
MappingSets for Spatial Observation Data Warehouses
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ABSTRACT
The amount of time evolving spatial data that is currently
being generated by automatic observation processes is huge.
In general, observation data consists of both heterogeneous
spatio-temporal data and relevant observation metadata.
The former includes data of Spatial Entities (cities, roads,
vehicles, etc.) and data of temporal evolution of both prop-
erties of Spatial Entities (population of a city, position of
a vehicle, etc.) and properties of space (temperature, el-
evation, etc.). Real uniform integrated management of all
these types of data is still not achieved by current models
and systems. The present paper describes the design of a
data modeling and management framework for observation
data warehouses. A hybrid logical-functional data model
based on the concept of MappingSet and relevant language
enables the specification of spatio-temporal analytical pro-
cesses. The framework in currently being implemented.

1. INTRODUCTION
According to [16], properties of entities (called Features

of Interest - FOI) are either exact values assigned by some
authority (names, prices, geometry of a municipality, etc.)
or estimated by some observation process (height, classifica-
tion, color, etc.). Observation processes may be classified in
various different ways [15]. Physical Processes produce their
data in some spatial context. They are usually hardware
sensing devices that perform measurements either locally or
remotely. Besides, they may be installed in either static or
mobile platforms. Non-Physical Processes are computations
that may be defined in some mathematical way. Any pro-
cess may be either Time-triggered o Event-triggered. The
former perform their results at some predefined time fre-

quency. The latter are started by some external event at
any moment in time.

Observation data has an inherent temporal nature. Be-
sides, in many cases FOIs are also spatial. Therefore, sys-
tems devoted to observation data analysis should cope with
spatial and spatio-temporal data analysis. In particular,
they should support relevant functionality for the manage-
ment of Spatial Entities and Spatial Coverages, and their
evolution with respect to time [9, 20, 6]. Spatial Entities are
entities of a given application domain that have geometric
valued properties (rivers, municipalities, cities, etc.). Spatial
Coverages are sets of functions with a common spatial do-
main that describe the continuous or discrete variation over
space of some specific phenomenon (temperature, humidity,
elevation above sea level, etc.).

The amount of data that is currently being obtained from
automatic observation processes is huge and the estimated
tendency is to have an exponential growth during the up-
coming years. The analysis of all these data to support
appropriate decision making is key challenge for future in-
formation systems. Many application domains exist that
would benefit from innovative technologies in this area, in-
cluding environmental observation and monitoring, natural
disaster management, e-health, etc.

Based on the above, in the present paper a data modeling
and management solution is proposed that enables spatio-
temporal analysis in data warehouses of observation data. In
particular, a proposed E-R extension enables the insertion
of observation metadata in spatial models at a conceptual
level. At a logical level, a new data model based on Map-
pingSets enables the integrated management of any kind of
spatial and temporal data. A MappingSet is a collection of
Mappings, in the functional programming sense, defined on
a common domain. Both Spatial Entities and Spatial Cov-
erages and both Time-triggered and Event-triggered obser-
vation data are modeled uniformly with MappingSets.

The remainder of this paper is organized as follows. Sec-
tion 2 describes other pieces of work related to the pro-
posed solution. The MappingSet based spatio-temporal log-
ical model is described in Section 3. The conceptual level
E-R extension for observation data is described in Section
4, as it is also its translation to the MappingSet based logi-
cal model. Section 5 illustrates the spatio-temporal analysis
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capabilities of the model for the definition of Non-Physical
spatio-temporal analytical processes. Finally, Section 6 con-
cludes the paper and outlines lines of future work.

2. RELATED WORK
The OGC defines an abstract specification of a data model

for Observations and Measurements [16] in a Geographic
Information context. Various types of observations are sup-
ported, according to the data type of their values. Simple
observations include: i) measurements that combine a value
of a real type with a unit of measure, ii) categories whose
results are items of enumerated types, iii) counts of inte-
ger types, iv) truth observations of boolean type, v) time
observations and vi) geometric observations. Complex ob-
servations are record structures that combine various simple
observation types. Metadata of each observation is also rep-
resented in the model. In particular, each observation refer-
ences its observation Process, the observed Property and its
related FOI, the time instant when the observation applies
to the FOI observed property (phenomenon time) and the
time instant when the Process obtained the result value (re-
sult time). Notice for example that if a sample of water is
obtained from a river and next analyzed in a laboratory two
different observation time instants are involved. Optionally,
other metadata, parameters, data quality information and
observation context may also be provided.

In [4] a conceptual model to represent observation data se-
mantics is defined. Annotating the conventional data mod-
els of available heterogeneous datasets with observation and
measurement conceptual constructs enables their integra-
tion at a semantic level. Integrated query of heterogeneous
observation datasets becomes therefore possible after the an-
notation process. A similar approach is followed by the E-R
extension proposed in the present paper.

Observation data has always a temporal nature. Besides,
the spatial components of observation data and metadata is
centric to many application domains, such as those related
to environmental observation and monitoring. Spatial and
temporal extensions of conceptual and logical data models
have to be considered. Examples of spatio-temporal concep-
tual models are [18, 17]. Relational and object-relational
spatio-temporal extensions are defined in the area of Spa-
tial Databases [9, 20] to support spatial entity management.
Field [6] and array algebras [3] are behind spatial cover-
age and array management systems [14, 5, 2]. Integrated
management of spatial entities and coverages is also objec-
tive of some approaches [19, 12], that incorporate different
structures for those data types. Integrated management of
entities and coverages in a uniform manner is achieved by
the MappingSet data model proposed in the present paper.

Various different data management approaches are pos-
sible to deal with spatio-temporal observation data auto-
matically generated by sensing devices. If we consider the
data generated by each sensor as a virtual temporal rela-
tion, then the simplest approach is to consider Materialized
Views of such virtual relations. Automatic maintenance of
such views on the arrival of new data from sensors has to
be solved by the system [8]. Automatically updating these
views through Extraction Transformation and Load (ETL)
processes on sensor data is the approach followed by the
present framework.

A more sophisticated solution is to consider sensor data
streams and to enable the continuous execution of queries

on those input streams. Continuous query languages [1, 11]
enable the definition of those continuous queries on both
data streams and recorded relations. Operations to create
relations from streams and streams from relations are at the
core of those languages. A similar approach is followed by
some languages specifically designed to access sensor net-
works [13, 7]. It is important to notice that spatial data,
including spatial entities and spatial coverages and spatial
analysis is not explicitly supported in these solutions.

3. SPATIO-TEMPORAL MAPPINGSET
BASED DATA MANAGEMENT

This section introduces the MappingSet based data model
that is the basis of the proposed framework. Temporal and
spatial data types are first defined. Based on themMappings
and MappingSets are next formalized. Data management
will be based on the intensional definition of MappingSets
using both logical and functional paradigms.

Conventional data types includeBoolean, CString (vari-
able size character strings), Int16, Int32, Int64 (integers),
Float32, Float64 (reals with floating point representation).
Fixed point parametric type Numeric(P,D) consists of real
numbers with a maximum of P digits, D of them are in the
fractional part. In order to define temporal and spatial data
types, 1D and 2D samplings are first formalized. Let R and
I denote the set of real and integer numbers, respectively,
then 1D and 2D samplings are defined as follows.

Definition 1. A 1D-sampling S with resolution r ∈ R
and phase p ∈ R is defined as the infinite subset of R

{x|x = i · r + p, ∀i ∈ I}

Definition 2. Let vr1, vr2, vp1 and vp2 be four vectors
in R2 defined by respective directions D1, D2, D1, D2 ∈
(−π, π] and respective magnitudes r1, r2, p1 and p2. A 2D-
sampling S with directions D1, D2, resolutions r1, r2 and
phases p1 ∈ [−r1/2, r1/2], p2 ∈ [−r2/2, r2/2] is defined as
the infinite subset of R2

{(x, y) ∈ R2|
x = (i1r1 + p1) cos(D1) + (i2r2 + p2) cos(D2)∧
y = (i1r1 + p1) sin(D1) + (i2r2 + p2) sin(D2),
∀i1, i2 ∈ I}

An element s of a 1D-sampling (2D-sampling) S is called a
1D-sample (2D-sample). Integer i, i1, i2 are called the sam-
pling coordinates of s. s(i), s(i1, i2) denote respectively the
1D-sample and 2D-sample with sampling coordinates i and
(i1, i2). Figure 1 illustrates the above definitions with a
geometrical representation.

Definition 3. TimeInstant(D) is defined as a finite sub-
set of elements s(i) of a 1D-sampling S with resolution 10−D

and phase 0 such that
−263 < i < 263 + 1

where each s(i) is interpreted as the time instant 1/1/1970+
s(i) seconds. Maximum allowed D is 6 (microsecond).

Definition 4. TimeInstantSample(D, R) is defined as
a finite subset of elements s(i) of a 1D-sampling S with
resolution R · 10−D and phase (R · 10−D)/2 such that

−263 < i < 263 + 1
where each s(i) is interpreted as the time interval [1/1/1970+
s(i) seconds, 1/1/1970 + (s(i) +R · 10−D) seconds). Again,
maximum allowed D is 6 (microsecond).
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Figure 1: Illustration of 1D and 2D samplings.

Definition 5. Date is defined as a shorthand of TimeIn-
stantSample(0, 86400).

Definition 6. Point2D(P,D) is defined as the finite sub-
set of elements s(i1, i2) of a 2D-sampling S with directions
D1 = 0 and D2 = π/2, resolutions R1 = R2 = 10−D and
phases Ph1 = Ph2 = 0 such that

−10P < i1, i2 < 10P

Definition 7. Point2DSample(P,D,R) is defined as the
finite subset of elements s(i1, i2) of a 2D-sampling S with im-
plementation dependent directions D1 and D2, resolutions
r1 = r2 = K ·R · 10−D and phases p1 = p2 = 0 such that

1. −10P < i1, i2 < 10P

2. K < max(
∣∣cos(D2−D1

2
)
∣∣ ,
∣∣sin(D2−D1

2
)
∣∣)

TimeInstant and Point2D data types provide discrete rep-
resentations for both time and space, where the user has con-
trol over the supported precision. Types TimeInstantSam-
ple and Point2DSample provide representations for temporal
and spatial samplings at user defined resolution. It is noticed
that each time instant is approximated by its closest lower
TimeInstantSample, whereas each 2D point is approximated
by its closest Point2DSample. It is out of the scope of this
paper to demonstrate that K factor above ensures that any
2D point is approximated by a sample at a distance lower or
equal to R · 10−D. Type castings are available for the above
data types.

If T is either a numeric or temporal type, then data type
Interval(T) is a new data type whose values are closed in-
tervals over data type T. If t1, t2 are two elements of data
type T, then [t1, t2] is used to denote the relevant closed
interval. Similarly, if S is spatial data type then the follow-
ing geometric data types are also supported, based on the
standard specification given by [10].

• Geometry(S): Abstract type. Represents any vector
geometry or set of geometries defined with elements of
S.

• LineString(S): Vector polylines defined by sequences
of elements of S.

• Polygon(S): Vector polygons, possibly with holes, whose
borders are defined by sequences of elements of S.

• GeometryCollection(S): Heterogeneous collections
of Geometries.

• MultiPoint(S): Homogeneous collection of elements
of S.

• MultiLineString(S): Homogeneous collection of ele-
ments of LineString(S).

• MultiPolygon(S): Homogeneous collection of elements
of Polygon(S).

Definition 8. If ADT1, ADT2, . . . ADTn are not necessar-
ily distinct data types, A1, A2, . . . , An are distinct names
and RDT is a data type, then:

1. A Mapping with signature M() : RDT is defined as
a value of type RDT

2. A Mapping with signature
M(A1 : ADT1, A2 : ADT2, . . . , An : ADTn) : RDT
is defined as a partial function
M : ADT1 ×ADT2 ×ADTn → RDT

Operations are syntactic sugar for Mappings. Implicit
castings between compatible data types are applied during
Mapping invocations, enabling transparent transformation
between temporal and spatial elements of different resolu-
tions by applying constant interpolation. Various primitive
mappings and operations are provided by the model. How-
ever, formalizing a complete set of them is out of the scope
of the paper. Informal descriptions of required primitive
mappings will be given throughout the paper.

A MappingSet is nothing but a set of Mappings that share
a common domain defined as a n-ary relation over data
types. Formalism is given below.

Definition 9. Let C1, C2, . . . , Cn be distinct names, ADT1,
ADT2, . . ., ADTn be not necessarily distinct data types
and RDT1, RDT2, . . ., RDTm be not necessarily distinct
data types. Let also D be a n-ary relation with scheme
D(C1 : ADT1, C2 : ADT2, . . ., Cn : ADTn) defined as
a finite subset of ADT1 × ADT2 × . . . × ADTn. Then
a MappingSet is defined in either of the three following
forms:

1. A 1-tuple MS = 〈D〉.

2. A m-tuple MS = 〈M1,M2, . . . ,Mm〉, where each Mi

is a Mapping with signature Mi() : RDTi defined as a
value of RDTi.

3. A (m+1)-tuple MS = 〈D,M1,M2, . . . ,Mm〉, where
eachMi is a Mapping with signatureMi(C1 : ADT1, C2 :
ADT2, . . . , Cn : ADTn) : RDTi defined as a partial
function Mi : ADT1 ×ADT2 ×ADTn → RDTi.

The evolution with respect to time of spatial entities and
spatial coverages may be modeled with appropriate Map-
pingSets that contain both Domain and Mappings. n-ary
relationships are also modeled with MappingSets, usually
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without Mappings. MappingSets without Domain are also
useful to record short collections of key-value pairs that are
common in the specification of configuration settings.

The Domains and Mappings of a MappingSet may be de-
fined either extensionally or intensionally. If a extensional
definition of the Domain is given, then both extensional
and intensional definitions of Mappings are allowed. On
the other hand, an intensional definition of the Domain may
only be accompanied by intensional definitions of Mappings.
Generally, an extensional definition is a sequence of all the
elements of Domain and Mappings in some specific order.
Both row-wise and column-wise orderings may be used. It
is even possible to combine row and column-wise orders for
different components and Mappings. If the data type of
a Domain component is of some integer or sampling data
type, then its extensional definition might be given in the
form of a collection of sequence definitions. In general, a
sequence definition has an start element, a size and a step.
For example, for an integer data type, a sequence start-
ing at 5, with size 4 and step 2 describes the following list
< 5, 7, 9, 11 >. For a TimeInstantSample data types, a se-
quence starting at “2013 − 05 − 0215 : 00 : 45.06”, with
size 2 and step 30.42 describes the following sequence of
type TimeInstant(2, 3042) ¡“2013 − 05− 0215 : 00 : 20.22”,
“2013−05−0215 : 00 : 50.64”¿. 1. For Point2DSample data
types, starting element is fo type Point2D and step has to
be given by two pairs (direction, resolution).

Spatio-temporal analysis is enabled through the inten-
sional definition of Mappings and MappingSets. Mappings
may be intensionally defined with functional, conditional
and aggregate expressions.

Functional expression. AMapping M with signature M(D):
DT may be defined by a expression of the form

M(D) := e
where e is a functional expression of data type DT that may
include variables referencing components of D, mappings,
operations, constants and castings.

Conditional Expression. A Mapping M with signature
M(D): DT may be defined by a expression of the form

M(D) := CASE b1 THEN e1
CASE b2 THEN e2
. . .
CASE bn THEN en
[OTHERWISE en+1]

where each bi is a functional expression that yields a value
of Boolean type and each ei is a functional expression that
yields a value of type DT. The semantics are the obvious
ones.

Aggregate Expression. AMapping M with signature M(D):
DT may be defined by a expression of the form

M(D):= agge
OVER {P}

where P is a domain relational calculus predicate and agge
is an functional expression where variables bounded to Map-
pingSet domains in P must be used as arguments of aggre-
gate functions. Various aggregate functions are provided

1Notice that the start instant of the sequence is automati-
cally adapted to match the underlying time representation
for type TimeInstant(2, 3042)

SpatialEntity SpatialCoverage

GeoPropertykeyProperty property property2property1

Entity Entity relat.

(a) Spatial Entities (b) Spatial Coverages

(c) Observed Entities (d) Observed Relationships

simpleProperty

complexPropertysimpleProperty

component1 component2

multiValued

(e) Observed Properties

C

TOEO
EO TO

TO

EO EO
TO

relat.

Figure 2: E-R Diagram Notation for Spatial and
Observation Data.

by the system including both statistical and rank functions.
MappingSet domains may also be intensionally defined.

Intensional Domain. Let e be a functional expression that
yields a value s of either Interval(T) or Geometry(S) data
type, whose base type T, S is either some integer type or
some sample type. Then, SAMPLING(e) yields all the el-
ements of type T or S contained in s. Based on this, the
domain D of a MappingSet M may be defined by an expres-
sion of the form

{(e1, e2, . . . , en)|P}
where P is a domain relational calculus predicate and each ei
is either a functional expression or an expression of the form
SAMPLING(e), where e is also a functional expression.
Expressions e and ei may include variable names bounded
to MappingSet domain components in P. Given that nested
structures are not allowed in the model, if an expression
SAMPLING(e) is used then the result relation has to be
unnested.

4. MODELING OBSERVATION DATA WARE-
HOUSES

The data model described in this section captures observa-
tion data semantics and integrates them with spatial entities
and coverages. An E-R extension is proposed in Subsection
4.1 to model observation metadata. The translation of such
a conceptual model to the MappingSet based logical model
is explained in Subsection 4.2.

4.1 Conceptual Data Model
Contrary to conventional metadata that is recorded at the

level of entity and property types, some observation meta-
data has to be recorded at the level of entity and property
instances, i.e., combined with the data itself. This is the
case for example of observation time instants and observa-
tion processes.

An extension of the E-R model is next proposed to incor-
porate spatial and observation data semantics in conceptual
models. Spatial Entity types are represented in diagrams
as conventional entities (see Figure 2(a)). Spatial Coverage
Types are represented as entities tagged with the symbol
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Figure 3: E-R Diagram of a Running Application
Example.

C (see Figure 2(b)). Entity Types, either spatial or not,
and Coverages whose whole data is obtained through an ob-

servation Process are tagged with either symbol TO if it is

a Time-triggered Process or symbol EO if it is an Event-
triggered Process (see Figure 2(c)). Relationships resulting
from observation processes are tagged in the same way (see
Figure 2(d)). Finally, properties of either Entity or Cover-
age types that are obtained through observation processes

are also tagged with the same TO and EO symbols, as it is
shown in Figure 2(e) for simple, complex and multivalued
properties.

To illustrate the use of the above notation the E-R dia-
gram of a reduced running application example is given in
Figure 3. Spatial Entity Type ICES records fishing zones de-
fined by the International Council for the Exploration of the
Sea (ICES). Spatial Coverage SST records Sea Surface Tem-
perature at each location of the sea, daily produced by the
Moderate Resolution Imaging Spectroradiometer (MODIS)
sensor installed in the Terra and Aqua NASA satellites. En-
tity type Vessel records data of fishing vessels, including an
identifier (vesId) and its engine power. Vessels incorporate
CTD sensors that enable obtaining triples of water conduc-
tivity, water temperature and depth. Every time a ctd ob-
servation is performed a Non-Physical Process is executed
that computes the difference with the value given by MODIS
and provides it as a derived property difTemp. Vessels also
incorporate GPS sensors from which locations are obtained
every 30 seconds. Entity type Species records data of fish-
ing species, including an identifier specId, species name and
an interval of temperature values where the fish feels com-
fortable (property comfort). The derived property comfGeo
records the geometry of the area of the sea where comfort-
able temperatures for the fish are located. This property
is obtained by a Non-Physical Process from the SST data.
Property load of relationship catches records the values mea-
sured by the vessel bascule for each species. The autho-
rized fishing capacity of a vessel is given by two parameters.
The Fishing Effort gives a measure of the number of days
weighted by the vessel engine power that the vessel may
stay in each zone. Relationship Effort records both the ini-
tial quota and the available one (property stock). Available
Fishing Effort stock is obtained by a Non-Physical Procress

FOI

ObsFOI NonObsFOI

ObsPropertyProcessType

MappingSet

DomComponent Mapping

Process

Figure 4: E-R Diagram of the Frameworks Catalog.

using the quota and the vessels GPS information. The Fish-
ing Capacity gives the kilograms of each species that the ves-
sel may get from each zone. Again both quota is recorded
and stock is computed by a Non-Physical Process.

The translation of the above model to the MappingSet
logical model of the framework is explained in the following
subsection.

4.2 MappingSet Based Logical Model
To support the implementation of the conceptual model of

the previous section, observation metadata has to be added
to the frameworks catalog. Thus, the catalog contains meta-
data of the defined Mappings and MappingSets and meta-
data related to the various observation processes, including
observation properties and features of interest. The E-R
diagram of such catalog structures is given in Figure 4.

Entity types MappingSet, DomComponent and Mapping
record general metadata of the MappingSets. Entity type
FOI records metadata of Features of Interest, and it refer-
ences the MappingSet that records its data. FOIs that are
fully generated by observation processes are registered in
ObsFOI. The remainder FOIs, i.e., those that combine ob-
served with non observed properties are represented by en-
tity type NonObsFOI. Each observed property of such a FOI
is represented by a weak entity of type ObsProperty, which
references the MappingSet that records its data. Finally,
ProcessType records metadata of the various types of ob-
servation processes registered in the framework. Metadata
of each specific instance of each process type is recorded in
weak entity type Process. Notice the difference between the
process type “Vessel Bascule” that obtains values of load
property of relationships catches and the specific bascule
installed in each vessel that must be referenced from each
observation.

The rules that enable the transformation of the concep-
tual model of the previous section to MappingSets are now
given next. Each Entity Type, either Spatial or not, gener-
ates a relevant MappingSet, whose domain is defined by key
properties and whose Mappings are defined by the remain-
der properties. See for example Entity Types Vessel, Species
and ICES in Figure 3 and relevant MappingSets in Figure 5.
Each Spatial Coverage generates a MappingSet, whose do-
main has just one component of some Point2DSample type
and whose Mappings are generated from coverage proper-
ties. Each Relationship Type with cardinalities various to
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vesId:CString):Numeric(5,2)

depthUOM(obsTime: TimeIntantSample(0, 30),
vesId:CString):CString

process(obsTime: TimeIntantSample(0, 30),
vesId:CString):CString

Figure 5: MappingSets for a Running Application Example.
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various generates a MappingSet whose domain is defined
from the key properties of the participating Entity Types.
Properties of those Relationship Types generate Mappings
in such a MappingSet. See for an example Relationship
Types capacity and effort in Figure 3 and MappingSets Ca-
pacity and Effort in Figure 5. If an Entity, Coverage or Re-

lationship Type is tagged with the symbol TO , then a com-
ponent named obsTime of some TimeInstantSample(D,R)
data type is added to the MappingSet Domain to enable the
recording of observation time.2 Besides, a Mapping named
process is also added to obtain the id of the process used
to produce the observation. See for example Spatial Cover-
age Type SST in Figure 3 and relevant MappingSet SST in

Figure 5. If symbol EO is used instead, then the data type
of component obsTime is some TimeInstant(D). See for ex-
ample Relationship Type catches in Figure 3 and relevant
Catches MappingSet in Figure 5. In any of the above cases,
an entity of type ObsFOI has to be added to the catalog with
relevant relationships to its process type and MappingSet.

If a simple or complex property is tagged with symbol TO

then such property is not added as a Mapping to the relevant
MappingSet. Instead, a separate MappingSet is created for
the property whose domain has components to reference the
key of its Entity Type (FOI of the relevant observation) and
has a component named obsTime of some TimeInstantSam-
ple(D,R) type to record observation time. The property
itself is added as a Mapping to the MappingSet and an ad-
ditional Mapping named process is added to record the id of
the process that generates the observation. An example is
loc property of Entity Type Vessel in Figure 3 and relevant

Vessel loc MappingSet in Figure 5. If symbol EO is used
instead then the transformation is exactly the same except
for the fact that Domain component obsTime is of some
TimeInstant(D) type. For an example see ctd property of
Vessel Entity Type in Figure 3 and relevant Vessel ctd Map-
pingSet in Figure 5. In any of the above cases an entity of
type ObsProperty is added to the catalog, with appropriate
references to its MappingSet, ProcessType and NonObsFOI.

Once the MappingSets are created and the required meta-
data are added to the catalog, the insertion of observation
data may be started. ETL tasks are continuously executed
to maintain the data warehouse updated with latest obser-
vation data, using extensional MappingSet definitions. Each
observation is appended to the appropriate MappingSet with
its observation time and reference to its process and FOI.

5. DEFINITION OF SPATIO-TEMPORAL AN-
ALYTICAL PROCESSES

The capabilities provided by the framework for the inten-
sional definition of MappingSets enable the specification of
spatio-temporal analytical processes. These capabilities are
now illustrated with some examples.

Example 1. Define a Non-Physical Process that obtains
a derived observed property that computes the difference
between the temperature measured by the CTD and the
sea surface temperature produced for the same location by

2Currently we restrict to phenomenon time semantics, how-
ever, it can be extended with result time and other required
metadata.

MODIS (see difTemp derived property of Vessel in Figure
3).

MAPPINGSET Vessel difTem
DOMAIN

{(obsTime, vesId) | Vessel ctd(obsTime, vesId)}
MAPPINGS

difTem(obsTime, vesId):=
SST.temp(Vessel loc.loc(obsTime, vesId), obsTime) −
Vessel ctd.temp(obsTime, vesId)

difTemUOM(obsTime, vesID):=
Vessel ctd.tempUOM(obsTime, vesId)

process(obsTime, vesID):= “difTemProcess”

In the expression above it is noticed that automatic castings of
spatial and temporal types are performed during the evaluations
of Mappings Vessel loc.loc and SST.temp.

Example 2. Define a Non-Physical Process that detects when
a vessel leaves an ICES zone to enter a new one (see enters derived
relationship in Figure 3).

ICESFromLoc(loc):=
singleton(zone)
OVER {ICES(zone) ∧ within(loc, ICES.geo(zone))}

MAPPINGSET enters
DOMAIN

{(vesId, ICESFromLoc(Vessel loc.loc(obsTime, vesId)),
obsTime) |
Vessel loc(obsTime, vesId) ∧
ICESFromLoc(Vessel loc.loc(obsTime, vesId)) <>
ICESFromLoc(Vessel loc.loc(predecessor(obsTime), vesId))}

MAPPINGS
process(vesId, zoneId, obsTime):= “entersProcess”

In the above expression, Mapping within(g1, g2) yields true if
geometry g1 is within geometry g2. Aggregate function single-
ton(S) yields the element contained in the unitary set S. Finally,
Mapping predecessor(ts) yields the time sample that precedes
time sample ts in its data type.

Example 3. Define a Non-Physical Process that produces a
measure of the remaining fishing effort for each vessel and ICES
zone for each of the preceding 60 days. Consumed fishing effort is
obtained from the temporal evolution of vessel location data and
ICES zone geometries (see derived property stock of relationship
type Effort in Figure 3).

ICESFromLoc(loc):=
singleton(zone)
OVER {ICES(zone) ∧ within(loc, ICES.geo(zone))}

consumed effort(vesId, zoneId, obsTime) :=
((count(obsTime2)*30)/86400)*Vessel.power(vesId)
OVER {Vessel loc(obsTime2, vesId2) ∧

obsTime2 < obsTime ∧ vesId2 = vesId ∧
ICESFromLoc(Vessel loc.loc(obsTime2, vesId2)) = zoneId
}

MAPPINGSET Effort stock
DOMAIN

{(vesId, zoneId,
SAMPLING([cast(difTime(now(), 60 Days) AS Date),

cast(now() AS Date)])) | Effort(vesId, zoneId)}
MAPPINGS

stock(vesId, zoneId, obsTime):=
Effort.quota(vesId, zoneId) −
consumed effort(vesId, zoneId, obsTime)

stockUOM (vesId, zoneId, obsTime):=
Effort.quotaUOM(vesId, zoneId)

process(vesId, zoneId, obsTime):= “EffortStockProcess”

In the above expression, Mapping now() yields the current sys-
tem time instant. Mapping difTime(t, i) subtracts time interval
i from time instant t.
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Example 4. Define a Non-Physical Process that obtains the
evolution with respect to to time during the last 7 days of the
geometry of the comfort zone for each species. Comfort zone is
obtained from the temperature interval defined for each species
and the sea surface temperature generated by MODIS (see derived
property comfGeo of entity type species in Figure 3).

MAPPINGSET Species comfGeo
DOMAIN

{(speId,
SAMPLING([cast(difTime(now(), 7 Days) AS Date),

cast(now() AS Date)])) | Species(speId)}
MAPPINGS

comfGeo(speId, obsTime):=
vectorize(loc)
OVER { SST(loc, obsTime2) ∧ obsTime = obsTime2 ∧

within(SST.temp(loc, obsTime2), Species.comfort(speId))}
process(vesId, zoneId, obsTime):= “ComfortZoneProcess”

In the above expression, aggregate function vectorize(loc) ob-
tains the vector geometry that surrounds the set of sample loca-
tions loc. Mapping within(e, i) yields true if element e is within
interval i.

6. CONCLUSIONS AND FURTHER WORK
A data model and data management framework has been pro-

posed spatio-temporal analysis of data in data warehouses of spa-
tial observation data. The approach consists of an E-R exten-
sion for observation data to be used at a conceptual level and
a new logical level model that combines logical and functional
paradigms. The advantages of the approach can be summarized
as follows:

• General purpose observation data and metadata coexist
with application specific Spatial Entities and Coverages,
enabling efficient analysis over the whole set.

• Few primitive Mappings combined with general purpose
logical and functional expressions enable the integrated man-
agement of any kind of spatial and spatio-temporal data.
Besides, both data and analytical processing is unified un-
der the well known mathematical concept of function.

• Parametric temporal and spatial types enable the user to
have control over the precision and resolution of underlying
time and space representations.

• Specific constructs for the specification of sampled and non-
sampled domain components together with the absence of
nested structures simplifies efficient implementation.

Further work is mainly related to efficient implementation struc-
tures and algorithms and the extension of the framework to deal
with continuous queries on sensor data.
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