
Towards Declarative and Incremental Model
Transformation

Hamid Gholizadeh

McMaster University, Department of Computing and Software,
Ontario, Canada

mohammh@mcmaster.ca

Abstract. Model Driven Engineering (MDE) has proven to be a promis-
ing approach in software engineering. Model management and mainte-
nance stands at the core of the MDE approach, while it still needs more
theoretical and technical support for the realization of its expected func-
tionalities, like model transformation, refactoring, migration and syn-
chronization. In this thesis proposal, I introduce a declarative Model
Transformation definition in the meta-model layer, as the foundation for
model transformation. I motivate the declarative method by discussing
its usefulness for incremental model transformation. This PhD proposal’s
objectives are the implementation of the declarative method, developing
the necessary semantics for the incremental model transformation, and
applying the incrementality to some MDE scenarios.

Keywords: Incremental Model Transformation, Declarative Model Trans-
formation, Transformation Languages, Model Driven Engineering

1 Introduction

Model Driven Engineering(MDE) has proven to be a promising approach in the
software development process [3]. Model Transformation(MT) means translating
one model to another model and it stands at the core of the model management
activities in MDE, since many operations in model management use it. There are
two main MT approaches: imperative and declarative. In imperative approaches,
transformation is defined by an algorithm which is traversing the source model’s
elements and generating the corresponding target model elements, step by step.
In declarative approaches, transformation is specified in a specification language,
and its imperative implementation is left to the underlying MT framework. Im-
perative and declarative MTs are comparable to imperative and declarative pro-
gramming languages, respectively.

Since in declarative methods, users provide the MT specification, it is possi-
ble to have different implementations, verify them against the specification and
optimize them, while still retaining the correctness of the implementation. Usu-
ally in declarative MT methods, since the size of MT specification decreases in
comparison to its implementation, its maintainability increases. Unfortunately,

32

it is not easy to write a declarative specifications and it needs training and prac-
tice for imperative-oriented minds to get used to this. In contrast, imperative
approaches are being widely used at the moment, and many languages and tools
exist for them, but they miss the advantages of the declarative approaches we
just mentioned.

After transformation, it is possible that either the source model, the target
model or both, change and we require the propagation of changes to make both
sides consistent again. The naive way of dealing with this situation is gener-
ating the new versions of related models from scratch1, which is usually not
desirable. For example, it is obvious that the developer would not be happy
if the code inside a Java function were thrown away, when only the name of
that function changes in the corresponding class diagram. So we would need to
have incremental transformation for these kind of situations in the sense that we
only propagate changes and keep related models’ elements unchanged as far as
possible. To this end, declarative MT is useful, inasmuch as it provides a more
abstract perspective for dealing with incrementality complexity; we will discuss
this more in section 3.1.

In the next section we will introduce a declarative approach based on math-
ematical background, which is primarily introduced by Diskin [4]. This PhD
research will implement this declarative approach on top of existing MT lan-
guages and develope the necessary semantics for incrementality. Based on this,
we intend to apply incrementality to some MT scenario as a proof of concept.

2 Declarative MT : An Example

We formally represent models as Typed Graphs [5] with some constraints defined
on them. A typed graph consists of three elements: data graph, type graph and
typing mapping (a morphism from data graph to type graph). But commonly data
graphs, are referred to as models, and type graphs are separately referred to as
meta-models. For the sake of simplicity, we also stick to this naming convention.

We would like to translate account models in a bank to the corresponding
client models. Account meta-model(i.e. ac) is shown in Fig. 1(a); boxes in the
meta-model denote classes and primitive domains, and arrows are attributes. In
our formal semantics, boxes are interpreted by sets, and attributes are functions
between them. Class Acc has three attributes ownerName, acNo, and balance.
The type(codomain) of attribute acNo is the labeled cartesian product of classes
{S,B} (with label/field label) and Str (label/field num). Value label=S indi-
cates that the account is a Student account, and label=B means it is a Business
account.

Fig. 2(a) and Fig. 2(b) demonstrate the tabular and the graph representation
of an ac instance, respectively. The first record in Fig. 2(a) shows a student
account and the second record shows a business one.

Client meta-model(i.e. cl) is shown in Fig. 1(b). The class Client has an
attribute name and two subclasses(arrow with triangle head denotes subclassing):

1 This is called batch-update

33

2013%07%15(1(

Acc(

Str(

ownerName(

int(

balance(

X(

acNo(

{S,B}(

num(label(

Str(

Client(

Str(

name(

Student(

Businessman(

isA(
[Disj](
[Cov](

Stu. Busi. =∅

Stu. Busi. =Client

X = {S,B}× Str

(a) AC (Account meta-model)! (b) CL (Client meta-model)!

?(

Fig. 1. Account and Client meta-models

ownerName) acNo) balance)

John% S101% 1000%

Mike% B103% 5000%

Dave% S103% 3550%

(a)%

ac1:Acc%

1000:int%

101:Str%

:balance%

S101:X%

:acNo%

S:{S,B}%

:num%:label%
John:Str%

:ownerName%

(b)%

2013E07E15% 2%

Acc%

Str%

ownerName%

int%

balance%

X%

acNo%

{S,B}%

num%
label%

/type%

/SAcc%

/BAcc%

/isA%

[Disj]%

[Cov]%

/SAcc /BAcc =∅

/SAcc /BAcc = Acc

Str%

/type = acNo;label

/SAcc = {a ∈ Acc | /type(a) = S}

/BAcc = {a ∈ Acc | /type(a) = B}

(c)%

Fig. 2. (a) tabular and (b) graph representation of ac instance. (c) is augmented ac
or q(ac).

Businessman and Student. Two constraints([Disj] and [Cov]) ensure that each
client is either a student or a businessman, but not both.

The informal specification of the transformation is defined as follows: each
account corresponds to one client; we assumed that each client has only one
account in the bank; this is implicitly stated in Fig. 1(a) by assuming that all
multiplicity constraints on edges are 1..1.; the client’s name corresponds to the
account’s ownerName, and the first component of the account number indicates
the type of the client–whether he is student or businessman.

The way we approach declarative MT is by relating the elements of the
target meta-model(i.e. cl) to the basic or derived elements of the source meta-
model(i.e. ac). We try to do this by using an informal MT specification. In
our example, we link, first, class Client with attribute name in cl to class
Acc with attribute ownerName in ac. Now we would like to link classes Stu.

and Busi. in cl to respective classes in ac, but there are no such classes in
ac. However, we notice that these classes can be defined (derived) in meta-
model ac by some suitable queries. In other words, we augment meta-model

34

:/type'

:/SAcc'

:/isA'

Ty
pi
ng
''

m
ap
pi
ng
'

Client'

Str'

name'

Student'

Businessman'

isA'

[Disj]'

[Cov]'

:Client'

John:Str'
:name'

:Student'

:isA'

Ty
pi
ng
''

m
ap
pi
ng
'Pull$Back$

(Relabeling)$

Acc'

Str'

ownerName'

int'

balance'

X'

acNo'

{S,B}'

num'
lb'

/type'

/SAcc'

/BAcc'

/isA' [Disj]'

[Cov]'

Str'

ac1:Acc'

1000:int'

101:Str'

:balance'

S101:X'

:acNo'

S:{S,B}'
:num'

:lb'
John:Str'

:owner'

[[Q]](ac)' cl'

ViewMMapping'

Traceability'
Mapping'

Fig. 3. Relabelling(pullback) operation executed on [[q]](ac), which produces cl and
two mappings outgoing from that: Traceability and Typing mappings

ac with new elements denoting (results of the respective) query definitions. We
call this procedure meta-model augmentation. We augmented ac in Fig. 2(c); its
augmented elements are in green dotted lines and their corresponding queries
are attached to them in red boxes. e.g. /type1 is the composition of acNo and
label, and /SAcc represents accounts, for which their acNo’s first component is
S. By having augmented ac, say q(ac), we can continue linking elements from
cl to q(ac); e.g., we relate Businessman and Student to /BAcc and /SAcc,
respectively. Complete linking from cl to q(ac) is shown in the upper part of
Fig. 3; we call this collection of links a mapping from cl to q(ac), or a view-
mapping, as it is analogous to the view-table mapping in database terminology.

What is described in the previous paragraph is the declarative MT defini-
tion procedure, which is a heuristic process and requires user involvement; that
procedure is summarized in the more abstract view in Fig.4 by steps (1) and (2).

For a given model like ac:ac (ac of type ac), MT execution would be as
follows: first, queries are executed on ac and we get an augmented source model,
[[q]](ac). Augmented ac is shown in the lower left part of the Fig.32. Then, the
relabelling procedure takes [[q]](ac), q(ac), and typing mapping from [[q]](ac)

1 we followed UML notation for showing derived elements by putting slash at the
beginning of the derived element’s name.

2 original mode’s element are in grey solid lines and augmented elements which are
results of query execution, are in green dotted lines

35

21

AC#

ac#

Q(AC)(

[[Q]](ac)(

CL#

cl(

Pull#Back#
(Relabeling)#

Query##
Execu9on#Typing##

Mapping##
Typing##
Mapping##3 4

Traceability#
mapping#

Fig. 4. MT definition (what users do): (1) augment meta-model by query definition, (2)
define view-mapping. MT execution(what is done automatically): (3) query execution
on model, (4) pullback operation.

to q(ac), as well as cl and the view-mapping, and generates, cl and two map-
pings: a traceability mapping from cl to [[q]](ac) and a typing mapping from
cl to cl. The relabelling procedure is actually pullback operation in category
theory. Fig. 3 shows in detail how the relabelling procedure acts on ac. The en-
tire procedure described in this paragraph is abstracted in Fig. 4 and labeled by
steps (3) and (4). These two steps can be implemented automatically and don’t
require user involvement.

3 PhD Proposal

In this section we discuss the incrementality issues and why we think declarative
MT is useful for dealing with them. Then, we list the PhD research objectives
and explain them.

3.1 Declarative MT and Incrementality

In this section we argue that declarative MT makes incremental MT easier.
Suppose that we run MT, and the target model, TM , is generated from the source
model, SM . Later SM changes and we want to reflect this change on TM . One
naive approach is to regenerate TM from scratch (so called batch-update). This
approach has two main disadvantages: first, when models are huge, and changes
happen frequently, running the transformation for every change is very costly
in time; second, it might happen that TM is also already changed —without
loosing its consistency with SM– and we want to respect the TM changes, but
batch-update completely ignores the TM changes. So, it is better to have an
incremental MT, in the sense that the MT engine propagates only the changes of
SM to TM . To have incrementality, we need to deal with some issues: private and
shared parts of models, minimal change on the target, and conflict resolution.

36

We discuss them briefly in the following paragraphs and mention how declarative
MT may help.

Private and shared area. Sometimes, when SM changes, it is not necessary
to change TM , to make the two models consistent again. In other words, the
changed SM still remains consistent with TM . In this case we say that the changes
happened in the private area of the source. In contrast, if the changes happened
on the part which caused SM to lose its consistency with TM , then we say that
the changes happened in the shared area of SM . Distinguishing between private
and shared areas obviate the need to run the transformation every time that some
changes happen on the private area. Defining the transformation on the meta-
model layer –as we proposed in the previous section– makes it easy to identify
private and shared areas; e.g., it is completely clear from our MT definition in
Fig.3 that balance properties of ac instances belong to their private areas, since
if the balance of an account changes, we do not expect to change anything in
the corresponding client model.

Minimal change. As we said, when TM changes, we would like to propagate
it to SM ; the problem is to find a suitable translation on SM ; there might be
more than one way to do this translation. When TM is a view of SM , this situa-
tion is analogous to a well-known problem in the database community called the
view-update problem. In the database context, the Constant Complement(CC)
approach [2] suggests that if we fix the complement of the view, translation of
the view updates can be defined uniquely. Choice of view complement can be
interpreted as the definition of an update policy. In general, we are interested in
choosing a translator of updates in a way that imposes minimal change on SM ;
that is changing SM as minimally as possible; the best case is not changing it at
all. We need to formally define this minimality and its semantics. Recently, some
work has been done on the view-update problem, extending the CC approach
mentioned above using category theory [9]. We believe that the categorical ap-
proach to MT definition in meta-model, provides a basis for extending the CC
approach to the MT world.

Conflict resolution. Sometimes SM and TM evolve at the same time; e.g.,
software team members might work separately on some class diagrams and se-
quence diagrams, or they might work on code and class diagrams simultaneously.
Updated models might be in conflict, and in most cases user involvement and a
heuristic approaches are necessary to resolve the conflicts. A conflict resolution
objective is to support users in resolving the conflicts . Looking at MT at a more
abstract level provides a better understanding of the MT behaviour and helps
to develop supporting tools and their semantics for conflict resolution purposes.

3.2 PhD work definition and challenges

The following list summarizes intended PhD goals:

1. Graphical language design and implementation, which provides a GUI for
declarative MT definition

2. Adapting existing query languages for meta-model augmentation.

37

3. Implementing a transformation engine, using existing MT languages.
4. Defining necessary semantics for incrementality based on the introduced

declarative approach.
5. Applying incrementally to some MT scenarios.

We intend to implement the declarative MT inside the eclipse framework as it
provides some good features like Ecore tools and APIs[13]. For designing the
graphical language, we will define its meta-model and provide an editor for the
users to define model transformations. It would let users to define the augmen-
tation of source meta-models and the view-mappings.

OCL[12] at the moment is used as a side-effect free query language for speci-
fying constraints on UML diagrams. Besides that, EOL[11] as the core language
of the Epsilon framework provides a query definition facilities. We might choose
one of them to integrate as query language in our implementation, since there is
already good tooling support for them.

Transformation engine of the framework would be responsible for executing
transformation defined by user in graphical GUI. the engine is responsible for
query execution on given models. Further, it implements relabelling operation
and building the traceability and typing mappings from generated target model,
to respective source model, and target meta-model.

Finally we will develop a precise semantics for supporting incrementality
based on the introduced declarative MT approach, and apply it to some MT
scenarios as proof of the concept.

4 Related works

For each imperative and declarative MT approaches, there exist some languages
and tool support. Epsilon framework[11] provides a set of imperative languages
and tools for model management tasks. Story Diagrams(SD)[6] combined graph
grammars —which are means to define transformation constructively– and activ-
ity diagrams to provide a mechanism for specifying model transformations. ATL
[10] and Viatra2 [1] are both providing imperative and declarative transforma-
tion languages. Our introduced approach provides a declarative structure(meta-
model augmentation, and view mapping) which is implicit and entangled in the
current imperative MT approaches.

Triple Graph Grammars(TGGs)[7] are extension of regular graph grammars
and used for specifying the correspondence between the SM and TM elements
declaratively. TGG approach is different from our declarative approach in the
sense that in TGG, the MT definition between SM and TM is specified con-
structively between model elements, while in our declarative approach, MT is
completely specified in the meta-model layer between the meta-model elements.
So we raised the level of abstraction in relation definition between source and
target.

QVT-R is declarative language of QVT [12] for model transformation. It has
some semantic issues [14] and is not actively used in industry. There exists many

38

similarities between the QVT and the TGG concepts[8] and like TGG, relation
definition between SM and TM is not in the meta-model layer.

5 Conclusion

We introduced declarative MT by an example, and motivated its implementation
by discussing its usefulness for incrementality. PhD objectives are implement-
ing declarative MT, developing precise semantics for incrementality based on
introduced declarative method, and applying incremental method to some MT
scenarios.

References

1. András Balogh and Dániel Varró. Advanced model transformation language con-
structs in the viatra2 framework. In Proceedings of the 2006 ACM symposium on
Applied computing, pages 1280–1287. ACM, 2006.

2. François Bancilhon and Nicolas Spyratos. Update semantics of relational views.
ACM Transactions on Database Systems (TODS), 6(4):557–575, 1981.

3. Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software En-
gineering in Practice. Synthesis Lectures on Software Engineering. Morgan &
Claypool Publishers, 2012.

4. Zinovy Diskin. Model synchronization: mappings, tiles, and categories. In Gener-
ative and Transformational Techniques in Software Engineering III, pages 92–165.
Springer, 2011.

5. Hartmut Ehrig and Karsten Ehrig. Overview of formal concepts for model transfor-
mations based on typed attributed graph transformation. Electron. Notes Theor.
Comput. Sci., 152:3–22, March 2006.

6. Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story diagrams:
A new graph rewrite language based on the unified modeling language and java. In
Theory and Application of Graph Transformations, pages 296–309. Springer, 2000.

7. Ulrike Golas, Leen Lambers, Hartmut Ehrig, and Holger Giese. Toward bridging
the gap between formal foundations and current practice for triple graph grammars.
In Graph Transformations, pages 141–155. Springer, 2012.

8. Joel Greenyer and Ekkart Kindler. Reconciling tggs with qvt. In Model Driven
Engineering Languages and Systems, pages 16–30. Springer, 2007.

9. Michael Johnson and Robert Rosebrugh. Constant complements, reversibility and
universal view updates. In Algebraic Methodology and Software Technology, pages
238–252. Springer, 2008.

10. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A model
transformation tool. Science of Computer Programming, 72(1-2):31–39, June 2008.

11. Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. Eclipse develop-
ment tools for epsilon. In In Eclipse Summit Europe, Eclipse Modeling Symposium,
2006.

12. OMG, http://http://www.omg.org/spec/. OMG Specifications, 2013.
13. David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:

Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.
14. Perdita Stevens. Bidirectional model transformations in qvt: semantic issues and

open questions. Software and Systems Modeling, 9:7–20, 2010.

39

