
Evaluating the Quality in Use of
Domain-Specific Languages in an Agile Way

Ankica Barǐsić

CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

Campus de Caparica, 2829-516 Caparica, Portugal
a.barisic@campus.fct.unl.pt

Abstract. To deal with the increasing complexity of the software sys-
tems to be developed, it is important to have high level approaches to de-
velopment that support such complexity at affordable costs. This fosters
the development of Domain-Specific Languages (DSLs) that are claimed
to bring important productivity improvements to software developers.
Because of that, the quality of the users interaction with this kind of
technology is becoming of utmost importance. The goal of this research
is to contribute to the systematic activity of software language engineer-
ing by focusing on the issue of quality in use evaluation of DSLs, in which
design decisions are validated iteratively.

Keywords: Experimental Software Engineering, Domain-Specific Languages,
Software Language Engineering, Quality in Use, Agile development

1 Motivation

As software moves to the daily routines and responsibilities of people, there is a
need for developing tools rapidly. Domain-Specific Languages (DSLs) are claimed
to contribute to a productivity increase in software systems development, while
reducing the required maintenance and required programming expertise. DSLs
are designed to bridge the gap between the problem domain (essential concepts,
domain knowledge, techniques, and paradigms) and the solution domain (tech-
nical space, middleware, platforms and programming languages). DSLs empower
domain experts to specify systems for their own domains. However intuitive this
idea may be, we need to have means to assert the quality and success of the
developed languages. We argue that for this kind of software languages the mea-
sure of success has to be captured by assessing the real impact of using DSL
in real context of use by their target domain users. The alternative is to accept
the risk of deriving inappropriate products that bring more harm by decreasing
productivity or even increasing maintenance costs at the long run.

2 Problem

Domain-driven development is becoming increasingly popular, as it raises the ab-
straction level. Language engineers need to deal with the accidental complexity

1



of the used computer technology, e.g., the use of low level abstraction program-
ming languages, while integrating a wide plethora of different tools and libraries
to create a DSL for target domain context. On the other hand, DSL develop-
ment requires domain and language development expertise, and few people have
both. This lead language engineers to cope with the growing of both essential
and accidental complexity [8].

Software language engineering (SLE) is the application of a systematic, disci-
plined and quantifiable approach to the development, usage, and maintenance of
software languages [2]. Although, the phases of DSL life cycle are systematically
defined [16], this process lack one crucial step, namely language evaluation just
before the deployment [4].

The software industry does not seem to report investment on the evaluation
of DSLs, as shown in a recent systematic literature review [11]. We argue that
this is due the perceived high costs of DSL evaluation, that lack a consistent
and computer-aided integration of two different and demanding complementary
software language processes: development and evaluation. Language engineers
should become aware of relevant quality concerns during development, and iden-
tify and apply best practices into their development plan. Evaluation experts
should get better understanding of all the models involved in the DSL develop-
ment in order to be able to give appropriate and reliable suggestions towards
the improvement of the language under development.

The focus of this research is to propose a systematic evaluation process for
DSLs with the usability concern [1]. This process is seen as a number of iterations
that will enable cost control during the development process and will guarantee
success of produced language from the user point of view.

3 Related work

A programming language is a model that describes the allowed terms and how
to compose them into valid sentences. DSLs are generally conceived as commu-
nication interfaces between human and computers. User Interfaces (UIs) can be
also seen as a realization of a language. From this perspective it was discussed in
[4] that evaluating usability of DSLs is not much different from evaluating UIs.

Empirical (i.e. experimental) evaluation studies of UI with real users is a
crucial phase of UI validation [10]. A relevant set of quantitative and qualitative
measurements must be inferred and combined together to lead to a useful assess-
ment of the several dimensions that define software Quality in Use, often referred
as Usability [13]. Meaning of usability for target domain users is a main crite-
ria to be defined and analyzed, in order to identify which internal and external
qualities will be relevant to be verified during development. These complex ex-
perimental evaluation studies are typically implemented by software evaluation
experts. Their expertise is essential to properly design the evaluation sessions
and to gather, interpret, and synthesize significant results. Although it is desir-
able to have software evaluation experts in the teams, it is not always possible to
have them available due to, among several reasons, the cost and time involved.

2



This situation calls for the need of automatic tools that support these experts,
as well as language developers. One way to obtain qualitative measurements is
by means of observations and direct questionnaires to the users [20].

There is an increasing awareness to the quality in use of languages, fostered
by the competition of language providers. Better usability is a competitive ad-
vantage, although evaluating it remains challenging. While evaluating competing
languages, it is hard to i) interpret the existing metrics in a fair, unbiased way,
ii) provide reliable design changes; and iii) assure that the scope of evaluation is
preserved to target user groups.

In the context of General Purpose Languages (GPLs), comparing the pro-
ductivity impact of different languages during development process has some
tradition [19]. Some of the common techniques is the use of popularity index1,
the cognitive dimensions framework [12], or heuristic based on the studies of cog-
nitive effectiveness for visual syntax [17]. Some of these methods can be reused
in a case when this techniques are identified relevant for usability of DSL (e.g.
Moody work on cognitive effectiveness can be reused just if visual concrete syn-
tax is given to target DSL) When usability problems are identified too late, a
common approach to mitigate them is to build a tool support that minimizes
their effect on users productivity [7].

4 Approach to DSL evaluation

A systematic approach based on UI experimental validation techniques should
be used to assess the impact of new DSLs. For that purpose, it is necessary to
merge common usability evaluation process with the DSL development process.
We expect that introducing evaluation experts into DSL development will enable
language engineers to build languages that are easier to use, leading to increased
productivity and positive experience by their users.

In order to evaluate DSLs we need a rigorous collaborative procedure (both
during and after their development), as well as evaluate their sentences (called
instance models). For that it is necessary to (i) define the usability criteria to
evaluate DSLs by focusing on indicators that are relevant for users perception of
quality (e.g. efficiency, effectiveness, reliability,learnability, scalability, reusability
ect.); (ii) integrate in an existing IDE support Quality in Use indicators; and
(iii) define a methodological approach to support the evolution of a DSLs based
on experience and infer its impact on quality improvement during its lifecycle
(e.g. traceability of design decisions, reuse of experiment results in a domain).

An iterative user-centered approach DSL for evaluation was proposed in [4].
Goal was to establish formal correspondences between the DSL development
process and the experimental evaluation. We should research the most suitable
means to provide both reliable DSL evaluation metrics and iterative suggestions
during DSLs development and evolution. The initial vision of the approach is
detailed by a set of practices that are introduced in order to provide a complete

1 http://lang-index.sourceforge.net/

3



solution to a complex problem of placing intended users as a focal point of DSLs
design and conception, and by that we ensure that the language satisfies the
user requirements [3]. These interdependent patterns are expected to disseminate
best practices to the end users. It provides means of performing experimental
validation in the most costeffective manner and is expected to give the rationale
about correct and reliable indicators that should be reusable.

These patterns outline different roles relevant for development and evaluation
of DSL, and are divided into three sets that correspond to a different abstraction
space: (i) Agile Development Process includes patterns devoted to project man-
agement and engineering of a DSL. Through organization and planning of lan-
guage development we are controlling evaluation activities and tracking success
of the DSL. After each iteration, evaluation and development goals are scoped
and budget is fixed in order to proceed to design and implementation activities
that are guided by (ii) Iterative User-Centered Design patterns. These support
engagement of evaluation expert into development process, that collects relevant
informations concerning the language engineer conception of problem solution
and users interpretation. Depending on artifacts to be evaluated (cognitive model
instances), abstraction layers that iteration focus on (abstract or concrete syn-
taxes, integration environment, given semantics), evaluation methodology, met-
rics definition and relations used, each iteration evaluation design can vary a
lot. The third set of patterns, (iii) Experimental Evaluation Design supports the
definition of evaluation process artifacts e.g. hypothesis, tests, metrics, samples
and statements [2]. This artifacts are expected to be reused in a cases when they
do not present threat to validity of results.

By planning carefully the development process and organization of responsi-
bilities and costs, the goal is to establish balanced management and engineering
plan that will satisfy both: business and user needs, by optimizing impact of
evaluation feedback on language development. Also, time that is invested into
strategy and design of problem and its solution can be planned well with the
technical implementation of solution.

By adopting UI evaluation process to DSL development [4], it is found that
a set of language and evaluation goals should be identified during the domain
engineering phase of DSL’s construction i.e. while eliciting minimum set of do-
main concepts. A first step is to understand and specify the context of use of
DSLs and which kind of user groups it should target. Interviews or question-
naires with the DSL’s intended users should be designed to capture information
about working environment and baseline approach to solve problems in terms of
user stories. In the language design phase, it is necessary to identify which qual-
ity in use attributes are impacted by internal and external quality indicators.
During the implementation phase, the language engineer can benefit from the
collected information by means of tools or instruments that implements chosen
measures directly on the DSL prototype. Finally, in the testing phase, the lan-
guage engineer should involve (at least) evaluation expert to validate that the
known quality problems and functional tests can be accepted, and to perform
heuristic evaluation or quasi experiments with domain experts. When evaluation

4



goals seem to reach acceptable levels, end-user-based evaluation should be con-
ducted. This experiment is executed by giving the users real problems to solve
in order to cover the most important tasks related to scope of evaluation. Data
about satisfaction and cognitive workload should also be evaluated subjectively
through questionnaires. It is important in this phase to measure all the learn-
ability issues, since DSLs should be (in principle) easy to learn and remember.
Examples of the user-based evaluations of DSLs can be seen in [6] and [14].

5 Preliminary work and contribution

When we consider GPLs, their users are part of population that master well
mathematical and technical concepts (e.g. they are highly skilled in computa-
tions and logical reasoning). In order to develop programming solutions, GPL
users (i.e. programmers) need to understand also domain concepts. On the other
hand, as DSLs are meant to reduce use of computation concepts by putting focus
on the domain concepts. As such, DSLs are expected to be used by the much di-
verse target population in different context of use [5] (e.g. experts from physics,
chemistry, finance, management etc.). This means that evaluation criteria for
DSLs need to be appropriate for their target users, technical environment and
social and physical environment. However, the positive coincidence, when com-
pared to deveres UI users, is that this expected user groups are relatively small
with precisely defined knowledge sets.

Under the perspective of SLE, in order to experimentally evaluate a DSL, we
need to know what are the criteria involved, understand the notion of quality
from the relevant perspectives and understand the experimental process itself.
This complex challenge was covered by general model for DSL experimental
evaluation, i.e. [2], that served as a set of proof of concept instantiations of the
proposed experiment. Experimental model outlines the activities needed to per-
form an experimental evaluation of a software engineering claim, following the
scientific method. In order to effectively reason about experimental process and
eventually detect flaws before it is applied and analysed we systematically com-
pared four language evaluation experiments that are examples of best practices.

Building DSLs is becoming very popular and by that there are increasing
needs of some pointers in topic of their cognitive congeniality to end user. The
value of contribution in this line of research is supported by the evidence of
the interesting return of investment on usability evaluation for other software
products [18]. The benefits of usability evaluation span from a reduction of de-
velopment and maintenance costs, to increased revenues brought by an improved
effectiveness and efficiency by the end users [15]. By allowing significant changes
to correct deficiencies along the DSL development process, instead of just eval-
uating them in the end of it, presented user-centered design is meant to reduce
development and support costs, increase sales, and reduce staff cost for employ-
ers [9]. This approach is expected to contribute to increase the external quality
of the dsl and its correct construction according to the target expectations. Us-

5



ability is seen as an end goal, but to achieve it we need a means to trace how
close we are to our goal trough development process.

6 Evaluation methodology

Our goal is to evaluate our approach with respect application of approach to
academical and industrial real cases. In particular, we address following research
questions:

Q1: Can our approach identify usability problems early in development cycle?
Q2: By using the proposed approach to language development, are we able

to trace and validate design decisions?
Q3: By using proposed design of evaluation are we able to replicate experi-

ments and reuse data and metrics?
Experiment planning. To evaluate first research question (Q1), a set of

evaluation experiments during DSL development that use presented technique
should be conducted, where the main role of author is to be involved as evaluation
expert (i.e. usability engineer). Comparison to baseline approaches to solving
problem is expected to give us means of better quality of use for the produced
solution. By comparing solutions within same domain, and iteratively comparing
the design solutions from each of iterations we are planning to find answers to
our second and third research questions (Q2,Q3). By systematically comparing
more DSL solutions within same domain, where each one cycle is focusing of
different high level goals, we expect to have a means of reusing evaluation data,
and building up statistical evidence of their validity and correlations. This will
help validating our approach.

Threats to validity. In some evaluation cases it will be hard to distinguish
if the success of produced DSL is to be due to our approach for usability or
building a DSL by itself. However, we believe that is possible to overcome this
threat by validating success of design decisions through different iterations and
performing comparative analysis between them. It is needed to take a special
care that for same context of experiment we use different subjects. Threat is that
as there will be hard to find a lot of expert users in domain, and often we will
end up by having available just novice users for new problem solving approach.
However, it is possible to validate different artifacts or abstraction layers with
a same user groups. While performing evaluation experiments we need to be
careful that we don’t compare non-related things; like trying to compare DSL
with Java (e.g. we should restrict the GPL just to the constructs that are related
with a target domain: query procedures of Java with a query DSL). That is the
reason why we need to precisely define scope and assure that context of use can
fit inside. It will be also challenging to evaluate iterative life-cycle.

7 Research status

Our analysis of target evaluation domain resulted in the conceptual models that
should be involved into the methodological framework (e.g. context model, sur-

6



vey instruments and indicators, goal and requirements model etc.). In order to
support evaluation and language design, presented patterns are illustrated by
a real life case study of the usability evaluation of a DSL for the High-Energy
Physics [6] by the author in a role of evaluation expert. This language was found
appropriate for analysis, as it had detailed description of domain problem and
development process. It was also rare example of a language that concentrates
on group of users that are not programmers and it had systematic usability
evaluation performed in the end.

Author is currently performing two evaluations of the approach. The first
one in industrial context that involves iterative development of a DSL for the
humanitarian campaign flow specification (FlowSL). This example is expected
to result in the detailed definition of all artifacts that are needed to support de-
velopment process. During the development process, FlowSL is being evaluated
in comparison with baseline approach (hacking Ruby code), and comparative
evaluations of iteration releases. In the end it is expected to be compared with
BPMN with novice users, to assess learnability issues. Other experiment is run
in context of summer schools on DSL development. Here the goal is to capture
and validate design decisions and quality metrics between language solutions
developed parallelly by different student groups.

An additional step is to conceptualize models for performing DSLs evaluation,
metrics and traceability model of design changes and their impact. This support
should be tailored to internal and external quality (e.g. syntactic and semantic
models) and quality in use (e.g. interaction model) artifacts while using a DSL
along several iterative evolution steps. It is expected to support more efficient
performance of evaluation, and enable evaluator to explicitly model the process.
This procedure will give us faster convergence of language development, as it
enable us to monitor the impact of language evolution to the efficiency and
effectiveness of practitioners using the language (and its companion toolset).

As a side effect, this evaluation work is expected to contribute to the vali-
dation of the claim that DSLs are more usable than GPLs. The impact of an
evaluation process for DSLs could be interesting from an industry point of view.
With many organizations developing their own languages, or hiring companies
to develop such languages for them, this framework can aid them in reaching
more usable languages.

Acknowledgments I gratefully thank to my supervisors Vasco Amaral and
Miguel Goulão . This work was partially supported by the CITI - PEst - OE /EEI
/UI0527 /2011, Centro de Informtica e Tecnologias da Informao (CITI/FCT/UNL).

References

1. A. Barǐsić, V. Amaral, and M. Goulão. Usability evaluation of domain-specific lan-
guages. In Quality of Information and Communications Technology (QUATIC),
2012 Eighth International Conference on the Quality of Information and Commu-
nications Technology (QUATIC’2012), pages 342–347. IEEE, 2012.

7



2. A. Barǐsić, V. Amaral, M. Goulão, and B. Barroca. Evaluating the usability of
domain-specific languages. In Marjan Mernik, editor, Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, pages 386–407. IGI Global,
2012.

3. A. Barǐsić, V. Amaral, M. Goulão, and M.P. Monteiro. Patterns for evaluating us-
ability of domain-specific languages. Proceedings of the 19th Conference on Pattern
Languages of Programs (PLoP), SPLASH 2012, September 2012.

4. A. Barǐsić, V. Amaral, M. Goulão, and B. Barroca. How to reach a usable DSL?
moving toward a systematic evaluation. ECEASST, 50, 2011.

5. A. Barǐsić, V. Amaral, M. Goulão, and B. Barroca. Quality in use of DSLs: Current
evaluation methods. Proceedings of the 3rd INForum - Simpósio de Informática
(INForum2011), September 2011.

6. Ankica Barǐsić, Vasco Amaral, Miguel Goulão, and Bruno Barroca. Quality in
use of domain-specific languages: a case study. In Proceedings of the 3rd ACM
SIGPLAN workshop on Evaluation and usability of programming languages and
tools, PLATEAU ’11, pages 65–72, New York, NY, USA, 2011. ACM.

7. R. Bellamy, B. John, J. Richards, and J. Thomas. Using CogTool to model pro-
gramming tasks. Evaluation and Usability of Programming Languages and Tools
(PLATEAU 2010), page 1, 2010.

8. Fred Brooks. The Mythical Man-Month. Addison-Wesley, 1975.
9. T. Catarci. What happened when database researchers met usability. Information

Systems, 25(3):177–212, 2000.
10. Alan Dix. Human computer interaction. Pearson Education, 2004.
11. Pedro Gabriel, Miguel Goulão, and Vasco Amaral. Do software languages engi-

neers evaluate their languages? In Xavier Franch, Itana Maria de Sousa Gimenes,
and Juan-Pablo Carvallo, editors, XIII Congreso Iberoamericano en ”Software
Engineering” (CIbSE’2010), ISBN: 978-9978-325-10-0, pages 149–162, Cuenca,
Ecuador, 2010. Universidad del Azuay.

12. Thomas R. G. Green and Marian Petre. Usability analysis of visual programming
environments: a cognitive dimensions framework. Journal of Visual Languages &
Computing, 7(2):131–174, 1996.

13. International Standard Organization. Iso/iec fdis 25010:2011 systems and software
engineering – systems and software quality requirements and evaluation (square)
– system and software quality models, March 2011.

14. Toma Kosar, Marjan Mernik, and Jeffrey Carver. Program comprehension of
domain-specific and general-purpose languages: comparison using a family of ex-
periments. Empirical Software Engineering, pages 1–29, 2011.

15. Aaron Marcus. The roi of usability. In Bias and Mayhew, editors, Cost-Justifying
Usability. North- Holland: Elsevier, 2004.

16. Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344, 2005.

17. D.L. Moody. The physics of notations: Toward a scientific basis for constructing
visual notations in software engineering. IEEE Transactions on Software Engi-
neering, pages 756–779, 2009.

18. Jakob Nielsen and S. Gilutz. Usability return on investment. Technical report,
Nielsen Norman Group, 2003.

19. Lutz Prechelt. An empirical comparison of seven programming languages. IEEE
Computer, 33(10):23–29, 2000.

20. J. Rubin and D. Chisnell. Handbook of Usability Testing: How to plan, design and
conduct effective tests. Wiley-India, 2008.

8




