
Architectural Templates: Engineering Scalable
SaaS Applications Based on Architectural Styles

Sebastian Lehrig??

Software Engineering Group & Heinz Nixdorf Institute
University of Paderborn, Paderborn, Germany

sebastian.lehrig@uni-paderborn.de

Abstract. Software architects plan, model, and analyze the high-level
design of software systems. Today, these systems are often deployed in
cloud computing environments as Software-as-a-Service (SaaS) applica-
tions. The scalability of these applications is crucially impacted by ar-
chitects’ early design decisions. Architects decide based on their expe-
rience and known architectural styles like a 3-tier architecture. In new
application domains, however, architects lack the experience to deter-
mine whether their designs will result in scalable implementations. This
lack leads to the high risk of unsatisfying scalability and expensive re-
implementations.
To tackle this problem, we propose initial ideas and concepts for archi-
tectural templates (ATs), defined as a language to formalize architectural
styles on component models. This formalization allows to enrich styles by
quality annotations and completions for model-driven quality analyses.
As we focus on SaaS applications, we exemplify this idea by enriching
ATs by scalability annotations and completions allowing architects to
analyze their applications’ scalability. To illustrate such an analysis, we
introduce and use a toy example. Based on this example, we derive initial
working packages describing how we plan to realize and validate ATs.

Keywords: Model-driven, Architectural Templates, Cloud Computing,
SaaS, Styles, Component-Based, Scalability, Performance, Engineering

1 Problem

In forward engineering, software architects plan, model, and analyze the high-
level design of large software systems, i.e., their architecture. Today, these soft-
ware systems are often deployed as so-called Software-as-a-Service (SaaS) ap-
plications [16] in cloud computing environments because of their advantageous
characteristics. Cloud computing is characterized by (a) elasticity, i.e., an access
to computing resources that can be provisioned and released on demand [16] and
(b) an accounting model in which only actually-demanded resources determine
costs (pay-per-use) [16]. These two characteristics induce a dependency between
costs and required computing resources. To minimize costs, a typical requirement
for SaaS applications is, therefore, that SaaS applications use as little additional
computing resources as possible when demand increases. This requirement de-
scribes the scalability of a system, i.e., its ability “to sustain increasing workloads
by making use of additional resources” [11].

?? The research leading to these results has received funding from the EU Seventh
Framework Programme (FP7/2007-2013) under grant no 317704 (CloudScale).

48

Engineering Scalable SaaS Applications Based on Architectural Styles

For software architects, scalability induces the need of guidance toward its
achievement. For instance, an architect may require guidance when deciding be-
tween a relational and a NoSQL [19] database as both promise different scalabil-
ity depending on stored data. Today, architects can be guided by (1) architectural
styles [18] that inherently foster scalability in cloud computing environments and
(2) scalability analyses allowing architects to predict scalability properties.

To illustrate these ideas, we introduce an example scenario in Sec. 1.1. Af-
terwards, we discuss why neither architectural styles nor scalability analyses
sufficiently guide architects in designing scalable SaaS applications in Sec. 1.2.

1.1 Example Scenario

As an example scenario, we consider a simplified book shop that shall be newly
designed for running in a cloud computing environment. In this scenario, an
enterprise assigns a software architect to design the book shop. The enterprise
has the following requirements for this shop:

R1: Functionality In the shop, customers can (1) browse and (2) order books.
R2: Handling of Environmental Changes The enterprise expects that the

environment for the book shop changes over time. For example, it expects
that books sell better around Christmas while they sell worse around the
holiday season in summer. Therefore, the response times of the shop shall
stay within 3 seconds even if the customer arrival rates in- or decrease by
1,000 customers per hour (at maximum).

R3: Linear Scalability The costs for operating the book shop are only allowed
to increase (decrease) by $0.01 per hour when the number of customers using
the shop increases (decreases) by 1. Costs per hour is a metric to measure
the amount of additional resources (cf., the scalability definition in Sec. 1).

Requirements R2 and R3 are typical reasons to operate a system in an elas-
tic cloud computing environment [11], i.e., an environment where application
servers automatically provision the required amount of resources to cope with
environmental changes. Therefore, the software architect will design the shop as
an SaaS application operating in a rented cloud computing environment.

1.2 Guidance for Scalability

To provide a scalable SaaS application (R3), the architect considers using (1) ar-
chitectural styles and (2) scalability analyses.

The first option (architectural styles) requires that the architect is aware
of appropriate cloud-based architectural styles as well as their application and
assumptions. Currently, only a few architectural styles for SaaS applications in
the cloud exist [8]. One example for such a style is SPOSAD [13].

SPOSAD suggests a 3-tier system with stateless middle tier, but leaves open
the decision for a concrete database paradigm on the data tier [13]. Therefore,
the architect may design the book shop as shown in Fig. 1: he assigns each of the
three SPOSAD tiers (presentation, middle, data) to a component (Book Shop
Frontend, Book Management, Book Database). The tiers of SPOSAD can be
seen as SPOSAD’s roles, i.e., as set of constraints for associated components.

49

Engineering Scalable SaaS Applications Based on Architectural Styles

Presentation Tier Middle Tier Data Tier

Book
Management

Book Database
Book Shop
Frontend

Customer

Legend:
Component

Actor

Role Provided Interface

Required Interface

Assembly Connector $Parameter

$DB Kind = NoSQL

Fig. 1. Model of the designed book shop scenario according to SPOSAD.

For example, the data tier may only allow connections from the middle tier. As
SPOSAD does not constrain the data tier further, the architect is unsure whether
to design the system with a relational or a NoSQL database that both promise a
different scalability. Because of this variability point, he needs further guidance;
SPOSAD alone is not enough. For achieving particular scalability requirements,
there is, hence, the need to refine SPOSAD. Also the few other SaaS styles lack
detailed suggestions for selecting an appropriate database paradigm.

The second option (scalability analyses) would allow the architect to model
both database alternatives and to compare their scalability (what-if analysis).
Scalability analyses require simulation or analytical models allowing architects
to predict an SaaS applications’ scalability in cloud computing environments.
However, according to Becker et al. [2], current analysis models lack (1) support
for comprehensive design-time analyses based on architectural models, (2) real-
istic case studies in cloud computing environments, and (3) explicit support for
scalability because of their focus on performance analysis. These lacks hinder
the architect to use and trust existing approaches in order to analyze the scal-
ability of the modeled book shop. For instance, these approaches are unable to
analyze whether a NoSQL or a relational database suits the shops’ scalability
requirements best. Hence, these approaches need to be extended and improved.

The lack of guidance (regarding styles and scalability analyses) for the archi-
tect leads to the high risk of realizing a cost-inefficient SaaS application and of an
expensive re-implementation. For example, it may be expensive to refactor the
book shop with an established but non-scalable relational database implemen-
tation to an implementation using a NoSQL database. This risk becomes even
more severe in case the enterprise discovers scalability issues when high costs for
hosting their application have already incurred, e.g., during system operation.

2 Related Work

Related work tackling the engineering of scalable SaaS applications can be clas-
sified into two areas: (1) architectural styles for scalability and (2) performance
engineering serving as a basis for scalability engineering.

A generally rich set of literature provides, classifies, and surveys sets of archi-
tectural styles (e.g., [5], [20]). However, these styles lack an explicit consideration
of cloud computing environments as well as a focus on scalability.

In the context of cloud computing, typical styles are REST [9] for HTTP
and SPIAR [17] for AJAX. Also Erl et al. [8] describe a set of cloud comput-
ing styles that foster scalability (e.g., load balanced virtual server instances).
These styles have in common that they target the infrastructure in which SaaS

50

Engineering Scalable SaaS Applications Based on Architectural Styles

applications run. Third party cloud computing providers typically provide this
infrastructure by offering (1) a deployment of SaaS applications in application
servers (Platform-as-a-Service; PaaS) or (2) access to (virtual) nodes where users
can operate their SaaS application (Infrastructure-as-a-Service; IaaS). Therefore,
these third party providers can utilize the presented architectural styles. How-
ever, as these styles lack a focus on implementing SaaS applications, they only
implicitly help architects who engineer the SaaS layer of these applications. In
contrast, we will focus directly and explicitly on architectural styles for SaaS ap-
plications, starting with investigating the few architectural styles that do cover
aspects of SaaS applications. Two examples for these styles are SPOSAD [13] and
SOCCA [21]. For instance, SPOSAD describes a 3-tier variation that promotes
a stateless middle tier for scalability [13]. As they are stateless, components of
the middle tier can then safely be replicated (scaled-out) and load-balanced.

The second area, performance engineering, offers several approaches recently
classified and surveyed by Koziolek [12]. These approaches allow for analyzing
the performance (response time, throughput, utilization) of component-based
systems as, for example, the PCM [3]. However, they lack support for cloud
computing characteristics, e.g., an elastic provisioning of computing resources.

Becker et al. [2] survey model-driven performance engineering approaches
that support elasticity via self-adaptation, e.g., the SimuLizar [1] approach that
extends the PCM. They conclude that these approaches are still limited. For ex-
ample, only two approaches target design-time models and realistic validations
by case studies are missing. However, software architects require design-time
approaches, and appropriate case studies are the means to systematically find
architectural styles for scalable SaaS applications. Especially the latter aspect,
i.e., using model-driven performance engineering techniques to conduct scala-
bility analyses, lacks investigation. Therefore, we plan to extend existing per-
formance analysis approaches like SimuLizar and PCM to enable model-driven
scalability analyses of SaaS applications. In particular, we want to conduct case
studies to identify appropriate architectural styles for scalable SaaS applications.

3 Proposed Solution

To cope with the lack of guidance for software architects (cf., Sec. 1), we propose
and introduce architectural templates (ATs). We define ATs as a language to
formalize architectural styles on component models. This formalization allows
to enrich styles by quality annotations and completions. Quality annotations
characterize a concrete quality property of interest. Quality completions utilize
these annotations to derive quality models analyzable by quality analysis tools.
As we focus on SaaS applications, we enrich ATs by scalability annotations and
completions allowing architects to analyze their applications’ scalability.

Technically, we plan to apply ATs on systems modeled in the PCM [3]. For
this application, we will extend the PCM metamodel (i.e., PCM’s model for
specifying component-based architectures) by ATs. For scalability analyses, we
will extend the SimuLizar [1] approach to take information of ATs into account.

51

Engineering Scalable SaaS Applications Based on Architectural Styles

(1) Select AT
(2) Assign AT Roles to
System Components

(3) Analyze
Scalability

Fig. 2. Process steps of AT application for software architects.

Software architects can use our ATs to design systems as well as to analyze
their scalability. AT engineers, on the other hand, enrich our ATs by annotations
and completions. We guide through these processes of AT application (Sec. 3.1)
and AT creation (Sec. 3.2) by using the book shop scenario of Sec. 1.

3.1 Applying a SPOSAD Architectural Template

Software architects apply ATs to design SaaS applications and to analyze their
scalability. Fig. 2 illustrates the process steps for applying ATs. In step 1, archi-
tects select an AT from a repository of ATs. For example, the architect of the
book shop scenario selects a SPOSAD AT. Afterwards, the architect assigns all
roles the AT requires to the components of his architecture (step 2).

As illustrated in Fig. 1, he may assign SPOSAD’s presentation, application,
and data tier roles to book shop components as well as connects these com-
ponents appropriately. Firstly, the AT formalism assures that no constraints
are violated, e.g., it forbids connecting presentation and data tier components.
Secondly, the AT formalism allows architects to specify whether a data tier com-
ponent corresponds to a relational or a NoSQL database (scalability annotation).

As this design is based on an AT, the architect can automatically run scal-
ability analyses afterwards by using the analysis tool we will provide (step 3).
The key idea is that the AT includes a scalability completion for this purpose.
For the book shop, SPOSAD AT’s scalability model ensures that the architect
obtains results that accurately reflect the scalability of the selected database
kind. Therefore, the SPOSAD AT allows the architect to analyze which kind of
database better fits his scalability requirements at design time.

3.2 Creating the Architectural Template for SPOSAD

To create ATs, AT engineers apply the process illustrated in Fig. 3. In the first
step, they formalize AT roles (e.g., SPOSAD’s data tier) based on architectural
styles (e.g., known from architecture handbooks).

Besides formalizing architectural styles, AT engineers enrich the AT with
scalability annotations and completions to enable an automated scalability anal-
ysis. For this automation, AT engineers first have to identify scalability-relevant
parameters and quantify them (step 2). For example, the kind of database (re-
lational vs. NoSQL database) on the data tier could be a scalability-relevant
parameter because NoSQL databases are often designed for scaling horizontally.

(1) Formalize Style
with AT Roles

(2) Identify and
Quantify Scalability

Parameters

(5) Enrich AT with
Scalability Annotations

and Completions

(3) Specify
Scalability Model

(4) Validate
Scalability Model

Fig. 3. Process steps of AT creation for AT engineers.

52

Engineering Scalable SaaS Applications Based on Architectural Styles

To confirm and quantify the influence on the scalability of this parameter empiri-
cally, an AT engineer (1) implements a series of automated test-drivers (focusing
on the database parameter) that systematically collect the necessary data based
on scalability metrics and (2) runs these test-drivers in a cloud computing envi-
ronment. The AT engineer can subsequently check and quantify the influence of
the “kind of database” parameter by means of a regression analysis.

In case AT engineers successfully identified a scalability parameter, they
specify a scalability model for this parameter (step 3). The AT engineer of
the book shop has, e.g., to specify a scalability model for NoSQL databases.
Because NoSQL databases can scale horizontally, an accurate scalability model
may model this NoSQL database as a “simple database” component, attached
to a “load balancer” component. As soon as load exceeds a certain threshold, an
adaptation rule assures that another “simple database” is spawned and added
to load balancing. To determine concrete thresholds of the load balancer as well
as processing times of the “simple database”, the AT engineer integrates the
results of the regression analysis. This model can, finally, be analyzed by ordi-
nary analysis tools supporting components annotated with processing times and
adaptation rules, e.g., the PCM with SimuLizar extended by scalability metrics.

Next, AT engineers validate the scalability model (step 4). For this valida-
tion, they use a set of case studies, like the book shop scenario, that include
identified scalability parameters. For each case study, AT engineers (1) measure
its scalability in the considered cloud computing environment and (2) predict its
scalability based on the scalability model. In case the predictions accurately re-
flect the scalability of the measurements, the AT engineers successfully validated
the model. Otherwise, they have to iterate the process by refining the automated
test-drivers or by identifying and integrating further scalability parameters.

In the final step of Fig. 3, AT engineers enrich the AT with scalability anno-
tations and completions. The specification of a “NoSQL database” for the “kind
of database” parameter corresponds to a scalability annotation. The transfor-
mation to a scalability model corresponds to a scalability completion. Therefore,
analysis tools can analyze the scalability of a model specified by ATs.

We based the process of Fig. 3 on established processes in performance engi-
neering [10]. The basic idea is that concepts for performance engineering (e.g.,
performance model specification) apply similarly on scalability as well.

4 Preliminary Work

In [4], we described an overall process for applying ATs (there, termed “pat-
terns”) to design scalable SaaS applications. In this context, we also showed
how to reverse engineer PCM models from existing systems [7].

Furthermore, we extended the PCM to run automatically measurements
based on Java SE and RMI [15]. We also conducted several measurements in
a virtualized environment and showed PCM’s suitability for these environments.
In [14], we show how to support automatic measurements for different target
platforms than Java SE. This additional support is especially useful when the
targeted platform is a cloud computing platform, e.g., a PaaS environment.

53

Engineering Scalable SaaS Applications Based on Architectural Styles

5 Expected Contributions

Our main contribution will be the AT language and AT processes helping soft-
ware architects to design scalable SaaS applications. For the concrete realization,
we plan to contribute (1) an AT metamodel extending the PCM, (2) evaluated
processes for creating and applying ATs, and (3) an initial repository of evalu-
ated ATs for designing scalable SaaS applications. We will base our evaluations
on (industry) case studies, which are our final contribution.

6 Plan for Evaluation and Validation

We plan to evaluate expected benefits of ATs based on case studies. As case
studies, we will use (1) the simple book shop scenario of Sec. 1.1, (2) the TPC-W
benchmark [6] describing a more complex book shop, and (3) industry case
studies based on our on-going work in the CloudScale [4] project. Additionally,
we will validate benefits of ATs by controlled experiments with student groups.

7 Current Status

Currently, we are in the planning phase of our work. The ideas presented in this
paper reflect the current status of our plans. Therefore, we introduce a set of five
work packages (WPs) describing how we want to progress in actually realizing
ATs. We plan to provide first results in every WP within one year. Afterwards,
we plan to refine and extend them in a time frame over two more years.

WP1: Architectural Templates The goal of this WP is to formalize ATs by
extending the PCM metamodel as well as to provide an initial set of example
ATs. A minimal requirement is that at least SPOSAD is specified using ATs.

WP2: Scalability Formalization This WP targets to provide a quantifiable
scalability formalization that architects can use to compare different designs
of systems. Therefore, we want to clarify two main questions: (1) “Which
scalability definition fits to the needs of cloud computing (e.g., regarding
influence of elasticity)?” and (2) “Can a particular scalability definition be
formalized in order to quantify scalability (e.g., as a metric)?”. To answer
these questions, we plan to conduct a systematic literature review.

WP3: Domain Mapping In this WP, we want to select and characterize the
application domain we focus on. Possible candidates are PaaS environments
like SAP HANA Cloud, mOSAIC, and Google App Engine. We will develop
scalability measurement concepts for selected domains based on the PCM.

WP4: Tool Integration This WP targets integrating developed concepts of
ATs to the PCM. Firstly, we integrate general tool support for ATs. Sec-
ondly, we enrich the PCM by dedicated support for scalability measurements
(currently, the PCM focuses on performance only). Thirdly, we extend the
PCM to provide tool support for selected application domains of WP3.

WP5: Evaluation In this WP, we evaluate ATs as described in Sec. 6.

54

Engineering Scalable SaaS Applications Based on Architectural Styles

References

1. Becker, M., Becker, S., Meyer, J.: SimuLizar: design-time modelling and perfor-
mance analysis of self-adaptive systems. In: Proceedings of Software Engineering
2013 (SE2013), Aachen (2013)

2. Becker, M., Luckey, M., Becker, S.: Model-driven performance engineering of self-
adaptive systems: a survey. In: QoSA ’12. pp. 117–122. ACM, New York (2012)

3. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1) (Jan 2009)

4. Brataas, G., Stav, E., Lehrig, S., Becker, S., Kopcak, G., Huljenic, D.: CloudScale:
Scalability Management for Cloud Systems. In: 4th Int. Conf. on Performance
Engineering. ACM (Apr 2013)

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Stal, M.:
Pattern-Oriented Software Architecture Volume 1: A System of Patterns. Wiley,
volume 1 edn. (Aug 1996)

6. Council, T.P.: TPC-W benchmark (web commerce) specification version 1.8. http:
//www.tpc.org/tpcw/spec/tpcw_V1.8.pdf (Feb 2002), last visited: 12 Sep 2013

7. von Detten, M., Lehrig, S.: Reengineering of component-based software systems in
the presence of design deficiencies – an overview. In: WSR’13 (May 2013)

8. Erl, T., Puttini, R., Mahmood, Z.: Cloud Computing: Concepts, Technology and
Design. Prentice Hall PTR (2013)

9. Fielding, R., Taylor, R.: Principled design of the modern web architecture (2000)
10. Happe, J.: Predicting Software Performance in Symmetric Multi-core and Multi-

processor Environments. Ph.D. thesis, University of Oldenburg, Germany (2008)
11. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity: What it is, and What it is Not.

In: Proceedings of the 10th International Conference on Autonomic Computing
(ICAC 2013), San Jose, CA, June 24–28 (2013)

12. Koziolek, H.: Performance evaluation of component-based software systems: A sur-
vey. Perform. Eval. 67(8), 634–658 (Aug 2010)

13. Koziolek, H.: The SPOSAD architectural style for multi-tenant software appli-
cations. In: Proc. 9th Working IEEE/IFIP Conf. on Software Architecture. pp.
320–327. IEEE (Jul 2011)

14. Langhammer, M., Lehrig, S., Kramer, M.E.: Reuse and configuration for code
generating architectural refinement transformations. In: VAO ’13. ACM (2013)

15. Lehrig, S., Zolynski, T.: Performance prototyping with ProtoCom in a virtualised
environment: A case study. In: Proceedings to Palladio Days 2011, 17-18 November
2011, FZI Forschungszentrum Informatik, Karlsruhe, Germany (Nov 2011)

16. Mell, P., Grance, T.: The NIST definition of cloud computing. NIST Special Pub-
lication 145(6), 7 (2011)

17. Mesbah, A., van Deursen, A.: A component- and push-based architectural style for
ajax applications. Journal of Systems and Software 81(12), 2194–2209 (2008)

18. Reussner, R.H., Hasselbring, W.: Handbuch der Software-Architektur.
dPunkt.verlag Heidelberg, 2 edn. (Dec 2008)

19. Sadalage, P., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison Wesley Professional (2012)

20. Shaw, M., Clements, P.C.: A field guide to boxology: Preliminary classification of
architectural styles for software systems. In: Proceedings of the 21st International
Computer Software and Applications Conference. pp. 6–13. IEEE (1997)

21. Tsai, W.T., Sun, X., Balasooriya, J.: Service-oriented cloud computing architec-
ture. In: ITNG’10. pp. 684–689. IEEE, Washington, DC, USA (2010)

55

