
On Properties of Modeling Approaches

Rolv Bræk

Norwegian University of Science and Technology, NTNU, Trondheim, Norway,
rolv.braek@item.ntnu.no

Abstract. This paper argues for three fundamental properties that ev-
ery modeling approach should posses. It presents a simple classification
schema for models and proposes some comparison criteria. Finally it
provides some reflection on properties currently in the CMA ”parking
lot”.

Keywords: Modelling, Properties, Classification

1 Three Fundamental Properties

When comparing modelling approaches, it may sometimes be worth while to
take a step back and consider a few fundamentals. Simply put, we make models
primarily in order to develop better systems at lower cost. The question is what
to model and how to model in order to achieve this simple goal.

I have found that models should balance three fundamental properties:

– Readability for human comprehension and communication.
– Analysability for reasoning and tool support.
– Realism for efficient implementation and documentation.

Possessing just one or two of these properties makes a modelling language
less useful than a language that possesses all three. Being simple and intuitive
for human understanding is fine, but if the gap to design and implementation is
too big, its value is limited. Earlier data flow methods such as SADT suffered
from this problem. Being formal and sound is also fine, but if it is too hard to
read and understand by practitioners, or cannot be efficiently implemented, its
value is again reduced. Programming languages, of course are realistic, but hard
to read and understand, even for programmers themselves.

Readability for human comprehension and communication is probably the
most important property. It is about more than just reading what is written
down. It is about understanding the meaning and its implications. Readability
therefore require that the meaning is clear and unambiguous. An alternative
term for readability is understandability as proposed by Bran Selic in [1]. Build-
ing a shared understanding and agreement among stakeholders is a necessary
precondition for quality. We must face the fact that our limited mental capacity
and ability to communicate precisely is the main barrier to overcome in systems
engineering. Models are our main tools for this and that is why readability is



so important. Somehow the models must help to reduce the mental burden by
1) decomposing into parts that can be described and understood as indepen-
dently as possible and 2) expressing as explicitly as possible everything what is
important to understand, but hard to overview and memorise.

Analysability for reasoning and tool support is necessary in order to ensure
models that are complete and consistent, to compare systems, to validate in-
terfaces, and to verify properties. For this purpose the language must have a
semantic foundation suitable for analysis by humans as well as by tools. Human
reasoning is important because one cannot completely rely on tools to under-
stand the problems, to help avoid them and to correct them.

Realism for efficient implementation and documentation is sometimes over-
looked by theoreticians, but essential for two main reasons; 1) that it shall be
possible to use the models to derive efficient implementations and 2) that the
models can serve to document the real system after it has been built. If this is
not the case the models will be of less use and likely to erode and be thrown
away once the system is realised. Model driven engineering has realism as a core
property, but not always readability. We comment here that having a platform
independent model does not necessarily mean that the model is readable.

Readability and analysability is not just a function of the languages being
used, but also of the method guidelines and criteria applied when structuring
models, including composition and decomposition criteria.

Any viable modeling approach must satisfy several additional properties such
as modularity, scalability and maintainability, but the three properties: readabil-
ity, analysability and realism may be seen as the raison d’etre for modelling and
should therefore be central to any comparison of modelling approaches.

2 A simple classification of models

A simple and useful way to classify models is to distinguish between design
models and property models in one dimension and abstractions in the other.

Design and property models. It is useful to distinguish between models that
define the design of a system and models that define properties of the system
design. Design models define the structure and behaviour of an abstract or
concrete system (or system family) and can be seen as blueprints for building
the system. Property models specify properties that the designed system is
”measured” against. A performance model for instance is a property model,
but not a design model. It is used for specification and analysis, but not as a
blueprint for the system itself. Sequence diagrams are primarily used as prop-
erty models to define interaction scenarios, but are normally not complete
enough to serve as design models. Still they are very useful for documenting
(properties of) a real system, and also for partial design synthesis and many
other purposes. Communicating extended state machines on the other hand,
are suitable as design models since they can define complete behaviours and
also can be realised efficiently and automatically.



Abstractions. Some use ”abstraction” in the meaning of aggregation or com-
position; i.e to represent a composite structure as a single entity. Other uses
it in the opposite sense of concrete, to replace physical entities by abstract en-
tities better suited for some purpose. For instance to represent functional be-
haviour by abstract state machines rather than statements in programming
languages, or to use queueing models for performance rather than compu-
tational models. I propose to use the latter meaning here and to subdivide
into three main abstractions: 1) Functionality, 2) Physical architecture and
3) Realisation.

In the end one will always need to develop detailed realisation models ex-
pressed using for instance, programming languages. Other models are introduced
in order to improve on quality and cost compared to what can be achieved using
programming languages (or HDLs) alone. The purpose of the physical architec-
ture is to document the realisation in terms of hardware and software units.
The purpose of functionality models is to define logical behaviour and informa-
tion handling as precisely and completely as possible. Getting the functionality
right, as experienced by the environment and users of a system, is the most
pressing quality issue in most cases. Therefore, models of functionality are cen-
tral to many modelling approaches. Functionality may be further refined into for
instance, platform independent and platform specific models, but this is details.

The six categories defined by these two dimensions enable a meaningful and
simple classification of models and modelling approaches that is useful for com-
parison while avoiding reference to time limited and project specific concepts
like phases. It assumes that models are useful not just in a particular phase,
but once defined, are useful throughout the remaining lifetime. Since a complete
approach normally needs to cover all six categories, it also provides an indication
of completeness.

3 On Comparison Criteria

3.1 Readability

Readability is hard to assess and quantify on any objective scale since it de-
pends on individual background and preferences. Some people like text while
others prefer graphics. Some are at ease with mathematical formula while others
think in boxes and arrows. The foremost criterion is whether the approach is
substantially better than programming languages (or HDLs) for comprehension
and communication. So much better as to clearly be worth the modelling effort.

Programming languages are good at defining data types and action sequences
(algorithms). Improvements must be sought where programming languages are
not so good. In other words; to represent what is important, but implicit or invisi-
ble in programming languages. This is typically concepts from the real world such
as time, concurrency, external events, sessions, data flows, part structures and
state evolution. Lifting the abstraction level to concepts closer to the problem



domain normally helps to improve readability and to simplify communication
with domain experts as well.

Due to its transient, dynamic and often endless nature, behaviour modelling
is the main challenge. Behaviour is both hard to define and difficult to fully
overview and understand. Lack of understanding and overview leads invariably
to errors. Since the perceived system quality depends heavily on the system be-
haviour, it is important to avoid errors and get the behaviour right. Therefore,
readability of behaviour models is a particularly important property of a mod-
elling approach. When it comes to behaviour, readability is about how easy it is
to overview all possible courses of actual behaviour. One should note here that
action sequences as expressed in programming languages are good at specifying
what a computer shall do, but not so good at defining all possible states and
transitions that can be reached during behaviour execution.

Dijkstra said in his famous paper on structured programming [2] (roughly)
that ”one should let progress through the computation be mapped on progress
through program text in the most straight forward manner”. For abstract be-
haviour models this means to structure the models to reflect the behaviour exe-
cution in the most straight forward manner, since this helps to reduce the mental
burden of mapping from the model to the meaning.

So, what characterises behaviour executions? This depends on the problem
domain. Roughly one may distinguish between transformational and reactive
behaviour [3]. Reactive behaviour is essentially characterised by execution of
concurrent state transition sequences. Defining the concurrency and state space
evolution as explicitly as practically possible helps towards readability of corre-
sponding behaviour models. This points towards some kind of state transition
model. But this may not be sufficient in itself. Petri nets for example, can ex-
press concurrency and state transitions, but the states are represented by token
markings that sometimes only can be found by executing the net. Thus, the
net can be very expressive, but hard to read. State machines provides explicit
representation of states and transitions, but finding the states and transitions
for optimal readability is often difficult.

In the web services community, state-less behaviour is considered a design
goal because it reduces many problems associated with keeping sessions and
session states. As long as the nature of the behaviour is session and state-less,
this fine. But if there are inherent sessions and states that must be dealt with
during execution, it does not help to hide them in the models (which is always
possible) because this will reduce readability and increase the likelihood of mak-
ing errors. (We experience problems of this kind in many web-sites.) When the
behaviour execution has to deal with sessions and states, readability is increased
by modelling these explicitly.

One way to assess readability of behaviour models in the criteria document
could be to ask what characterises the application behaviour and to what degree
and how Dijkstra’s principle is applied. Is the behaviour reactive or transfor-
mational? Are there individual sessions to maintain or not? Are the session be-
haviour state-full or not? How is concurrency among sessions modelled? Another



important indicator for readability (and realism) is to what degree the models
are used after the system has been implemented for documentation, maintenance
and evolution purposes. Are models the preferred source of information, or not?

3.2 Analyzability

There is abundance of formal methods and tools specifically made for analy-
sis. There are model checkers, theorem provers and SAT solvers, but they do
not seem to be much used in main-stream systems development. One important
reason is that they tend to use languages and paradigms that are unfamiliar to
most systems developers. A second important reason is that the tools are not
well integrated with the development tools normally used. Consequently there
is additional cost involved and also the problem of keeping analysis models con-
sistent with the development models. Important criteria related to analysability
are:

– what properties can be determined.
– is the analysis directly based on the development models or is there a trans-

formation involved; if so is it manual or automatic.
– is the analysis compositional in the sense that modules may be analysed

separately and then combined without having to reanalyse the modules.
– are there size limitations to systems that can be analysed (scalability)
– is the approach also suited for human reasoning,
– does the approach provide rules and guidelines for use by designers to detect

and remove problems?

3.3 Realism

Realism is not the same as being directly executable. It means that realisations
can be related to the model in a relatively straight forward manner, and that the
real system will behave as specified in the models (allowing for acceptable seman-
tic differences). An important criterion for realism is whether the models serve
as useful documentation for the real system or just as a temporary development
step. Another important criterion is whether the approach allows several alter-
native realisations that can satisfy different non-functional requirements such as
for instance performance and availability.

4 Some Reflections on the Parking Lot

Reusability Reuse calls for modules that can be encapsulated, defined, un-
derstood and analysed separately and then be composed in may different
contexts. Hence, modularity is a precondition for reusability. In many cases
there are additional cost associated with making units reusable, such as ad-
ditional documentation and interface definitions, that effectively prevents
making modules reusable. The cost of designing-for-reuse, is therefore a lim-
iting factor. Also the cost of designing-with-reuse should be considerably



lower than the cost of designing from scratch so that there is a substantial
value to be gained from reuse.
Important criteria for comparison can be:
– the additional cost of design-for-reuse.
– the saved cost of design-with-reuse compared to no reuse.
– the percentage of reused modules achieved in a typical design.

A general lesson from reuse research is that modules representing domain
entities tend to be more stable and reusable than implementation level (soft-
ware) modules. Hence, the abstraction and domain closeness is important for
reuse. Reusability is related to readability in the sense that modules need
to be readable in order to be reusable. Additionally they should be possible
to understand and use safely without having to understand all inner detail.
Does the approach tend to identify modules with interfaces that satisfy this
property?

Inter-module dependency and interaction This criterion is related to both
reusability and readability. Well defined modules with narrow interfaces help
both understanding and reuse and possibly also analysis. A central question
is: what is considered a module and what is the nature of its interfaces? Is
it communication interfaces and if so, what kind of communication: method
calls, synchronous interactions, asynchronous messaging? If not communica-
tion, what else?

Expressiveness Expressiveness can be related to Readability, but high expres-
siveness does not necessarily imply high readability. Quite the contrary, one
may have very expressive statements that are extremely hard to read and
understand. This kind of expressiveness is in direct conflict with readability,
and not desirable. On the other hand it is also possible to achieve high ex-
pressiveness and readability at the same a time by means of techniques such
as aggregation and encapsulation.

Usability (readability, understandability) I would suggest making Read-
ability a criterion in its own right, since Usability seems to encompass a lot
more.

5 Concluding remark

The purpose of this paper has been to give some inputs to the discussion and
further elaboration of comparison criteria.

References

1. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software Septem-
ber/October 2003

2. Dijkstra, E.W.: Notes on Structured Programming. In Dahl, O.J., Dijkstra, E.W.,
Hoare, C.A.R.: Structured Programming. Academic Press 1972.

3. Manna, Z, and Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
Specification. Springer Verlag 1992.


