers,
2 rue Conté,75003 Paris, France
emilian.pascalau@cnam.fr

Abstract. In the ”future internet” environment that is generative and
fosters innovation, applications are simplifying, are becoming mobile, are
getting more social and user oriented. Software design capable of coping
with such a generative environment that drives and supports innovation
is still an issue. Some of the challenges of such systems include: empower-
ing end-users with the necessary tools to model and develop applications
by themselves, while in the same time hiding the technical layer from
them. This paper introduces a set of guidelines for designing and engi-
neering human-centered context-aware systems from a human computer
interaction and meta-design perspective.

1 Introduction

Recent years have brought rapid technological advances both hardware and soft-
ware: increasing pervasive computing paradigm, embedded sensor technologies
and wide range of wireless and wired protocols. Applications are simplifying, are
becoming mobile, are moving to the cloud, are getting more social and user fo-
cused [14]. ”Future Internet” is emerging as a new environment, an environment
that is generative, that fosters innovation, through the advances of technologies
and a shift in people’s perception about it and a paradigm shift in how people
act and react in this environment [22].

In this context two directions get highlighted: context together with context
-awareness and human-centered computing. Studied for more than 30 years in
the field of artificial intelligence, computer and cognitive science, context has
still been identified by Gartner, alongside cloud computing, business impact of
social computing, and pattern based strategy, as being one of the broad trends
that will change IT and the economy in the next 10 years [21].

We observe a paradigm shift in terms of users of context-aware systems. For
example a user is no longer a specific individual or organization. It is often a com-
munity of collaborating, or performing similar tasks groups of users. Therefore,
there is a growing need for systems meeting expectations of massive distributed



user base of pervasive ubiquitous devices as well as distributed cloud-based web
services.

Design and deployment of such software capable of coping with a generative
environment that drives and supports innovation through direct interaction and
empowerment of the end-user is still an issue. Not only the development of such
systems should be agile - the boundary is pushed even further - we need systems
that are designed to be agile on run-time. It has been already argued (see for
instance [15]) that designers and programmers can not foresee and anticipate
what end-users will need. Users know better what they need and future internet
environment clearly underlines this fact.

In consequence some of the challenges of such systems that arise in the future
internet environment include: empowering end-users with the necessary tools to
model and develop applications by themselves, while in the same time hiding the
technical layer from them. This paper is part of a work in progress, and identifies
and introduces a set of guidelines for designing and engineering human-centered
context-aware systems.

The rest of the paper is organized as follows: Section 2 discusses a use case
that is based on a concrete end-user problem (managing and tracking online pur-
chases) arising from the future internet environment; the use case will support us
in identifying a set of guidelines, for designing and engineering human-centered
context-aware systems, in Section 3; Section 4 is reserved for related work. We
conclude in section 5.

2 Application Scenario - Slice.com

In the future internet environment email communication is part of daily activi-
ties. Many of the business processes that take place in a company and not only
are started and / or integrate the actions of receiving / sending emails. In some
situations entire processes are comprised in email communications. This type of
email based use cases are important both for academia as well as for industry.
For academia from a perspective oriented towards methodology, for industry
from a practical perspective, addressing very specific problems. Emails contain
knowledge that is bundled in an unstructured way but which has meaning to
end-users, and which could be used to address end-user specific problems.

A human-centered context-aware system dealing with such a use case would
be required to provide at least the following capabilities:

– provide the means and allow the end-user to model and represent context;
– allow the modeling of relationships between context elements;
– allow the modeling of interactions between different contexts, this implies

both in the form of conditions and sequences of events and actions (more
precise business rules and business processes)

– based on the provided models have the capabilities to discover in the envi-
ronment the modeled context(s)

– sense events and actions that are performed in the system
– perform actions according to models defined.



We support our previous assertions by discussing the Slice application scenario,
in the next paragraphs.

Commius1 is a European research project that tackles systems for small and
medium enterprise systems (SMEs). The final goal of Commius, as argued in [5],
is to turn existing email-systems into a management framework for structured
processes. Each incoming email is autonomously matched to a process that is
enhanced with proactive annotations.

Slice.com is an industry project. Similar to Commius uses emails to tackle a
very specific end-user related problem, keeping track of online purchases, that
emerged from the future internet dynamic and generative environment. This
project it is even more specific from the perspective of an end-user.

Slice is an online purchase management tool that gets hooked into your email
account. Whenever a new email is received Slice automatically analyzes the
content of the email. If the email contains order information from one of your
online shops, then Slice via pattern-based recognition techniques extracts order
related contextual information and organizes this information for you. Hence all
your purchases will be gathered in one place, you will be able to keep track of
your shopping history, amount of money that you spent, type of products, time
related information i.e. when a shipment is about to arrive and so forth.

We analyze from an end-user perspective what this use case is about.

– Problem faced by users: keeping track of the purchases made online.
– Applications involved, Services: Email as a legacy system; Services: on-

line shops (Amazon, EBay), shipment services (FedEx, UPS); Geolocation
services (Google Maps); other type of services i.e. topic extraction

– Concepts: shop, service, user, invoice, email, time and date, amount of
money, product, type of product, location, address, tracking number. The
list of concepts is not exhaustive, and is up to the each user; however these
are the most obvious ones. Concepts are all those entities that are used in
taking decisions and / or involved in any way in the process of resolving the
end-user’s problem.

– Context: For example one context, from the perspective of an end-user in
the Slice use case, could comprise: a specific service such as FedEx; concepts
associated with it, i.e. shipment, location, address. Further more interaction
related to this specific context could be provided, as what to do with this
information and so forth.

Figure 1 depicts a general interaction process with respect to this use case.

3 Identifying Guidelines

Fisher and Giaccardi argue in [11] that in a world that is not predictable, impro-
visation, evolution and innovation are a necessity. There is a shift from processes
towards users. Users want their problems and their requirements to be taken into

1 http://www.commius.eu/

http://www.commius.eu/


Fig. 1. General interaction process to solve the problem of keeping track of online
purchases

account; they want to be part of the conversation. Continuously changing busi-
ness models, do not fit anymore the old and stiff approaches. Processes must be
in accordance with the reality. For instance process mining techniques [20] that
look at event logs emphasize the fact that processes which actually get executed
are different compared to the original blueprints. Companies need to change to
what customers/users actually do.

Context greatly influences the way humans or machines act, the way they
report themselves to situations and things; furthermore any change in context,
causes a transformation in the experience that is going to be lived, sensed [4].
Many psychological studies have shown that when humans act, and especially
when humans interact, they consciously and unconsciously attend to context of
many types as stated in [12].

Traditionally context has been perceived in computer science community as
a matter of location and identity, see for instance [9]. However interaction and
problems concerning interaction require more than just the environmental con-
text (location, identity) used traditionally in context-aware systems [12]. Lately
the notion of context has been considered not simply as state but as part of a
process in which users are to be involved [7].

Nardi underlines this aspect clearly in [15] stating that ”we have only scratched
the surface of what would be possible if end users could freely program their own
applications... As has been shown time and again, no matter how much design-
ers and programmers try to anticipate and provide for what users will need, the
effort always falls short because it is impossible to know in advance what may be
needed... End users should have the ability to create customizations, extensions
and applications...”.

From a human-centered computing perspective this type of system is what
Donald Norman calls in [16] the type of system, where the system itself disap-
pears from sight, and humans (end-users) can once again concentrate upon their
activities and their goals.

Grundin [12] continues and argues that aggregation or interpretation done
by software systems are different than aggregation and interpretation done by
biological, psychological and social processes.

Meta-design is a conceptual framework defining and creating social and tech-
nical infrastructures in which new forms of collaborative design can take place
[11]. Meta-design originates in human computer interaction field and tackles
end-user development.



Table 1, introduced in [11] compares side by side traditional design vs. meta-
design. However, in our perspective a human-centered context-aware system, in
order to provide a high degree of generality and to avoid re-implementation of
common things related to infrastructure, should be a layered system as discussed
in [18]. A low level that is very technical and should be hidden from the end-user.
This low level would follow to great extent traditional design. The high level on
the other hand should follow mainly meta-design. A translation mechanism has
to be put into place to assure translation between these two layers.

Table 1. Traditional Design vs. Meta-Design [11]

Traditional Design Meta-Design

guidelines and rules exceptions and negations

representation construction

content context

object process

perspective immersion

certainty contingency

planning emergence

top-down bottom-up

complete system seeding

autonomous creation co-creation

autonomous mind distributed mind

specific solutions solutions spaces

design-as-instrumental design-as-adaptive

accountability, know-what (rational deci-
sioning)

affective model, know-how (embodied in-
teractionism)

Fig. 2. Context requirements

Several definitions for the concept context have been enunciated; Fischer,
however gives a definition that takes into account the human-centered computa-
tional environments. He defines context in [10] as being the ’right’ information,
at the ’right’ time, in the ’right’ place, in the ’right’ way to the ’right’ person.



Figure 2 depicts aspects that have been identified in [1] as requirements for
dealing with context.

Table 2, introduced in [10] depicts adaptive and adaptable systems. Con-
text aware systems traditionally position themselves, according to Table 2 in
the category of adaptive systems. These systems employ users’ profiles informa-
tion and other type of contextual information, like location to improve users’
experience. These approaches, although they provide a degree of flexibility, are
however still stiff approaches because they are still based on predefined designs
and very specific.

Table 2. Adaptive vs. Adaptable Systems [10]

Adaptive Adaptable

definition dynamic adaptation by the
system itself to current task
and current user

users change the functional-
ity of the system

knowledge contained in the system;
projected in different ways

knowledge is extended by
users

strengths little (or no) effort by users;
no special knowledge of
users is required

users are in control; users
know their tasks best

weaknesses users often have difficulties
developing a coherent model
of the system; loss of control

users must do substan-
tial work; complexity is
increased (users need to
learn adaptation compo-
nents); systems may become
incompatible

mechanisms required models of users, tasks, di-
alogs; incremental update of
models

support for end-user modifi-
ability and development

application domains active help, critiquing sys-
tems, recommender systems

end-user modifibiality, tai-
lorability, design in use,
meta-design

In our vision a human-centered context-aware system is a system where adap-
tivity and adaptability are blended together. By such a method users will be able
to directly model how the context should look like for a particular problem, and
afterwards the system would be required only to verify that the specified con-
text really exists in a given environment. Moreover while for adaptive systems
as stated in [3] the architecture of such systems comprises a user model (user
perspective on the problem) and a domain model (system perspective as it has
been designed), for a human-centered context-aware system there should be only
one conceptual model of the problem, that should be shared and understood in
the same way both by the end-user and the system.



Fig. 3. Interrelated topics

Figure 3 depicts the main perspectives that need to be blended together in
order to design a human-centered context-aware system. This particular view
has its roots in the meta-design conceptual framework [11].

Aspect Oriented Programming [19] is a relatively new methodology for soft-
ware development that aims at providing software modularity by means of sepa-
ration of cross cutting concerns. This is an approach for requirements engineering
that focuses on customers concerns to be made consistent with aspect oriented
software development. In terms of software engineering throughout the code
there are specifically designed points that support adaptation based on defined
aspects.

The authors in [8] discuss how aspect orientation and can be used in context
aware systems design. Furthermore because in aspect oriented programming di-
rect user input is taken into account this is an example of human-centered context
aware systems. However this approach although it goes into the right direction
it is restricted by the predefined points that support aspect orientation in the
implemented code.

Based on the analysis made the design and engineering process of human-
centered context-aware systems should follow the following guidelines:

1. such a system should be as general as possible and should be able to tackle
as many problems as possible [11];

2. such a system should should provide the right level of representation such
that a problem representation could be automatically translated into the
core constructs of the underlying programming language in which the overall
system is implemented;

3. such systems should not be domain specific and therefor closed system, but
an open system that could be used to address a wide range of problems and
applications;



4. in such a system the focus should be on the needs of the end-user and not
on the system itself; the system should be hidden from the end-user;

5. such a system should be designed for evolution and should provide the means
to evolve through the input of users, as well as by itself;

6. such a system should support both skilled domain workers as well as novice
users;

7. such a system should be a co-adaptive environment where users change be-
cause they learn and systems change because users become co-developers;

8. such a system should allow active participation and empowerment of end-
users;

9. in such a system the end-user should be the coordinator of how the system
works.

Some of the guidelines refer to the relationship between system and the end-
user, and some concern just the system. The system that we envision is similar to
an operating system in terms of being general and not domain specific. The sys-
tem will be an intelligent one and will accept problem descriptions given by the
end-users. These descriptions will act as application models. Such a description
together with the intelligent system will make the application. We have already
made initial steps towards implementing such a system in [18], [17].

4 Related Work

Context awareness has been studied for several decades from many perspectives.
Development of context-aware application, however, is still very difficult and
time consuming and aside location-based services, not too many applications
have been put into real use.

A series of surveys addressing different aspects (i.e. context modeling and
context-based reasoning, context-aware frameworks and applications, context-
aware web services) of development of context-aware systems and their applica-
tions have been developed. We observe that the present approaches to context
reasoning and context-aware system design are only partial, in most of the cases
being too specific, or too generic.

Types of context used and models of context information systems that sup-
port collecting and disseminating context, and applications that adapt to the
changing context have been addressed by Chen and Kotz in [6].

Bolchini et al. discuss in [4] general analysis framework for context mod-
els and a comparison of some of the data-oriented approaches available in the
literature. The framework addresses: modeled aspects of context (space, time,
absolute/relative, history, subject, user profile), representation features (type
of formalism, level of formality, flexibility, granularity, constraints) and context
management and usage (construction, reasoning, information quality monitor-
ing, ambiguity, automatic learning features, multi-context modeling).

A unified architectural model and a new taxonomy for context data distri-
bution has been discussed in [2]. Authors identify 3 major aspects: (1) context



data distribution should take into account node requests and quality of context
requirements to reduce management overhead; (2) context data distribution re-
quires adaptive and crosscutting solutions able to orchestrate the principal in-
ternal facilities according to specific management goals; (3) informed context
data distribution can benefit from their increased context-awareness to further
enhance system scalability and reliability.

The impact of context-awareness on service engineering has also been noticed.
A classic and relatively recent survey [13] by Kapitsaki et al. considers context as
constituting an essential part of service behavior, especially with the interaction
of users. They observe that ”at the heart of every context-aware service, relevant
business logic has to be executed and (. . . ) adapted to context changes”.

Related work concerning this human-centered context-aware perspective, as
it was analyzed in this paper is to the best of our knowledge only in an early
stage.

5 Conclusions

In this paper we have started an initial discussion about the design and en-
gineering of human-centered context-aware systems. Aspects discussed in this
paper are part of a work in progress. Our previous experience [18], [17] with
developing human-centered context-aware systems proved to be not trivial. This
discussion comprised aspects from human computer interaction, meta-design,
context and context-awareness. We have emphasized the fact that systems pre-
designed can not foresee all aspects and facets of a problem. Therefore end-user
should be given the necessary tools to design and develop their own solutions
based on existing services. We provide a set of guidelines and properties that
should characterize such human-centered context-aware systems.

Next steps include formalizing a conceptual framework, methodology and im-
plementation guidelines for developing such a system that is capable of tackling
in a unified way the problem of development of human-centered context-aware
applications.

References

1. Christos B. Anagnostopoulos, Athanasios Tsounis, and Stathes Hadjiefthymiades.
Context awareness in mobile computing environments. Wireless Personal Com-
munications, 42(3):445–464, 2007.

2. Paolo Bellavista, Antonio Corradi, Mario Fanelli, and Luca Foschini. A survey of
context data distribution for mobile ubiquitous systems. ACM Computing Surveys
(CSUR), 44(4):50 pages, 2012.

3. David Benyon and Dianne Murray. Applying user modeling to human-computer
interaction design. Artificial Intelligence Review, 7(3-4):199–225, 1993.

4. Cristiana Bolchini, Carlo A. Curino, Elisa Quintarelli, Fabio A. Schreiber, and
Letizia Tanca. A data-oriented survey of context models. ACM SIGMOD Record,
36(4):19–26, 2007.



5. Thomas Burkhart, Dirk Werth, and Peter Loos. Context-sensitive business process
support based on emails. In WWW 2012 – EMAIL’12 Workshop, April 2012.

6. Guanling Chen and David Kotz. A survey of context-aware mobile computing
research. Technical report, Dartmouth College Hanover, NH, USA, 2000.

7. Joëlle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. Context is
key. Communications of the ACM - The disappearing computer, 48(3):49–53, 2005.

8. Abhay Daftari, Nehal Mehta, and Shubhanan Bakre Xian-He Sun. On design
framework of context aware embedded systems. In Monterey Workshop on Software
Engineering for Embedded Systems: From Requirements to Implementation, 2003.

9. Anind K. Dey and Gregory D. Abowd. Towards a better understanding of context
and context-awareness. In In HUC ’99: Proceedings of the 1st international sym-
posium on Handheld and Ubiquitous Computing, pages 304–307. Springer-Verlag,
1999.

10. Gerhard Fischer. Context-aware systems - the ’right’ information, at the ’right’
time, in the ’right’ place, in the ’right’ way, to the ’right’ person. In AVI’12. ACM,
2012.

11. Gerhard Fischer and Elisa Giaccardi. End User Development - Empowering People
to Flexibly Employ Advanced Information and Communication Technology, chapter
Meta-Design: A Framework fo the Future of the End-User Development. Kluwer
Academic Publishers, 2004.

12. Jonathan Grudin. Desituating action: digital representation of context. Human-
Computer Interaction, 16(2):269–286, 2001.

13. Georgia M. Kapitsaki, George N. Prezerakos, Nikolaos D. Tselikas, and Iakovos S.
Venieris. Context-aware service engineering: A survey. The Journal of Systems
and Software, 82(8):1285–1297, 2009.

14. Charles McLellan, Teena Hammond, Larry Dignan, Jason Hiner, Jody Gilbert,
Steve Ranger, Patrick Gray, Kevin Kwang, and Spandas Lui. The Evolution of
Enterprise Software. ZDNet and TechRepublic, 2013.

15. Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User
Computing. MIT Press, 1993.

16. Donald A. Norman. The Invisible Computer. MIT Press, 1999.
17. Emilian Pascalau. Mashups: Behavior in context(s). In Proceedings of 7th Work-

shop on Knowledge Engineering and Software Engineering (KESE7) at the 14th
Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011),
volume 805, pages 29–39. CEUR-WS, 2011.

18. Emilian Pascalau. Towards TomTom like systems for the web: a novel architecture
for browser-based mashups. In Proceedings of the 2nd International Workshop on
Business intelligencE and the WEB (BEWEB11), pages 44–47. ACM New York,
NY, USA, 2011.

19. Ian Sommerville. Software Engineering 8. Addison Wesley, 2007.
20. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,

and A. J. M. M. Weijters. Workflow mining: a survey of issues and approaches.
Data & Knowledge Engineering, 47(2):237–267, 2003.

21. Min Wang. Context-aware analytics: from applications to a system
framework. http://e-research.csm.vu.edu.au/files/apweb2012/download/APWeb-
Keynote-Min.pdf, 2012.

22. Jonathan Zittrain. The Future of the Internet And How to Stop It. Yale University
Press New Haven and London, 2008.


	Identifying Guidelines for Designing and Engineering Human-Centered Context-Aware Systems (Position paper)

