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Abstract. Automotive electronic systems integrate steadily increasing number 
of functions. Model-driven development of such systems enables to handle their 
complexity. With the integration of software-components and their intricate in-
teractions ensuring the non-functional behavior, like timing, becomes a crucial 
matter. Timing analysis allows the validation of these properties but is mostly 
only loosely integrated with the development process. Therefore, we introduce 
an integrated approach enabling the iterative timing validation of model-driven 
designs. It consists of a framework comprising an UML modeling tool and a 
simulation-based timing analysis tool. By integrating the design models with 
respective analysis models, the development of timing-accurate designs is ena-
bled. With the example of an automotive infotainment case study we show the 
applicability of our approach. 
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1 Introduction 

Early validation has become an important task for developing modern networked 
automotive software. It allows detection and correction of flaws still during design, 
avoiding problems at later stages of development and during integration. Since auto-
motive applications are often safety-relevant, it is not enough to solely validate the 
system’s functional behavior. In addition, the validation of non-functional properties, 
such as timing is required in order to ensure the full system safety and correctness, to 
improve system’s efficiency and to save resources. Several automotive applications 
are subject to hard real-time constraints intended to ensure full system safety and 
correctness [1] [2]. Furthermore, the presence of firm and soft real-time constraints in 
those systems is constantly increasing and ensures correctness and quality, improves 
the user experience and in some cases guarantees safety. Considering the increasing 
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number of software functions and the complexity imposed by real-time constraints, 
the integration of software components within automotive systems becomes a chal-
lenging task. Therefore, the system’s timing behavior should already be considered 
and evaluated in early phases of the development process in order to guarantee the 
fulfillment of timing requirements in later stages and after deployment to the target 
platform. [2]. Model-driven approaches play a particular role in the design and early 
validation of embedded software systems and are widely used in the automotive in-
dustry [3]. Model-driven design is supported by various standards and tools. 

Nevertheless, in most cases, the solutions provided for the validation of timing be-
havior by such model-driven approaches and tools are precarious and must be manu-
ally realized, demanding extra effort from engineers. For example, developers need to 
define scheduling tables manually and iterate until certain timing constraints are met, 
which could cost precious development time. On the other hand, several approaches 
and tools specialize on a detailed analysis of the system’s timing behavior based on a 
particular model of the system and its target platform. However, such models are 
usually specific for each timing analysis approach demanding the design of a second 
model of the system for that purpose only. The fact that the design and development 
methods and the approaches for timing analysis are currently realized independently 
demands the development of different and separated models, requiring extra effort 
and time. In order to improve the development of automotive systems by reducing the 
effort necessary for timing validation, we present an approach for the integration of 
model-driven design and timing analysis of timing-dependent automotive applica-
tions. It allows the usage of a single model for the design and validation of functional 
and timing behavior in an automated and optimized process. 

The paper is structured as follows: Section 2 discusses the Context and Challenges 
for Real-Time Automotive Applications. Section 3 presents our approach for integrat-
ing timing analysis in the model-driven design of automotive systems. In Section 4 
we introduce the infotainment case study, evaluate our approach and present the re-
sults. The related works are discussed in Section 5 and we conclude in Section 6. 

2 Real-time constraints in the automotive domain 

Many functions in the automotive domain involve real-time constraints and can bene-
fit from early timing analysis. These functions are characterized by hard, firm and soft 
real-time constraints. In a hard real-time function no deadline can be missed. In firm 
and soft real-time occasional deadlines can be missed, however it compromises the 
system quality and thus degrades the user experience. Engine control and X-by-wire 
are examples of hard real-time applications, while the so-called infotainment systems 
contain several firm and soft real-time applications. As previously discussed, the in-
creasing number of real-time software functions in nowadays automotive systems of 
networked applications represents a challenge for their integration. This increases the 
importance of validating not only hard real-time constraints, but also the firm and soft 
ones, at early stages of the development process. In this paper, we focus primarily on 
automotive software with firm and soft real-time constraints. 
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2.1 Real-time automotive applications 

In today’s cars, many applications which share resources and have priorities ac-
cording to real-time constraints. Applications such as TA (Traffic Announcement), 
Navigation System, Telephone Integration, Parking Assistance System among others 
share resources on the Infotainment System, for example, the audio system. Consider-
ing for instance that at a given moment the driver is listening to music and the naviga-
tion system is activated. The audio system is being shared by both applications at the 
same time. The music is interrupted or its volume lowered when the navigation sys-
tem generates a stimulus to give instructions. The response to this stimulus must hap-
pen in a couple of hundred milliseconds. Otherwise the navigation information will be 
useless or distract the driver, degrading the user experience of that application and 
possibly imposing safety risks. If real-time constraints are not fulfilled, the system’s 
requirements are compromised. There is an increasing number of others applications 
with soft and hard real-time constraints which share resources such as the audible 
warning mechanism and require the definition of priorities and real/time constrains.  
For instance, analysis of driver’s condition (e.g. driver drowsiness), speed limit and 
icy road warning, cruise control (warning for its deactivation by the vehicle), lane 
departure system (warning if the vehicle begins to move out of its lane). 

This vast number of applications makes the system’s integration and planning of 
timing and resources more complex. Thus, today’s development approaches are in 
urgent need for the support of timing validation. In this scenario, the early validation 
of real-time constraints in automotive applications contributes to a flawless behavior 
in later stages of the development process and after the deployment to the target plat-
form. However, since today’s priorities and interaction of integrated functions is done 
manually, this is cost-intensive with respect to development and validation time and it 
does not scale with the increasing number of applications in newer vehicles. 

3 Validating timing behavior in the design process 

For improving the development process of automotive systems we present an ap-
proach which integrates the early and iterative validation of timing behavior in the 
model-driven development of automotive systems. Based on this approach, we devel-
oped a framework which integrates a modeling tool and its execution framework 
widely-used in the automotive domain with timing analysis. The developed approach 
and framework allow engineers to model automotive-conformant systems, to perform 
a detailed timing analysis using proper tools and by validating the system’s timing 
behavior based on a single design model. The developed approach starts with model-
ing the automotive system in UML as shown in Fig. 1. This design model represents 
the system architecture and behavior. The system’s architecture is conformant to the 
automotive standard AUTOSAR [4]. The behavior is modeled using State Machine 
Diagrams. The target platform and allocation of software functions to the hardware 
are also modeled. The developed design model can be the basis for testing and valida-
tion of the system’s functional behavior using regular approaches for tests. In parallel, 
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our approach automatically generates an analysis model out of the design model. It is 
extended with the necessary timing information by the engineer. 

Design Model
UML + MicroC Profile

Rhapsody + MXF
Timing Analysis Model

chronSIM
Timing 

Information

Automatic Model 
Transformation

Simulation -
Validation of 

Timing Behavior
Automatic Code 

Generation

Refine Timing / 
Scheduling

 

Fig. 1. Validation of timing behavior in the design process 

The analysis model is the basis for the timing analysis, which is realized by proper 
tools. It is based on the generated model and timing constraints while taking into ac-
count the characteristics of the target platform. Based on the results of the analysis, 
the timing behavior of the system can be analyzed and iteratively improved. This 
eliminates possible conflicts, e.g. scheduling problems. The process for designing and 
validating timing behavior is automated and based on a single model. Through this 
the effort traditionally necessary for creating a separated model for timing analysis 
can be saved. 

3.1 Timing Analysis 

For a definition of timing analysis we refer to Wilhelm et. al. in [5], where they state 
that “timing analysis attempts to determine bounds on the execution times of a task 
when executed on a particular hardware”. There are two classes of methods for timing 
analysis, static- and measurement-based methods. Timing analysis via measurement-
based methods is obtained by the execution of tasks (or task parts) on a given target 
platform or through simulation of some set of inputs. On the other hand, static meth-
ods analyze the set of possible control-flow paths through the task. The control flow is 
analyzed based on a model of the hardware architecture in order to obtain upper 
bounds for this combination. [5] Static methods and simulations are both proven suit-
able for early validation of timing behavior. In this paper we focus on simulation, but 
our methodology may also be integrated with static methods. 
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3.2 Semantic Mapping of Model Elements 

In order to automatically generate a timing analysis model out of the design model, a 
model transformation is realized. The elements and concepts of the design model 
which are relevant for the timing analysis are mapped to respective elements in the 
timing analysis model, as presented in Table 1. 

Table 1. Model Transformation: Mapping from UML Design to Analysis Model 

 

3.3 Framework Realization: Implementation of Tool-Chain 

The developed framework supports the model-driven design of automotive systems 
using the UML-Tool IBM Rational Rhapsody [6] with the MicroC Execution Frame-
work (MXF) [7]. MXF is a combination of a UML Profile, code-generator and run-
time framework which allows the simulation and target execution of the system’s 
design model. It allows the design of hardware-independent software by employing 
the so-called Network Ports which connect the model components to external hard-
ware modules such as I/O ports, network devices, sensors or buses. Thus, the software 
model can be abstractly developed and later connected to specific hardware. The de-
sign model is composed by the application model and the hardware model. The sys-
tem behavior is modeled using UML State Machine Diagrams. For the run-time 
framework the definition of a scheduling table is needed. Originally this scheduling 
table is created by the engineer based on rough constraints and his experience only. 
With our approach, the creation of a scheduling is optimized by the provision of plen-
tiful information about the timing analysis to the engineer. Based on the detailed re-
sults of the timing analysis, the scheduling table can be more easily defined and itera-
tively improved. 
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The model transformations were implemented as Rhapsody plugin in Java and us-
ing Xtend templates. The timing analysis is realized using the simulation tool chron-
SIM which provides timing analysis based on an input model of an embedded system 
[8]. This tool was chosen because of its ability to simulate embedded software based 
on a well-defined input model of the system and its easily exchangeable format for 
the input model. This input model specifies tasks together with their timing properties 
and stimulation scenarios, among others. Resources and resource dependencies for 
each task can be defined as well. Besides that, the mapping of tasks to CPUs (Central 
Processing Units)/ECUs (Electronic Control Units) is modeled. 

4 Case-Study 

The developed approach was evaluated via a case-study based on a today’s in-vehicle 
infotainment system. The application is composed by functions which are activated 
by respective buttons and share resources. The system contains the following buttons: 
Turning Button, Navigation Button, Radio Button, Telephone Button and Media But-
ton. The Turning Function receives two inputs, one correspondent to its activation 
and the other one correspondent to a turning delta. The other functions have one input 
each, correspondent to their activation. Each function has one output which is con-
nected to the infotainment main computer. The system was deployed on an 8-bit mi-
crocontroller supported by the execution framework. 

4.1 Design Model 

The case-study was modeled in two packages: an application and a hardware pack-
age, in order to keep the software hardware-independent. Fig. 2 presents a piece of the 
application model and Fig. 3 presents the system model with hardware and allocation 
of software functions to hardware. 

 

Fig. 2. Small excerpt of the application model 

The hardware package consists of further sub-packages, one for each potential tar-
get platform. A sub-package called Processing Element (PE) was created to model the 
hardware-specific implementations correspondent to the target platform. The model 
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includes an instance of the application as well as the Network Ports corresponding to 
each resource (buttons and output) described in the previous section. The Network 
Ports are connected to the Application component as shown in Fig. 3. It is worth men-
tioning that it is possible to deploy the application system to another target platform 
by defining the respective Network Ports and the instance of the application. 

 

 

Fig. 3. System model of the infotainment case-study 

4.2 Results and Timing Analysis 

For this case-study we performed a timing analysis following our integrated ap-
proach. As described previously in Section 3.3, the simulation tool receives as input a 
specific model of the system, which it simulates. Afterwards it delivers a detailed 
timing analysis and report of the system’s timing behavior. The design model present-
ed in Section 4.1 was transformed to an analysis model for the chronSIM simulation 
framework. The system’s timing information was added to the generated analysis 
model and the complete model was then simulated. Based on the detailed timing re-
port generated out of the simulation and whose excerpt is showed in Table 2, the tim-
ing analysis was performed. In our case, such analysis results could be used for evalu-
ating end-to-end deadlines and schedulability. Several timing constraints were evalu-
ated for the infotainment case-study. The results of the timing analysis were used for 
defining and optimizing the scheduling table. Without the loss of generality, we de-
scribe the exemplary evaluation of a specific timing constraint in the following. Based 
on the specification we defined a timing constraint for the function itsNavigation. The 
time spent between identifying a signal from the button being pressed until sending 
the processed signal to the infotainment main computer shall not take longer than 100 
ms. 

For analyzing if the task meets this constraint, we could examine the Average Re-
sponse Time (RAvg) and the Maximum Response Time (RMax). Considering the RAvg 
for itsNavigation (81.66 ms), the timing constraint was met. However, the monitored 
RMax was equal to 109.62 ms, which indicates that the previously specified timing 
constraint was violated. Since other functions presented surplus time-slots, we could 
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adjust the timing behavior of the overall system by modifying the execution order. 
Therefore the system could meet the 100 ms required for the navigation function. 

Table 2. Excerpt of the timing report 

 
 
With our case-study we could show that the system’s timing behavior can be vali-

dated with our integrated method and a valid scheduling for a specific target-platform 
can be defined. With the RAvg and the RMax, the engineer can also analyze if the 
system is schedulable. For that, a schedulability test for Rate Monotonic Scheduling 
(RMS) can be utilized. As discussed previously, with the simulation results and the 
timing analysis, the engineer can iteratively adjust and validate the design model and 
furthermore optimize particularly problematic sections (or tasks) of the application. 

5 Related Works 

There are diverse approaches available for sole timing analysis. For a detailed de-
scription of methods and tools for timing analysis we refer to [5]. In [9] [10] [11] [12] 
[13] [14] approaches for timing analysis and their respective realization in tools with 
different potential for industrial applicability are based on a particular model of the 
system and/or on source and executable code. In this way, even when realized in early 
phases of the development process, the timing analysis is not integrated in the model-
driven design demanding extra-effort for developing additional models. The approach 
presented in [13] targets automotive, electronics, avionics and telecommunication 
industries. RapiTime implements on target an automated performance measurement 
based on execution traces. Because the approach is based on source files or executa-
ble as input and performs the measurements on target, it necessitates the availability 
of the target platform and does not allow early validation of timing behavior, as men-
tioned previously. 

The automatic or semi-automatic integration of timing analysis in the system’s de-
sign and development process has been addressed by other academic and commercial 
solutions but is not fully integrated. In the following, we discuss these works and 
compare them to our approach. The work presented in [14] integrates simulation-
based timing analysis in the design process. The solution allows the automatic genera-
tion of a timing analysis model out of a UML design model with an additional UML 
Profile for timing features. This profile allows the design of a system in UML Activi-
ty and Architecture Diagrams with software and hardware models, as well as alloca-
tion of tasks to hardware resources considering timing features. . Since the work fo-
cuses on timing analysis, its design and timing models are not designed for validation 
of functional behavior and code generation, unlike our proposed approach.  
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TrueTime [15] supports a simulation-based analysis of real-time control system 
which is based, among others, on Matlab/Simulink models. In this way, the approach 
addresses the integration of timing analysis in the model-driven development. How-
ever, Simulink targets on continuous control systems and provides poor mechanisms 
to describe system architectures. Therefore the approach proposed by the authors is 
also affected by this disadvantage. The ARTEMIS Project CHESS [16] developed a 
multi-domain approach with different analysis and views which include not only tim-
ing analysis, but also dependability. Differently from our approach, CHESS contains 
its own modeling language built based on different existing languages and methodol-
ogies, such as MARTE. Optimum [17] is a methodology for schedulability analysis of 
UML models at early stages of the development process. It generates a concurrency 
model from a workload model designed with UML MARTE (Modeling and Analysis 
of Real-Time and Embedded Systems) and enriched with timing information and com-
putational costs. The methodology is based on the functional model of the system, 
i.e., on a description of system end-to-end scenarios. In the same way as [16], it dif-
fers from our approach since we integrate timing analysis on existing design models 
which are already the basis for code generation and validation of functional behavior. 
In [18] the authors propose a scheduling analysis model which categorizes schedule 
relevant information and show how to perform scheduling analysis on AUTOSAR 
models using scheduling theory techniques. The proposed model is focused on 
AUTOSAR system model, containing detailed information about the hardware plat-
form. It differs from our approach since we focus on the timing analysis of the higher 
level design model. The timing analysis in [16] [17] and [18] is realized with [19]. 
MAST is an open model for representing event-driven real-time applications allowing 
the validation of timing behavior, including schedulability analysis. MAST receives as 
input a particular model which can also be generated from UML models describing 
the real-time view of the system. In the same way as, the timing analysis is realized 
using MAST. 

6 Conclusion 

With the presented approach for integrating validation of timing-behavior in the de-
sign process, an early and detailed timing analysis of the system can be realized. In 
order to achieve this, a model for timing analysis is automatically generated from the 
UML design model of the application and hardware platform. The timing analysis is 
performed based on this generated analysis model by taking into account the charac-
teristics of the target platform. The results can be used by the engineer to iteratively 
adjust and validate the timing-behavior and the scheduling in the design model of 
automotive systems. A tool-chain was implemented to realize the approach and can be 
extended for different timing analysis tools which provide well-defined input model 
formats, both using simulation-based or static analysis. The approach and framework 
were validated through an automotive infotainment case-study. We could demonstrate 
that our integrated approach allows developing correctly timed systems with regards 
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to the scheduling of software components on embedded hardware in early phases of 
the design. 

In future works the modeling process could be extended for supporting timing in-
formation directly in the design model. Moreover, we intend to expand our approach 
for supporting multiple ECUs. This includes not only end-to-end deadlines and a 
scheduling analysis but also the analysis of allocations to target platforms. 
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