
HaDEsclipse � Integrated Environment for Rules
(Tool Presentation)?

Krzysztof Kaczor1, Grzegorz J. Nalepa1, Krzysztof Kutt1

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

kk@agh.edu.pl, gjn@agh.edu.pl, kutt@agh.edu.pl

Abstract. In the paper a presentation of HaDEsclipse is given. It is an
environment for design and implementation of rule-based systems within
the Semantic Knowledge Engineering (SKE) approach. It is build with
the use of the Eclipse framework, integrating the previously developed
components of the HaDEs environment. HaDEsclipse integrates modules
for conceptual prototyping of rule bases, and a visual editor for logical
design of extended decision tables that group rules working in similar
context. It also allows for generating an executable form of the system,
that can be later executed by an inference engine. While the SKE is
targeted mainly at knowledge engineers, the use of the Eclipse framework
makes the development easier for software engineers.

1 Introduction and Motivation

Rule-based systems (RBS) play an important role in knowledge engineering and
software engineering, e.g. with the business rules approach [1]. However, practical
design of rules is a challenging task. It requires both e�cient knowledge repre-
sentation methods for rule bases, as well as practical design tools that support
them. The Semantic Knowledge Engineering (SKE) [2] addresses these prob-
lems, by providing the XTT2 [3] and ARD+ [4] representation methods, and a
dedicated design framework HaDEs, previously presented at KESE [5].

However, HaDEs turned out to be hard to use for knowledge engineers not
familiar with SKE as well as for software engineers. This gave the motivation to
develop a new front end to HaDEs, based on the popular Eclipse IDE. In this
paper we present this new tool called HaDEsclipse [6]. First, we shortly discuss
the SKE design process and how it is supported by HaDEs. Then we present
the architecture and selected aspects of implementation of HaDEsclipse.

2 SKE Design Process with HaDEs

Our research concerns the representation and formal veri�cation of RBS. An im-
portant result of our research is the SKE (Semantic Knowledge Engineering) [2]

? The paper is supported by the AGH UST Grant 15.11.120.361.



methodology, which derives from the HeKatE (Hybrid Knowledge Engineering)
research project [7]. It aims at providing an integrated process for design, im-
plementation, and analysis of the RBS supported by HaDEs (HeKatE Design

Environment) framework.

The main features of this methodology are:

1. Visual rule representation. The providedXTT2 [3] rule representation method
that visualizes the rule base in the form of interconnected decision tables,
which makes the design more transparent.

2. Supported rule modeling. The HaDEs framework provides a set of dedicated
tools, which facilitate the design process.

3. Easy rule maintenance. The HaDEs-based design process consists of three
stages. The transitions between stages are formally de�ned and automati-
cally performed. The modi�cation made in one stage can be automatically
propagated into the following stages.

4. One rule type. As opposed to Business Rules, SKE provides only one type of
rule � production rule. However, the methodology provides di�erent inference
strategies that correspond to di�erent types of Business Rules, e.g. derivation
rule type corresponds to backward chaining inference mode.

5. Formal rule description and veri�cation. The provided formal rule language
based on the ALSV(FD) (Attributive Logic with Set of Values over Finite

Domains) logic [7] allows for formalized representation and veri�cation of
rules. Moreover, the semantics of rules is precisely de�ned.

The SKE approach can be applied to a wide range of intelligent systems. In this
context, two main areas have been identi�ed in the project: control systems, in
the �eld of intelligent control, and Business Rules [1] and Business Intelligence
systems, in the �eld of software engineering.

The HaDEs framework aims at supporting the SKE approach. In this ap-
proach, the application logic is expressed using forward-chaining decision rules.
They form an intelligent rule-based controller or simply a business logic core.
The logic controller is decomposed into multiple modules represented by decision
tables. HaDEs supports a complete hierarchical design process for the creation
of knowledge bases. The whole process consists of three stages: conceptual, log-
ical and physical design and is supported by a number of tools providing the
visual design and automated implementation1.

The conceptual design is the �rst stage of the process. During this step,
the ARD+ (Attribute Relationships Diagrams) method is used. The principal
idea for this stage is to build a graph de�ning functional dependencies between
attributes on which the rules are built. This stage is supported by two visual
tools: VARDA (Visual ARD+ Rapid Development Alloy), and HQEd.

The logical design is the second stage of the process. During this stage, rules
are designed using the visual XTT2 (Extended Tabular Trees version 2 ) [3]
method. This phase can be performed as the �rst one in the design or as the

1 See: https://ai.ia.agh.edu.pl/wiki/hekate:hades



second one, when the input is provided from the conceptual design. It is sup-
ported by the dedicated editor HQEd (HeKatE Qt Editor). HQEd supports
the HML format, which allows for importing models generated by VARDA, as
well as for saving and loading the state of the design.

Having a complete XTT2-based model the physical implementation can
be generated automatically. In this stage, a logical model is transformed into
an algebraic presentation syntax called HMR2 (HeKatE Meta Representation).
HMR is a textual representation of theXTT2 logic. It is a human readable form,
as opposed to the machine readable HML format. The HMR representation can
be directly executed by the dedicated inference engine tool, called HeaRT3

(HeKatE Run Time) [8]. The HeaRT engine has communication and integra-
tion facilities. It supports Java integration based on callback mechanism and
Prolog JPL library, called JHeroic.

HaDEs proved to be an e�cient framework for designing rule bases within
the SKE approach. However, its main limitation is that it is a set of loosely
connected tools. Moreover, these tools have custom GUIs, which is problematic
for engineers not familiar with SKE. This gave motivation for the development
of a new platform, providing a more user friendly front end to HaDEs.

3 Architecture of HaDEsclipse

A decision was made to use the popular Eclipse IDE, which is a widely used
tool in the software engineering community. Using it a new integrating front
end to HaDEs was developed [6]. HaDEsclipse was implemented as a plugin
for Eclipse. It integrates modules for conceptual prototyping of rule bases, and
a visual editor for logical design of extended decision tables grouping rules. It
also allows for generating an executable form of the system, that can be later
executed by an inference engine. Within this plugin, one can manage the whole
SKE design process described in the previous section.

The main functional requirements of HaDEsclipse are aimed at integrating
the existing components of HaDEs using Eclipse:

1. ARD+ support:

(a) Code editor with syntax highlighting, formatter, content assistant and
error checking,

(b) Integration with VARDA,
(c) Wizard to create new ARD+ �les.

2. HML support:

(a) Code editor with syntax highlighting and checking, content assistant,
(b) Integration with HQEd,
(c) Wizard to create new HML �les.

3. HMR support:

2 See https://ai.ia.agh.edu.pl/wiki/hekate:hmr.
3 See https://ai.ia.agh.edu.pl/wiki/hekate:heart



(a) Code editor with syntax highlighting, code formatter, content assistant
and error checking,

(b) Integration with HeaRT.
4. Preferences card:

(a) Code editors settings,
(b) HaDEs environment parameters.

5. Intuitive Eclipse wizards, views and perspective.

The architecture of HaDEsclipse is presented on Fig. 1. It consists of 5 parts:
three of them support HaDEs languages and the other two are responsible for
view and wizards. Communication withHaDEs environment (VARDA,HQEd,
HeaRT) is handled using JHeroic library.

ARD+ Support

Parser

Editor

Syntax Coloring

Content Assistant

Code Formatter

HML Support

Parser

Editor

Content Assistant

HMR Support

Parser

Editor

Syntax Coloring

Content Assistant

Code Formatter

HaDEsclipse

JHeroic

Views

HeaRT View

HQEd View

Wizards

New File

Import/Export

Verification

Model Execution

VARDA HQEd HeaRT

Fig. 1. Architecture of HaDEsclipse

The tool was implemented in Java as a plugin for Eclipse. All of the functional
requirements where met. Five modules of HaDEsclipse successfully support the
design with SKE. Thanks to HaDEsclipse the models created in the subsequent
design phases are easily interchanged between the HaDEs tools. Moreover, the
tool allows to run and verify rule models in HeaRT. For the visual design of
the XTT2 tables HQEd is used, but �les produced with it are exchanged with
other tools transparently for the user.

An example session with the tool is presented in Figures 2 and 3. In the �rst
�gure the conceptual design with ARD+ is presented. The conceptual model
of the rule base is described using a set of attributes and dependencies between
them. The HML �le contains prototypes of decision tables holding the condi-
tional and decision attributes. In the second �gure the HMR editing process is
presented. The plugin supports both syntax highlighting and hinting, as well as



a structured XML editor in the case of ARD+. Schemas (headers) of the tables
are de�ned base on the HML description. In given tables rules are de�ned using
the xrule construct.

Fig. 2. HML Editor

4 Summary and Future Work

In the paper the HaDEsclipse tool was presented. It is an integrating front-end
for the HaDEs framework, which supports the knowledge engineering process in
the SKE approach [2]. The new tool makes HaDEs more accessible and useful
for software engineers.

Our future works include further integration of HaDEsclipse with other tools
we developed. This includes design tools for business processes, and integration
with business process engines. Finally, recent results include an Eclipse-based
tool for generating test cases for unit testing based on a rule-based speci�cation.
This framework will be integrated with HaDEsclipse, bringing more practical
bene�ts from the area of knowledge engineering to software engineers [9].

References

1. von Halle, B.: Business Rules Applied: Building Better Systems Using the Business
Rules Approach. Wiley (2001)

2. Nalepa, G.J.: Semantic Knowledge Engineering. A Rule-Based Approach.
Wydawnictwa AGH, Kraków (2011)



Fig. 3. HMR Editor

3. Nalepa, G.J., Lig¦za, A., Kaczor, K.: Formalization and modeling of rules using the
XTT2 method. International Journal on Arti�cial Intelligence Tools 20(6) (2011)
1107�1125

4. Lig¦za, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,
Heidelberg (2006)

5. Kaczor, K., Nalepa, G.J.: HaDEs � presentation of the HeKatE design environment.
In Baumeister, J., Nalepa, G.J., eds.: 5th Workshop on Knowledge Engineering
and Software Engineering (KESE2009) at the 32nd German conference on Arti�cial
Intelligence: September 15, 2009, Paderborn, Germany, Paderborn, Germany (2009)
57�62

6. Bator, P.: Projekt i implementacja narz¦dzi do edycji wiedzy reguªowej HeKatE
na platformie Eclipse. Master's thesis, AGH University of Science and Technology
(2012) supervisor: Grzegorz J. Nalepa.

7. Nalepa, G.J., Lig¦za, A.: HeKatE methodology, hybrid engineering of intelligent
systems. International Journal of Applied Mathematics and Computer Science 20(1)
(March 2010) 35�53

8. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In Rutkowski, L., [et
al.], eds.: Arti�cial Intelligence and Soft Computing: 10th International Conference,
ICAISC 2010: Zakopane, Poland, June 13�17, 2010, Pt. II. Volume 6114 of Lecture
Notes in Arti�cial Intelligence., Springer (2010) 598�605

9. Grzegorz J. Nalepa, K.K.: Proposal of a rule-based testing framework for the au-
tomation of the unit testing process. In: Proceedings of the 17th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation ETFA 2012,
Kraków, Poland, 28 September 2012. (2012)


