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ABSTRACT 

This paper demonstrates a method for activity recognition 

partially resilient on mobile device orientation, by using data from 

a mobile phone embedded accelerometer. This method is partially 

resilient on mobile device orientation, in such a way that a mobile 

device can be rotated around only one axis for an arbitrary angle. 

The classifier for activity recognition is built using data from one 

default orientation. This method introduces a calibration phase in 

which the phone’s orientation is determined. After that, 

accelerometer data is transformed into the default coordinate 

system and further processed. The solution is compared with the 

method that built a classifier using data from multiple 

orientations. Three classifiers were tested and a high accuracy of 

around 90% was achieved for all of them. 

1. INTRODUCTION 
The advance of low-cost and low-power sensors has led to their 

massive integration into modern mobile devices that have become 

powerful sensing platforms. By using data from sensors like 

accelerometers, gyroscopes, digital compasses, light sensors etc. it 

is possible to describe the context of a mobile device user in much 

more detail than by using only location data. A richer description 

of a user context provides better adaptation of mobile content, 

services and resources, enabling the user to stay focused on the 

task at hand.  

An activity of the user represents an important aspect of a context, 

because it directly impacts user’s ability to interact with the 

mobile device and applications. By employing the information 

about the current activity, the mobile device can adapt its 

interfaces, filter the content it provides, or perform a specified 

action, to support the user in the best possible way. 

The greatest possibilities for application of activity recognition 

systems lay in the healthcare domain. For example, such systems 

can be used for elderly care support or for long-term health/fitness 

monitoring [1]. Current methods for tracking activities, like 

paying a trained observer or relying on self-reporting are time and 

resource consuming tasks, and are error prone. An automatic 

system for recognizing activities could help reduce errors that 

arise from previously mentioned methods. Also, such system 

enables users to go about their daily routines, while the data 

collection and processing are done in the background, and do not 

interfere with their current activities. 

In recent years a lot of work has been done on activity recognition 

from accelerometer data. Since an accelerometer is a standard part 

of modern mobile devices (like mobile phones and tablets), they 

can be used in activity recognition. An advantage in using these 

devices is that they are already commonly used by a lot of people 

that would not have to wear an additional device to perform 

activity recognition, which greatly increases the acceptance of 

such a system.  

This paper focuses on recognizing activities from accelerometer 

data processed at a mobile phone. Activity recognition is 

formulated as a classification problem. This paper considers the 

healthcare domain for activity recognition system application. For 

this reason it is important to recognize physical activities, such as: 

walking, running, walking up/down stairs etc. Examples of 

possible users in this domain are the elderly and persons with 

certain disabilities. It can be assumed that such users keep their 

mobile phone relatively (but not completely) fixed. In the paper it 

is assumed that the phone position is fixed, but that the phone 

orientation is only partially fixed. The orientation is partially fixed 

in such a way that the axis that is perpendicular to the phone’s 

screen is parallel to the ground and the phone can be rotated freely 

around that axis. For experiments in this paper, the mobile phone 

was worn in the right front pants pocket (as one of the places 

where people usually carry mobile phones) and the screen of the 

phone was facing the user. The orientation where the bottom side 

of the phone is facing the ground is considered the default 

orientation. First, three classifiers were built using data from 

multiple orientations. These classifiers were tested using data 

from the same orientations. Then, classifiers were built again, but 

using data from the default orientation only. These new classifiers 

were tested using data from multiple orientations, transformed 

into the default coordinate system prior to testing, according to 

the method proposed in this paper. After that, classifier 

performances from these two tests were compared.   

Using results from previously mentioned tests, we created an 

application for activity recognition that runs on a mobile device in 

real time and tested the impact that data transformation has on the 

performance of such an application, specifically in terms of 

processor load. The processor load is important because if such 

application is to be accepted by users, it must not significantly 

decrease battery life, or the performance of the device in everyday 

tasks. 
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The proposed method represents only an intermediate step in the 

development of a method for activity recognition with no 

restrictions in mobile device orientation. 

The rest of the paper is structured as follows: section 2 provides 

an overview of related work on activity recognition. Section 3 

describes the process of accelerometer data collection. In sections 

4 and 5, mixed orientation data and data reorientation processing 

approach, for activity recognition resilient on mobile device 

orientation, are presented and evaluated. Section 6 presents an 

evaluation of how much the activity recognition application and 

data transformation phase participate in the processor load. 

Section 7 gives the conclusions about the paper and outlines plans 

for future work. 

2. RELATED WORK 
In recent years there has been a lot of research related to 

recognizing activities from accelerometer data. In [2] authors used 

data from 5 biaxial accelerometers worn simultaneously on 

different parts of the body. Used accelerometers could detect 

acceleration up to ±10G. Accelerometers were mounted onto 

hoarder boards and firmly attached to different body parts. Data 

was collected from 20 subjects performing various everyday tasks 

without researcher supervision. The following features were 

computed on sliding windows of accelerometer data: mean, 

energy, frequency-domain entropy and correlation. A number of 

classifiers were trained and tested with the calculated data, where 

decision trees showed the best result, recognizing activities with 

an accuracy of 84%.  

Ravi et al. in [3] attempted to perform activity recognition using a 

single triaxial accelerometer worn near the pelvic region. Data 

was collected by 2 subjects performing 8 different activities. 

Similarly to [2] the features were computed using the sliding 

windows technique. Four features were extracted: mean, standard 

deviation, energy and correlation. Extracted features were used to 

train and test 5 base-level classifiers, and in addition to that, 5 

meta-level classifiers. Authors concluded that meta-level 

classifiers in general outperform base-level classifiers and that 

plurality voting, which combines multiple base-level classifiers, 

shows the best results. The authors also showed that out of the 

used features, energy is the least significant one, and that there is 

no significant change in accuracy when this feature is avoided.  

Kwapisz et al. in [4] tried to recognize activities by using data 

from a single acceleration sensor, but they used data from an 

acceleration sensor embedded into a standard mobile phone. 

These accelerometers typically detect acceleration up to ±2G 

along three axes. Their research methodology follows the one in 

[2, 3]. The authors collected data from 29 subjects, extracted 6 

basic features and tested 3 classifiers, where multilayer 

perceptrons showed the best result, recognizing activities with an 

accuracy of 91.7%.  The authors showed that activity recognition 

can be performed successfully by using acceleration data from a 

mobile phone. 

The unifying fact for papers [2 - 4], no matter if one or more 

accelerometers are used, is that the position and the orientation of 

the accelerometer is fixed while performing all of the examined 

activities. This fact can be probably expected in case of 

specialized devices as in [2, 3]. In case of using a standard mobile 

phone as in [4], the method puts strains on how someone carries a 

mobile device, which could decrease acceptability of such a 

system.  

Sun et al. in [5] tried to recognize activities by using acceleration 

data from a mobile phone, in a setting where the position and the 

orientation of the phone vary. They restrict their hypothesis space 

to 6 possible positions (6 pockets) and 4 orientations of the 

mobile phone. The data from all position and orientation 

combinations were collected. The authors added acceleration 

magnitude at each sample, as an additional sensor reading 

dimension. By using collected data, several features were 

calculated: mean, variance, correlation, FFT energy and 

frequency-domain entropy. Calculated features were used to train 

and test SVM (Support Vector Machine) models. Generated SVM 

model recognizes activities with an accuracy of 93.1% throughout 

all tested positions and orientations.  

Thiemjarus in [6] applied a different approach. Accelerometer was 

mounted on a belt-clip device which was worn by test subjects in 

a fixed position on a body, but which could be mounted in 4 

different orientations. Data was collected by 13 subjects that 

performed a routine comprised of 6 activities. The first step in 

data analysis was device orientation detection. The orientation 

detection was also formulated as a classification problem. The 

features used for orientation detection were mean along Y and Z 

axis. Orientation detection was performed for an activity routine 

performance, which contains approximately 5 seconds of data for 

each tested activity, while activity recognition was window-based. 

The second step was signal transformation using the appropriate 

transformation matrix, and the third step was activity recognition 

itself. Author achieved a subject-independent classification 

accuracy of 90.9%. 

A possible problem with the approach in [6] is that orientation 

detection is done on a data set that includes information about all 

tested activities. The open issue is how this approach can be 

applied in a real world scenario, when the user does not perform a 

specified activity routine. A unifying fact for [5, 6] is that the 

hypothesis space is limited to a number of orientations. Again, the 

open issue is how such a system would perform when given data 

from an unknown orientation. In this paper we propose a method 

that only partially limits the device orientation, in a way that the 

device can be rotated only around one axis, but for an arbitrary 

angle. This arbitrary rotation practically creates an infinite number 

of possible orientations, in contrast of previous approaches, which 

are all limited to a certain number of orientations. To achieve this, 

a calibration phase which precedes activity recognition is 

introduced.  

3. ACCELEROMETER DATA 

COLLECTION 
As a test device, a smartphone Samsung I9001 Galaxy S Plus 

which runs on Android operating system version 2.3.5 is used. 

The accelerometer embedded in this phone detects acceleration up 

to ±2G. Data from the accelerometer has three attributes: 

acceleration along X, Y and Z axis, represented by floating point 

values. Sampling rate for the accelerometer was set to 

SENSOR_DELAY_FASTEST to achieve the highest possible 

accuracy. 

An application for recording data from the accelerometer has been 

developed. Data was collected by several test users. The recording 
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process is as follows: while standing still, test user selects the 

activity he is going to perform and starts the recording. After that 

the user has ten seconds to place the phone in the pocket in the 

desired orientation. After ten seconds a beep sound is played and 

for two seconds the gravity vector is extracted from accelerometer 

data. After two seconds another beep sound is played and an 

average value for the gravity vector is saved to a file. To extract 

the gravity vector from accelerometer data a simple low-pass filter 

is used. The user can then start to perform the specified activity. 

Another 2 seconds after the second beep, the application starts to 

record acceleration data to another file. After finishing with the 

activity the user stops the recording.  

Data was collected while performing 6 different activities: 

 Standing 

 Walking 

 Running 

 Walking up stairs 

 Walking down stairs 

 Sitting. 

For each activity data was collected for the default orientation and 

for 3-4 other orientations, depending on the activity. Some of the 

non-default orientations matched between activities and some did 

not. To minimize mislabeling a portion of data was removed from 

the beginning and the end of each recording. 

4. A MIXED ORIENTATION DATA 

APPROACH 
The first approach to the free orientation problem we test is 

building a classifier from data collected from all orientations, very 

similar to [5]. In this approach, the next step after data collection 

is feature extraction. The features were extracted from 

accelerometer data using a window size of 512 samples with 256 

samples overlapping between consecutive windows. Three 

features were extracted from each of the three axes, giving a total 

of nine attributes for building a classifier. The features extracted 

were:  

 Mean 

 Standard deviation 

 Correlation.  

We specified these features, that are calculated using data in time 

domain, because we apply the activity recognition system in real-

time locally on a device. For this reason, the features should be 

relatively simple to compute, to reduce power consumption and 

processor load. The selected features do not require signal 

representation in the frequency domain, and thus can be computed 

relatively fast. Also, the mean is used in the standard deviation 

calculation, and the mean and the standard deviation are used in 

correlation calculation, which further increases computation 

speed. 

Extracted features were used to train and test 3 classifiers 

available in the WEKA Data Mining Toolkit [7], which are 

commonly used in activity recognition [2 – 4, 6]:  

 C4.5 decision tree 

 Naïve Bayes 

 K-nearest neighbors.  

We are mainly interested in the performance of the decision tree 

classifier, since it requires the least amount of computation in the 

classification phase, which is important when the system is 

applied in a real-time locally on a device. For the testing we used 

10-fold cross validation, and the results are shown in Table 1. All 

of the tested classifiers showed excellent results in recognizing 

activities, which is consistent with previous work [5]. The results 

are slightly better than in [5] which can be probably contributed 

to a specific data set and the fact that the data was collected by a 

single test user. 

Table 1. Classifier accuracy – Mixed orientation data 

approach 

Classifier Accuracy (in %) 

C4.5 Decision Tree 98.8 

Naïve Bayes 99.5 

K-nearest neighbors 99.8 

 

5. A DATA REORIENTATION 

PREPROCESSING APPROACH 
The second approach to the free orientation problem is based on 

building a classifier from data collected in the default orientation. 

In the classifying phase, transformation of data collected in 

various orientations into the default coordinate system is 

performed, prior to the feature extraction and classification. 

The classifiers for testing are built in the same way as in the 

mixed orientation data approach, but now only data collected 

from the default orientation is used. To get the most precise 

results, it is important to test the classifier with data from all 

available orientations, which includes also data from the default 

orientation. For this reason, a portion of data from the default 

orientation was omitted in classifier building, and was used later 

in classifier testing. In this way we avoid overfitting, which can 

happen when the same data is used for training and testing. No 

data transformation was done on data used for building a 

classifier.  

As previously mentioned, in this paper we assume that the phone 

can be rotated only around the Z axis, and consequently, we 

assume that there is no change in the acceleration along the Z axis 

when performing some activity in the default and non-default 

position. This means that we do not need to transform the Z 

coordinate, just X and Y coordinates. To achieve that, we use a 

rotation matrix for rotation around the Z axis for an angle θ. The 

rotation matrix is given in (1). To calculate angle θ we use the 

information about gravity vectors. 
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(1) 

By using the gravity vectors from all of the recordings in the 

default orientation, we computed an average gravity vector for the 

default orientation (gravity vector is defined as data from the 

accelerometer, by three attributes: X, Y and Z). Since the phone’s 

screen is facing the user, the Z axis is practically parallel to the 

ground, so we take into account only the X and Y components of 

the vector.  
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Figure 1. The accelerometer data collected while walking 

 

In the classifying phase, we firstly calculate the difference 

between the angle of the average gravity vector in the default 

orientation and the angle of the gravity vector for the current 

orientation, and this difference is angle θ we need to transform 

accelerometer data into the default coordinate system. In the next 

step, each sample from the accelerometer is transformed into the 

default coordinate system using the rotation matrix given in (1). 

Figure 1 shows data from the accelerometer while walking. The 

vertical axis represents the acceleration in m/s2. Samples from the 

acceleration sensor are represented along the horizontal axis.  

Samples 1-250 represent data when the phone is in the default 

orientation, samples 251-500 represent data when the phone is in 

a non-default orientation and samples 501-750 represent the same 

data as samples 251-500, but transformed into the default 

coordinate system. Transformed data is then used to extract 

features in the same way as in the mixed orientation data 

approach. For testing we used data from non-default orientations, 

and data from default orientation. Data from default orientation 

was treated the same way as data from non-default orientations, 

and was transformed accordingly to its gravity vector. We tested 

the same 3 classifiers as in the mixed orientation data approach, 

and the results are shown in Table 2. 

Table 2. Classifier accuracy – Data reorientation 

preprocessing approach 

Classifier Accuracy (in %) 

C4.5 Decision Tree 86.5 

Naïve Bayes 91.5 

K-nearest neighbors 95.0 

 
The results obtained are lower than in the mixed orientation data 
approach, but are still above 90% threshold, except for the 
decision tree classifier. For this reason we analyze the decision 
tree classifier further. The confusion matrix for the decision tree 
classifier is shown in Figure 2. 

 

Figure 2. Confusion matrix for the decision tree classifier 
 

It can be seen that a lot of instances that represent sitting are 

classified as standing, which is not intuitive, because these two 

activities should be easy to distinguish. This is a consequence of 

how WEKA generates the decision tree. When we look at the 

generated decision tree shown in Figure 3, we can see that sitting 

and standing are distinguished by mean value along the Z axis 

(MeanZ). WEKA makes the split on value -9.804189 which is the 

maximum value for MeanZ for sitting. It can be expected that the 

maximum value for MeanZ will vary for different recordings, 

since it can’t be expected from someone to sit in exactly the same 

way every time. Since the minimum value for MeanZ for standing 

is -1.07289 the split should be done on the value -5.4385, which 

is halfway between the maximum for sitting and the minimum for 

standing. This would generate a much more robust tree with 

higher accuracy. Such decision tree would correctly classify all of 

the sitting instances, previously misclassified as standing. 

Consequently, decision tree accuracy increases to 92%. 

 

Figure 3. Generated decision tree 

To demonstrate the benefits of this approach, the same classifier 

was tested with the same test data, but this time no data 

transformation was performed prior to classification. Based on the 

results shown in Table 3, it can be concluded that a classifier built 

using data from only one orientation, cannot classify instances 

from other orientations with a high success rate. With the 

reorientation preprocessing included, the classification accuracy 

results (shown in Table 2) increase significantly, which 

demonstrates the advantage of this approach, compared to the one 

assuming a fixed orientation at all times. 

Table 3. Classifier accuracy – Single orientation classifiers 

without reorientation 

Classifier Accuracy (in %) 

C4.5 Decision Tree 54.4 

Naïve Bayes 48.5 

K-nearest neighbors 58.8 

 

To compare the data reorientation preprocessing approach against 

the mixed orientation data approach, the classifier built with the 

mixed orientation data approach was retested with a data set 

consisting of classifier training data, as well as data including 

orientations that were not used in classifier training. Accuracy of 

the mixed orientation data approach, when handling data 

including unknown orientations, can be analyzed in this manner. 

Evaluation results are shown in Table 4 and are comparable to the 

results achieved with the data reorientation preprocessing 

approach. It can be concluded that the mixed orientation data 

approach can also handle data from previously unknown 

orientations, but with a decrease in accuracy compared to the data 

reorientation preprocessing approach. 
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Table 4. Classifier accuracy - Mixed orientation data approach 

with unknown orientations 

Classifier Accuracy (in %) 

C4.5 Decision Tree 85.0 

Naïve Bayes 83.8 

K-nearest neighbors 88.5 

6. EVALUATION OF MOBILE CPU LOAD 
Using results from the previous test we built an application for 

activity recognition in real-time locally on the device. The 

application implements the data reorientation preprocessing 

approach and uses a prepared decision tree as a classifier. To test 

how much the application and data transformation phase 

participate in the processor load we used DDMS (Dalvik Debug 

Monitor Service).  

We ran DDMS for thirty seconds while the application was active 

on the device. The results are shown in Figure 4. The first line of 

the figure represents the main thread of the application in which 

all of the application processing is done. Different methods are 

represented with different colors on the timeline. This figure 

focuses on the period between two feature extractions. The boxes 

marked with the number 1 represent feature calculation. We 

notice three color groups, where each one, looking from the left to 

the right, represents calculation of mean, standard deviation and 

correlation. The box marked with the number 2 represents data 

transformation. We can see how data transformation is performed 

whenever a new sample is read from the accelerometer and that 

feature extraction is performed only when the window shifts for 

the specified number of samples. 

The Figure 5 shows the timeline again but this time in more 

details. Similar to Figure 4, the box marked with the number 1 

represents mean calculation (green color on the timeline), and the 

box marked with the number 2 represents data transformation. It 

can be seen that data transformation requires a small portion of 

processor time, compared to processor time required to calculate 

just one feature, but is performed more often. 

The entry point of the application is the onSensorChanged 

function, which is called whenever a new sample from the 

accelerometer is read. This function encapsulates all of the 

application processing and participates in the processor load with 

22.9%. Also, the function transformData, which encapsulates all 

of the data transformation, participates in the processor load with 

1.3%. It can be concluded that although data transformation is 

performed more often than feature extraction, it doesn't increase 

processor load significantly. 

 

 

Figure 4. Result of the DDMS tool applied on the activity recognition application 

 

 

Figure 5. Result of the DDMS tool in more detail 
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Figure 6. Participation of individual functions in processor load 

7. CONCLUSION AND FUTURE WORK 
In this paper a method for orientation independent activity 

recognition from accelerometer data is described. An 

accelerometer embedded in a mobile phone was used. Orientation 

of the phone was partially fixed in such a way, that the phone 

could be rotated only around one axis, but the angle of orientation 

was arbitrary. To determine the angle of rotation a calibration 

phase was introduced, in which the user has to stand still for a 

couple of seconds with the phone placed in the desired 

orientation. In this period the gravity vector is extracted and the 

difference between the angle of that gravity vector and the angle 

of the average gravity vector in the default orientation is 

calculated. This difference is the angle of rotation of the phone. 

After that the user can start to perform activities freely. The data 

from the accelerometer is transformed into the default coordinate 

system, the features are extracted and the activity recognition is 

performed. 

This method showed slightly reduced accuracy compared to the 

method when a classifier is built from data collected from various 

orientations, when data from the predefined orientations only is 

considered, but the results are still above the threshold (accuracy 

above 90%). When data from not predefined orientations is 

considered as well, the proposed method demonstrates increased 

accuracy. The most significant advantage of this method is that it 

requires data collection from only one orientation, so less data is 

required for training. Also it makes no assumption on the 

orientation in the classifying phase; there are no predefined 

orientations, so the system will work with data from any 

orientation. The drawback is the existence of the calibration 

phase, so the process in not fully transparent. This probably 

makes this method unusable in some areas of application, like in 

elderly care for example, but in others, like in fitness monitoring, 

we believe that is acceptable because the calibration phase is very 

short and requires very little effort from the user. In return the 

user can place the phone in any orientation. 

In this paper the phone orientation is assumed to be partially 

fixed, which still limits the user to a certain degree. Demonstrated 

method represents only an intermediate step in development of a 

method which would acquire a full three-dimensional orientation 

in the calibration phase and impose no limits in the phone’s 

orientation. 
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