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Abstract. The recently introduced Datalog± family of tractable knowledge rep-
resentation formalisms is able to represent and reason over light-weight ontolo-
gies. It extends plain Datalog by negative constraints and the possibility of rules
with existential quantification and equality in rule heads, and at the same time
restricts the rule syntax by the addition of so-called guards in rule bodies to gain
decidability and tractability. In this paper, we investigate how a recently pro-
posed probabilistic extension of Datalog± can be used for representing ontology
mappings in typical information integration settings, such as data exchange, data
integration, and peer-to-peer integration. To allow to reconstruct the history of the
mappings, to detect cycles, and to enable mapping debugging, we also propose to
extend it by provenance annotations.

1 Introduction

Information integration aims at querying in a uniform way information that is dis-
tributed over multiple heterogeneous sources. This is usually done via mappings be-
tween logical formalizations of data sources such as database schemas, ontology sche-
mas, or TBoxes; see also [16, 9, 21]. It is commonly agreed that there are mainly three
principles on how data or information from different sources can be integrated:

– Data exchange: Data structured under a source schema S (or more generally under
different source schemas S1, . . . , Sk) is transformed into data structured under a
different target schema T and materialized (merged and acquired) there through
the mapping.

– Data integration: Heterogeneous data in different sources S1, . . . , Sk is queried
via a virtual global schema T , i.e., no actual exchange of data is needed.

– Peer-to-peer data integration: There is no global schema given. All peers S1, . . . ,
Sk are autonomous and independent from each other, and each peer can hold data
and be queried. The peers can be viewed as nodes in a network that are linked
to other nodes by means of so-called peer-to-peer (P2P) mappings. That is, each
source can also be a target for another source.

Recently, a probabilistic extension of Datalog± [11] has been introduced, which we
here propose to use as a mapping language in the above information integration scenar-
ios. Classical Datalog± [2] combines Datalog with negative constraints and tuple- and



equality-generating dependencies (TGDs and EGDs, respectively) under certain restric-
tions to gain decidability and data tractability. In this way, it is possible to capture the
DL-Lite family of description logics and also the description logic EL. The probabilistic
extension is based on Markov logic networks (MLNs) [19].

In this paper, we investigate how probabilistic Datalog± can be used as a mapping
language for information integration and propose to add provenance information to
mappings to be able to track the origin of a mapping for trust assessment and debugging.
Capturing the provenance of mappings allows to resolve inconsistencies of mappings
by considering the history of their creation. Furthermore, it helps to detect whether
and how to perform mapping updates in case the information sources have changed or
evolved. Finally, it allows to capture mapping cycles, debug mappings and to perform
meta-reasoning with mappings and the knowledge bases themselves.

2 Guarded Datalog±

We now describe guarded Datalog± [2], which here includes negative constraints and
(separable) equality-generating dependencies (EGDs). We first describe some prelim-
inaries on databases and queries, and then tuple-generating dependencies (TGDs) and
the concept of chase. We finally recall negative constraints and (separable) EGDs, which
are other important ingredients of guarded Datalog± ontologies.

2.1 Databases and Queries

For the elementary ingredients, we assume data constants, nulls, and variables as fol-
lows; they serve as arguments in atomic formulas in databases, queries, and dependen-
cies. We assume (i) an infinite universe of data constants ∆ (which constitute the “nor-
mal” domain of a database), (ii) an infinite set of (labeled) nulls ∆N (used as “fresh”
Skolem terms, which are placeholders for unknown values, and can thus be seen as
variables), and (iii) an infinite set of variables V (used in queries and dependencies).
Different constants represent different values (unique name assumption), while differ-
ent nulls may represent the same value. We assume a lexicographic order on ∆ ∪∆N ,
with every symbol in ∆N following all symbols in ∆. We denote by X sequences of
variables X1, . . . , Xk with k > 0.

We next define atomic formulas, which occur in databases, queries, and dependen-
cies, and which are constructed from relation names and terms, as usual. We assume
a relational schema R, which is a finite set of relation names (or predicate symbols,
or simply predicates). A position P [i] identifies the i-th argument of a predicate P .
A term t is a data constant, null, or variable. An atomic formula (or atom) a has the
form P (t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn are terms. We denote
by pred(a) and dom(a) its predicate and the set of all its arguments, respectively. The
latter two notations are naturally extended to sets of atoms and conjunctions of atoms.
A conjunction of atoms is often identified with the set of all its atoms.

We are now ready to define the notion of a database relative to a relational schema,
as well as conjunctive and Boolean conjunctive queries to databases. A database (in-
stance) D for a relational schemaR is a (possibly infinite) set of atoms with predicates



from R and arguments from ∆. Such D is ground iff it contains only atoms with argu-
ments from ∆. A conjunctive query (CQ) over R has the form Q(X) = ∃YΦ(X,Y),
where Φ(X,Y) is a conjunction of atoms with the variables X and Y, and eventually
constants, but without nulls. Note that Φ(X,Y) may also contain equalities but no in-
equalities. A Boolean CQ (BCQ) over R is a CQ of the form Q(). We often write a
BCQ as the set of all its atoms, having constants and variables as arguments, and omit-
ting the quantifiers. Answers to CQs and BCQs are defined via homomorphisms, which
are mappings µ : ∆ ∪∆N ∪ V → ∆ ∪∆N ∪ V such that (i) c ∈ ∆ implies µ(c) = c,
(ii) c ∈ ∆N implies µ(c) ∈ ∆ ∪∆N , and (iii) µ is naturally extended to atoms, sets of
atoms, and conjunctions of atoms. The set of all answers to a CQQ(X)=∃YΦ(X,Y)
over a databaseD, denotedQ(D), is the set of all tuples t over∆ for which there exists
a homomorphism µ : X∪Y→∆∪∆N such that µ(Φ(X,Y))⊆D and µ(X)= t. The
answer to a BCQ Q() over a database D is Yes, denoted D |=Q, iff Q(D) 6= ∅.

2.2 Tuple-Generating Dependencies

Tuple-generating dependencies (TGDs) describe constraints on databases in the form
of generalized Datalog rules with existentially quantified conjunctions of atoms in rule
heads; their syntax and semantics are as follows. Given a relational schemaR, a tuple-
generating dependency (TGD) σ is a first-order formula of the form ∀X∀YΦ(X,Y)→
∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X, Z) are conjunctions of atoms overR called the
body and the head of σ, denoted body(σ) and head(σ), respectively. A TGD is guarded
iff it contains an atom in its body that involves all variables appearing in the body. The
leftmost such atom is the guard atom (or guard) of σ. The non-guard atoms in the body
of σ are the side atoms of σ. We usually omit the universal quantifiers in TGDs. Such σ
is satisfied in a database D for R iff, whenever there exists a homomorphism h that
maps the atoms of Φ(X,Y) to atoms of D, there exists an extension h′ of h that maps
the atoms of Ψ(X,Z) to atoms of D. All sets of TGDs are finite here.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs
Σ onR, the set of models of D and Σ, denoted mods(D,Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B (ii) every σ ∈Σ is satisfied in B. The set of
answers for a CQ Q to D and Σ, denoted ans(Q,D,Σ), is the set of all tuples a such
that a ∈ Q(B) for all B ∈mods(D,Σ). The answer for a BCQ Q to D and Σ is Yes,
denotedD∪Σ |=Q, iff ans(Q,D,Σ) 6= ∅. We recall that query answering under TGDs
is equivalent to query answering under TGDs with only single atoms in their heads. We
thus often assume w.l.o.g. that every TGD has a single atom in its head.

2.3 The Chase

The chase was introduced to enable checking implication of dependencies [17] and later
also for checking query containment [14]. It is a procedure for repairing a database rel-
ative to a set of dependencies, so that the result of the chase satisfies the dependencies.
By “chase”, we refer both to the chase procedure and to its output. The TGD chase
works on a database through so-called TGD chase rules (an extended chase with also
equality-generating dependencies is discussed below). The TGD chase rule comes in



two flavors: restricted and oblivious, where the restricted one applies TGDs only when
they are not satisfied (to repair them), while the oblivious one always applies TGDs (if
they produce a new result). We focus on the oblivious one here; the (oblivious) TGD
chase rule defined below is the building block of the chase.

TGD CHASE RULE. Consider a databaseD for a relational schemaR, and a TGD σ
onR of the form Φ(X,Y)→ ∃ZΨ(X, Z). Then, σ is applicable to D if there exists a
homomorphism h that maps the atoms of Φ(X,Y) to atoms ofD. Let σ be applicable to
D, and h1 be a homomorphism that extends h as follows: for each Xi ∈ X, h1(Xi) =
h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is a “fresh” null, i.e., zj ∈ ∆N , zj does
not occur in D, and zj lexicographically follows all other nulls already introduced. The
application of σ on D adds to D the atom h1(Ψ(X,Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs Σ consists of an exhaus-
tive application of the TGD chase rule in a breadth-first (level-saturating) fashion, which
leads as result to a (possibly infinite) chase for D and Σ. Formally, the chase of level
up to 0 of D relative to Σ, denoted chase0(D,Σ), is defined as D, assigning to every
atom in D the (derivation) level 0. For every k> 1, the chase of level up to k of D
relative to Σ, denoted chasek(D,Σ), is constructed as follows: let I1, . . . , In be all
possible images of bodies of TGDs in Σ relative to some homomorphism such that (i)
I1, . . . , In⊆ chasek−1(D,Σ) and (ii) the highest level of an atom in every Ii is k − 1;
then, perform every corresponding TGD application on chasek−1(D,Σ), choosing the
applied TGDs and homomorphisms in a (fixed) linear and lexicographic order, respec-
tively, and assigning to every new atom the (derivation) level k. The chase ofD relative
to Σ, denoted chase(D,Σ), is then defined as the limit of chasek(D,Σ) for k →∞.

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists
a homomorphism from chase(D,Σ) onto every B ∈mods(D,Σ) [3, 7]. This result
implies that BCQs Q over D and Σ can be evaluated on the chase for D and Σ, i.e.,
D∪Σ |= Q is equivalent to chase(D,Σ) |= Q. In the case of guarded TGDs Σ, such
BCQs Q can be evaluated on an initial fragment of chase(D,Σ) |= Q of constant
depth k · |Q|, and thus be done in polynomial time in the data complexity.

Note that sets of guarded TGDs (with single-atom heads) are theories in the guarded
fragment of first-order logic [1]. Note also that guardedness is a truly fundamental class
ensuring decidability as adding a single unguarded Datalog rule to a guarded Datalog±

program may destroy decidability as shown in [3].

2.4 Negative Constraints

Another crucial ingredient of Datalog± for ontological modeling are negative con-
straints (NCs, or simply constraints), which are first-order formulas of the form ∀X
Φ(X)→ ⊥, where Φ(X) is a conjunction of atoms (not necessarily guarded). We usu-
ally omit the universal quantifiers, and we implicitly assume that all sets of constraints
are finite here. Adding negative constraints to answering BCQs Q over databases and
guarded TGDs is computationally easy, as for each constraint ∀XΦ(X)→ ⊥, we only
have to check that the BCQ Φ(X) evaluates to false; if one of these checks fails, then
the answer to the original BCQ Q is positive, otherwise the negative constraints can be
simply ignored when answering the original BCQ Q.



2.5 Equality-Generating Dependencies

A further important ingredient of Datalog± for modeling ontologies are equality-gen-
erating dependencies (or EGDs) σ, which are first-order formulas ∀XΦ(X) → Xi =
Xj , where Φ(X), called the body of σ, denoted body(σ), is a (not necessarily guarded)
conjunction of atoms, and Xi and Xj are variables from X. We call Xi=Xj the head
of σ, denoted head(σ). Such σ is satisfied in a database D for R iff, whenever there
exists a homomorphism h such that h(Φ(X,Y))⊆D, it holds that h(Xi)=h(Xj). We
usually omit the universal quantifiers in EGDs, and all sets of EGDs are finite here.

An EGD σ onR of the form Φ(X)→Xi=Xj is applicable to a database D forR
iff there exists a homomorphism η : Φ(X)→D such that η(Xi) and η(Xj) are different
and not both constants. If η(Xi) and η(Xj) are different constants in ∆, then there is
a hard violation of σ (and, as we will see below, the chase fails). Otherwise, the result
of the application of σ to D is the database h(D) obtained from D by replacing every
occurrence of a non-constant element e∈{η(Xi), η(Xj)} in D by the other element e′

(if e and e′ are both nulls, then e precedes e′ in the lexicographic order). The chase of a
database D, in the presence of two sets ΣT and ΣE of TGDs and EGDs, respectively,
denoted chase(D,ΣT ∪ ΣE), is computed by iteratively applying (1) a single TGD
once, according to the standard order and (2) the EGDs, as long as they are applicable
(i.e., until a fixpoint is reached). To assure that adding EGDs to answering BCQs Q
over databases and guarded TGDs along with negative constraints does not increase the
complexity of query answering, all EGDs are assumed to be separable [2]. Intuitively,
separability holds whenever: (i) if there is a hard violation of an EGD in the chase, then
there is also one on the database w.r.t. the set of EGDs alone (i.e., without considering
the TGDs); and (ii) if there is no chase failure, then the answers to a BCQ w.r.t. the
entire set of dependencies equals those w.r.t. the TGDs alone (i.e., without the EGDs).

2.6 Guarded Datalog± Ontologies

We define (guarded) Datalog± ontologies as follows. A (guarded) Datalog± ontology
consists of a database D, a (finite) set of guarded TGDs ΣT , a (finite) set of negative
constraints ΣC , and a (finite) set of EGDs ΣE that are separable from ΣT .

3 Probabilistic Datalog±

We consider a probabilistic extension of Datalog± based on Markov logic networks
(MLNs) [19] as introduced in [11]. We now briefly recall its syntax and semantics.

3.1 Syntax

We assume an infinite universe of data constants ∆, an infinite set of labeled nulls ∆N ,
and an infinite set of variables V , as in Datalog±. Furthermore, we assume a finite set of
random variables X , as in MLNs. Informally, a probabilistic guarded Datalog± ontol-
ogy consists of a finite set of probabilistic atoms, guarded TGDs, negative constraints,
and separable EGDs, along with an MLN. We provide the formal details next.



We first define the notion of probabilistic scenario. A (probabilistic) scenario λ
is a (finite) set of pairs (Xi, xi), where Xi ∈ X , xi ∈Dom(Xi), and the Xi’s are
pairwise distinct. If |λ|= |X|, then λ is a full probabilistic scenario. If every random
variable Xi has a Boolean domain, then we also abbreviate λ by the set of all Xi such
that (Xi, true) ∈ λ. Intuitively, a probabilistic scenario is used to describe an event
in which the random variables in an MLN are compatible with the settings of the ran-
dom variables described by λ, i.e., each Xi has the value xi.

If a is an atom, σT is a TGD, σC is a negative constraint, σE is an EGD, and λ is a
probabilistic scenario, then: (i) a : λ is a probabilistic atom; (ii) σT : λ is a probabilis-
tic TGD (pTGD); (iii) σC : λ is a probabilistic (negative) constraint; and (iv) σE : λ
is a probabilistic EGD (pEGD). We also refer to probabilistic atoms, TGDs, (nega-
tive) constraints, and EGDs as annotated formulas. Intuitively, annotated formulas hold
whenever the events associated with their probabilistic scenarios occur.

A probabilistic (guarded) Datalog± ontology is a pair Φ = (O,M), where O is
a finite set of probabilistic atoms, guarded TGDs, constraints, and EGDs, and M is
an MLN. In the sequel, we implicitly assume that every such Φ = (O,M) is sepa-
rable, which means that Σν

E is separable from Σν
T , for every ν ∈Dom(X), where Σν

T

(resp.,Σν
E) is the set of all TGDs (resp., EGDs) σ such that (i) σ : λ ∈ O and (ii) λ is con-

tained in the set of all (Xi, ν(Xi)) with Xi ∈ X . As for queries, we are especially in-
terested in the probabilities of the answers of CQs to probabilistic Datalog± ontologies,
called probabilistic conjunctive queries (PCQs).

3.2 Semantics

The semantics of probabilistic Datalog± ontologies is given relative to probability dis-
tributions over interpretations I = (D, ν), where D is a database, and ν ∈ Dom(X).
We say I satisfies an annotated formula F : λ, denoted I |= F : λ, iff whenever
ν(X) = x, for all (X,x) ∈ λ, then D |= F . A probabilistic interpretation is a prob-
ability distribution Pr over the set of all possible interpretations such that only a finite
number of interpretations are mapped to a non-zero value. The probability of an anno-
tated formula F : λ, denoted Pr(F : λ), is the sum of all Pr(I) such that I |= F : λ.

Let Pr be a probabilistic interpretation, and F : λ be an annotated formula. We
say that Pr satisfies (or is a model of) F : λ iff Pr(F : λ) = 1. Furthermore, Pr is
a model of a probabilistic Datalog± ontology Φ = (O,M) iff: (i) Pr satisfies all an-
notated formulas in O, and (ii) 1 − Pr(false : λ) = PrM (λ) for all full probabilistic
scenarios λ, where PrM (λ) is the probability of

∧
(Xi,xi)∈λ(Xi = xi) in the MLN M

(and computed in the same way as P (X = x) in MLNs).
As for the semantics of queries, we begin with defining the semantics of PCQs with-

out free variables. Let Φ be a probabilistic Datalog± ontology, and Q be a BCQ. The
probability of Q in Φ, denoted PrΦ(Q), is the infimum of Pr(Q : {}) subject to all
probabilistic interpretations Pr such that Pr |= Φ. Note that, as a consequence, the
probability of a BCQ Q is the sum of all probabilities of full scenarios where the re-
sulting universal model satisfies Q. We next consider the general case. As usual, given
a set of variables V and a set of constants ∆, a substitution of V by ∆ is a map-
ping θ : V → ∆; given a formula F and substitution θ, we denote by Fθ the formula
obtained from F by replacing all variables vi with θ(vi). We can now define answers



to PCQs. Let Φ be a probabilistic Datalog± ontology, and Q be a CQ. An answer
for Q to Φ is a pair (θ, p), where (i) θ is a substitution for the free variables of Q,
and (ii) p ∈ [0, 1] is the probability of Qθ in Φ. It is positive iff p > 0.

4 Ontology Mappings with Datalog±

As a language integrating the description logics and the logic programming paradigm
with TGDs, Datalog± allows to nicely tie together the theoretical results on information
integration in databases and the work on ontology mediation in the Semantic Web.

When integrating data stored in databases or data warehouses, i.e., data organized by
database schemas, usually so-called source-to-target TGDs (s-t TGDs), corresponding
to so-called GLAV (global-local-as-view) dependencies, are used as mappings.

According to [9], a schema mapping is defined asM = (S, T, Σst, Σt), where S
and T are the source and the target schema, respectively, Σst is the set of source-to-
target TGDs and EGDs, and Σt is the set of target TGDs and EGDs, respectively.

The following two types of dependencies are important special cases of source-to-
target TGDs: LAV (local-as-view) and GAV (global as view) as explained below:

– A LAV (local as view) dependency is a source-to-target TGD with a single atom in
the body, i.e., it has the form ∀XAS(X)→ ∃Yψ(X, Y)), whereAS is an atom over
the source schema, and ψ(X, Y) is a conjunction of atoms over the target schema.

– A GAV (global as view) dependency is a source-to-target TGD with a single atom
in the head, i.e., of the form ∀X φ(X) → AT (X′), where φ(X) is a conjunction of
atoms over the source schema, and AT (X′) is an atom over the target schema with
X′⊆X.

The following mappings that are mentioned in [4] as essential can also be repre-
sented in Datalog±:

– Copy (Nicknaming): Copy a source relation or role (of arbitrary arity n) into a
target relation or role (of the same arity n like the source relation or role) and
rename it. Note that this kind of mapping is a LAV and a GAV mapping at the same
time. Example1:

∀x, y S:location(x, y)→ T :address(x, y).

– Projection (Column Deletion): Create a target relation or concept or role by delet-
ing one or more columns of a source relation or source concept or source role (of
arbitrary arity n ≥ 2). Note that this kind of mapping is a LAV and GAV mapping
at the same time. Example:

∀x, y S:author(x, y)→ T :person(x).

– Augmentation (Column Addition): Create a target relation or role (of arbitrary
arity n ≥ 2) by adding one or more columns to the source relation or role or
concept. Note that this is a LAV dependency. Example:

1 Note that all examples are stemming from a consideration of the OAEI benchmark set, more
specifically, the ontologies 101 and 301-303.



∀x S:editor(x)→ ∃z T :hasEditor(z, x).

– Decomposition: Decompose a source relation or source role (of arbitrary arity n)
into two or more target relations or roles or concepts. Note that this is a LAV de-
pendency. Example:

∀x, y S:publisher(x, y)→ T :organization(x), T :proceedings(y).

Only one mapping construct mentioned in [4] as essential cannot be represented by
Datalog±, and this is the join. As each TGD has to be guarded, there must be an atom
in the body that contains all non-existentially quantified variables and, hence, a join like
∀x, y S:book(y), S:person(x)→ T :author(x, y) cannot be represented with Datalog±.

In ontology mediation, the definition of a mapping or alignment is based on corre-
spondences between so-called matchable entities of two ontologies. The following def-
inition is based on [8]: Let S and T be two ontologies that are to be mapped onto each
other; let q be a function that defines the sets of matchable entities q(S) and q(T ). Then,
a correspondence between S and T is a triple 〈e1, e2, r〉 with e1 ∈ q(S), e2 ∈ q(T )
and r being a semantic relation between the two matchable elements. A mapping or
alignment between S and T then is a set of correspondences C = ∪i,j,k{〈ei, ej , rk〉}
between S and T . Note that this is a very general definition that basically allows to
describe any kind of mapping language.

Semantic Web and ontology mapping languages usually contain a subset of the
above mentioned mapping expressions and in addition constraints, mainly class dis-
jointness constraints as additional mapping expressions (see also [21, 18]). However,
note that both research communities, the data integration and the ontology mediation
community, also proposed mapping languages that are also more expressive than even
the above mentioned normal source-to-target TGDs, e.g., second-order mappings as de-
scribed in the requirements of [20] or second-order TGDs [10]. In [18], a probabilistic
mapping language based on MLNs that is built by mappings of a couple of basic de-
scription logic axioms onto predicates with the desired semantics has been presented.
A closer look reveals that the mapping constructs that are used are renaming, decompo-
sition and class disjointness constraints, and combinations thereof.

With Datalog±, such disjointness constraints can be modeled with NCs ΣNC :

– Disjointness of ontology entities with the same arity: A source relation (or role
or concept) with arity n is disjoint to another relation (or role or concept) with the
same arity n. The NC below corresponds to class disjointness that specifies that
persons cannot be addresses:

∀x S:Person(x), T :Address(x)→ ⊥.

– Disjointness of ontology entities with different arity: A source relation (or role)
with arity n ≥ 2 is disjoint to another relation (or role or concept) with the arity
n > m ≥ 1. The example below specifies that persons do not have prices.

∀x, y S:Person(x), T :hasPrice(x, y)→ ⊥.

EGDs are also part of some mapping languages, especially in the database area, and
can be represented by Datalog± as long as they are separable from the TGDs. Such



kinds of dependencies allow to create mappings like the one of the following form
specifying that publishers of the same book or journal in both, the source and target
schema (or ontology), have to be the same:

∀x, y, z S:publisher(x, y), T :publishes(y, z)→ x = z.

5 Ontology Mappings with Probabilistic Datalog±

A probabilistic (guarded) Datalog± mapping has the formM=(S, T, pΣst, pΣt, M),
where (i) S and T are the source and the target schemas or ontologies, respectively,
(ii) pΣst is a set of probabilistic (guarded) TGDs, EGDs, and NCs encoding the proba-
bilistic source-to-target dependencies, (iii) pΣt is a set of probabilistic (guarded) TGDs,
EGDs, and NCs encoding the probabilistic target dependencies, and (iv) M is the MLN
encoding the probabilistic worlds.

Observe here that the TGDs, EGDs, and NCs are annotated with probabilistic sce-
narios λ that correspond to the worlds that they are valid in. The probabilistic dependen-
cies that the annotations are involved in are represented by the MLN. As annotations
cannot refer to elements of the ontologies or the mapping except of the MLN itself,
there is a modeling advantage of separating the two tasks of ontology modeling and of
modeling the uncertainty around the axioms of the ontology.

Note that due to the disconnected representation between the probabilistic depen-
dencies and the ontology, we can encode part of mapping formulas as predicates encod-
ing a specific semantics like disjointness, renaming, or decomposition, in a similar way
as done in [18]. With these predicates, an MLN can be created and the actual mappings
can be enriched by ground predicates that add the probabilistic interpretation.

However, another more interesting encoding consists of using a second ontology
describing additional features of the generation of the mappings and in this way eventu-
ally even do meta reasoning about the mapping generation. A rather general example of
such an additional MLN describing the generation of a mapping is shown in Fig. 1. In
this example, the MLN describes the generation of a mapping by means of the matcher
that it generates and a set of — possibly dependent — applicability conditions as well
as additional conditions that influence the probability of the mapping besides the result
of the matcher.

With such kind of an MLN describing the dependency of different kinds of con-
ditions (also dependencies between matchers are conceivable in order to combine the
results of several different matchers), probabilistic reasoning over data integration set-
tings can be done in more precise settings. To our knowledge, such kinds of probabilistic
meta ontologies for the matching process have not yet been proposed.

6 Provenance

Data provenance information describes the history of data in its life cycle. It adds value
to the data by explaining how it was obtained. In information integration, when data
from distributed databases or ontologies is integrated, provenance information allows
to check the trustworthiness and correctness of the results of queries and debug them



Fig. 1. Example of an MLN describing the generation of mappings by means of applicability
conditions and an additional condition that influences the probability of the mapping besides the
result of the matcher.

as well as trace the errors back to where they have been created. Hence, an information
integration framework should be equipped by some form of provenance.

In data provenance, it is mainly distinguished between where-, why- and how-
provenance [5]. How-provenance [12] is the most expressive one and most appropri-
ate for our purpose of annotating mappings and tracing back the origin of query results.
How-provenance is modeled by means of a semiring. It is possible to construct different
kinds of semirings depending on what kind of information has to be captured and which
operations on that information are to be allowed. Besides formalizing different kinds of
provenance annotations with a certain kind of semiring (called K-relations) based on
the positive relational algebra, [12] provides a formalization of plain Datalog without
negation with K-relations that is used within the collaborative data sharing system OR-
CHESTRA [13] also for modeling TGDs without existential quantifiers. In order to
capture applications of mappings in ORCHESTRA, [15] proposes to use a so-called
M-semiring, which allows to annotate the mappings withM = m1, . . . ,mk being a
set of mapping names, which are unary functions, one for each mapping. This can be
combined with the formalization of negation-free Datalog (with a procedural semantics
based on the least fixpoint operator to construct the model) with positive K-relations as
presented in [12].

Clearly, such kind of a formalization for our probabilistic Datalog± information
integration framework would allow to capture provenance and annotate the mappings
with an id such that the integration paths can be traced back to their origin. In this way,
routes that can be used to debug mappings like in [6] can be captured. In addition, as
shown in [12], when the mappings are the only probabilistic or uncertain elements, the
probabilities can also be computed more efficiently as the captured provenance also
carries the information where the probabilities are propagated from. In addition, cycles
can be detected and the trustworthiness of query results can also be estimated, as it can
be detected where the data that is involved in the query result has been integrated from.
For this purpose, the trustworthiness of data sets and possibly also peers who provide
access to data sets need to be assessed beforehand.

In order to use a similar approach as the aforementioned ORCHESTRA system,
we need to investigate how to model the application of the chase within probabilistic
Datalog± with a semiring formalization. It can be expected that in probabilistic data



integration with Datalog±, the lineage will be restricted by the guards who help to direct
the chase towards the answer of a query through the annotated guarded chase forest.

7 Summary and Outlook

By means of probabilistic (guarded) Datalog± [11], which can represent DL-Lite and
EL, we use a tractable language with dependencies that allows to nicely tie together the
theoretical results on information integration in databases and the work on ontology me-
diation in the Semantic Web. The separation between the ontology and the probabilis-
tic dependencies allows us to either model the mappings with specific newly invented
predicates like disjointness, renaming, or decomposition, etc. or — more interestingly
— with a probabilistic meta ontology describing the matching process.

The paper shows how classical and probabilistic (guarded) Datalog± can be used to
model information integration settings and sketches a deterministic mapping language
based on Datalog± and two different kinds of probabilistic adaptations based on the
rather loosely coupled probabilistic extension of Datalog± with worlds represented by
means of an MLN. We also justify why data provenance needs to be captured and rep-
resented within such a probabilistic information integration framework and propose to
use an adaptation of K-relations as proposed by [12]. Such an extension with prove-
nance allows to track how results of queries to the framework have been created and
also debug mappings as errors can be traced back to their origin.

As a next step, we will develop the proposed framework for provenance capture
and, amongst others, investigate how to model the chase application for reasoning with
probabilistic (guarded) Datalog± with a semiring-framework.
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