

Automatic Impact Analysis of Software Architecture
Migration on Model Driven Software Development

Joseba Agirre, Leire Etxeberria, and Goiuria Sagardui

Mondragon Unibertsitatea, MGEP, Mondragon , Spain
{jaagirre, letxeberria, gsagardui}@mondragon.edu

Abstract. The use of Model Driven Software Development (MDSD) approach
is increasing in industry. MDSD approach raises the level of abstraction using
models as main artifacts of software engineering processes. Models are closer
to the problem domain than the solution domain and are easier to understand
than the code. Models could be used for early validation and verification or for
the automatic generation of code. When models are used for code generation, a
system based on metamodels and transformations is developed in order to allow
automatic code generation from models. Maintainability and evolution of these
systems is a real and complex issue. Moreover, when the software architecture
of the targeted systems evolves, the system that generates the code should
evolve too. This means to adapt the transformation rules, the input metamodel
and models.

To reduce the adaptation time of MDSD system has become crucial. In this

paper we present an approach and a tool for performing automated analysis of
the impact of software architecture changes due to evolution, concretely soft-
ware architecture migrations, on model driven code generation systems. The
approach and the tool improve the process of managing and implementing the
required changes in MDSD due to Software architecture changes. To demon-
strate the usefulness of the approach the tool has been applied to a MDSD sys-
tem that generates ANSI-C code semi-automatically from UML models (a de-
sign based on UML2 components).

Keywords: Model Driven Software Development, Code generation, Impact
analysis, Model to Model Transformation, Software Architecture Evolution

1 Introduction

Industrial software systems must continually evolve otherwise the solution they pro-
vide could become increasingly less satisfactory for the users and the marketplace.
Concepts and techniques of Software Architecture are fundamental in software devel-
opment [1]. A key aspect of software evolution is software architecture evolution.
Depending on the requirements of the software evolution different abstraction level
elements of the software architecture are affected. [2] Defines three kinds of software
architecture evolution: Endogenous, architecture migration and exogenous migration.

Endogenous evolution refers to software architecture design refinements, such as
splitting a component in two. Exogenous evolution refers to changes in the architec-
ture modeling language. Software architecture migration occurs when the architecture
must adopt a new technical infrastructure characteristic such as moving from client
server architecture (CS) to service oriented architecture (SOA), or changing frame-
work or execution platform. This work is focused on software architecture migration
in which aspects, such as the concurrency API, the inter-component communication
mechanism or execution platform evolve.

The combination of model driven software development (MDSD) and software ar-
chitecture concepts is considered especially advantageous for developing complex
systems. One of the weak points of MDSD is the management of the evolution of
software architectures. When software architecture changes the adaptation of the de-
signed and implemented MDSD system is critical. The aim of the work is to reduce
the development cost of model driven code generation systems when a software ar-
chitecture migration must be done. In this paper we present a methodology and a tool
for automatic impact analysis of software architecture migrations in MDSD systems.
The tool concretely deducts the transformation rules that must be modified and the
changes that must be made in the transformation rules to adapt the MDSD system to
software architecture migrations. The impact analysis tool is designed for MDSD
systems that generate automatically code, but it can be used in any MDSD system that
has a M2M transformation. First, in section 2, concepts of MDSD evolution and soft-
ware architecture evolution concepts are explained. The third section describes the
implementation of the impact analysis tool. Then in section 4 a case study which vali-
dates the usefulness of the tool is presented. Finally in section 5 and 6 we present the
conclusions and future works respectively.

2 MDSD and Software Architecture Evolution

The adaptation process of MDSD systems for any kind of evolution has the same
steps as in traditional software development :

(a) Identify an emergent need
(b) Understand and analyze the change impact
(c) Implement changes
(d) Validate the implementation

However in MDSD systems the evolution not only affects the final source code,
also the metamodels, transformation rules (including templates) and models are af-
fected. MDSD systems can evolve in different dimensions [3]: regular evolution,
metamodel evolution, platform evolution and abstraction evolution.In regular evolu-
tion the models are the modified elements, the metamodels and transformation rules
don’t require any change. In metamodel evolution the modeling language is mod-
ified to increase its expressivity. The changes in the metamodel impact the models
and therefore the models must be migrated to the evolved metamodel. In [4][5][9]

co-evolution between metamodels and models is treated .In metamodel evolution co-
evolution between metamodels and transformation rules is also needed. In platform
evolution, MDSD system must adapt the automatically generated output to new APIs,
frameworks or provide different implementations of certain services. Such changes
require modifications in the model to model (M2M) and model to text (M2T) trans-
formations. When the source metamodel does not support the abstractions required
for the new platform requirement it is necessary to extend the metamodel or to add a
new metamodel. These situations are defined as abstraction evolutions and new do-
main concepts are inserted in the MDSD system. In abstraction evolution all the
MDSD artifacts are affected.

Continuous adaptation of software architectures evolution in MDSD system is essen-
tial. Regarding evolution of software architectures, there are three different types of
architectural evolution: Exogenous, endogenous and software architecture migrations.
Table 1 shows the relation between architectural evolution and MDSD evolution..
Endogenous evolution requires only model refinements in a MDSD code generation
system. Architectural exogenous evolution requires metamodels and meta-
metamodels changes. . When architecture migration occurs the MDSD must adapt the
transformation rules that generate the code and it may also be necessary to extend the
architecture metamodel.

Table 1. SW Architecture Evolution relation with MDSD evolution dimensions

SW architecture Evolution type MDSD Evolution

Dimension Elements to modify

Endogenous Regular Evolution Models

Migration

Platform Evolution

Abstract Evolution

Metamodels, models and transformation

rules

Exogenous Metamodel and meta-metamodel evolution

Metamodels, models and transformation

rules

In most MDSD co-evolution proposals the input metamodel evolution differential is
the initial entry point for the adaptation process. In these cases, changes impact analy-
sis and changes implementation (co-evolution) requires adaptation mechanisms based
on input meta-model evolution. [6] defines a framework based in megamodeling for
analyzing the impact on transformation rules due to the evolution of the metamodel.
The solution is based on relationships between elements of the metamodel and trans-
formation rules for the impact analysis on the transformation rules. There are several
works where different elements of MDSD are adapted automatically. For example,
[4] and [5] automatically migrate existing models to new metamodel specifications. In
[7] transformations are semi-automatically adapted based on the input metamodel
evolution differential.However, sometimes the evolution requirement provides infor-
mation about the changes to be made in the MDSD system output, for example in the

generated code. In these situations the input metamodel may require changes or not.
For example, if a UML MARTE [8] design needs a change of the execution platform
API, the metamodel is not affected. Sometimes changes in the input metamodel are
also needed but it is not clear how to do the extension or there are several metamodel
extension options. Architectural software often tend to create this kind of evolution
scenarios in MDSD code generation systems. Even when the architectural evolution
is expressed in the metamodel , as done in [2], predict and determine the changes of
the transformation rules that generate the ouptut code requires an exhaustive inspect.
In these situations an automatic impact analysis on the MDSD system transformation
rules based on the output models is very useful both for designing a metamodel ex-
tension properly, as to guide the engineer in adapting transformation rules, especially
when breaking and unresolvable changes[8] appears on the metamodel.

Fig. 1. MDSD code generation system generic design

In this paper, we present a tool for automatic impact analysis of MDSD code genera-
tion systems for SW architecture migration scenarios. The impact analysis is done on
the M2M transformation. The solution uses a differential model of the models
representing the code to establish the adaptations that must be made in the transforma-
tion rules. The differential model represents the SW architecture migration in the
source level. The Figure 1 shows a MDSD code generation system with an interme-
diate step that generates a model that represents the code; the approach is for this kind
of MDSD systems. The impact analysis process due to architectural software migra-
tion consists of the following phases:

1. Capture new software architecture migration requirement
2. Increase manually a previous output model without the requirement and obtain the

differential model
3. Obtain the traceability between a previous design model, an output model without

the requirement and the transformation rules
4. Deduct the adaptations to be made in the transformation rules of the MDSD sys-

tem.

To automate the analysis process a JAVA & EMF tool has been created. The tool can
be applied to any MDSD system implemented with EMF and ATL. The tool is inde-
pendent of the metamodel used in the design and the output metamodel as long as
they are based on the EMF meta-metamodel.

3 Automatic impact analysis tool design

The automatic impact analysis tool and the process used are described in detail in this
section, see figure 2. First how the SW architecture migration requirement must be
captured is explained. Then how the output models differential and the traceability
model must be obtained is described. Finally the algorithm used to deduct the re-
quired changes in the transformation rules is introduced.

Fig. 2. Impact analysis process for architecture SW migrations

3.1 Capture new architectural software migration requirements

An EMF metamodel has been created to express the software architecture migration
by actions to perform to achieve the requirement. This metamodel is based in [16] and
allows specifying different level characteristics of source code that must be added and
modified in the generated code when a software architecture evolution is needed.
When a new software architecture migration requirement appears the software archi-
tecture engineer defines a model specifying the operations that are needed to adapt the
software architecture of the applications. An architectural migration requirement ex-
ample model is on figure 3. This metamodel can be replaced in the tool by another
metamodel for expressing the output elements evolution without modifying the tool.
This way the tool is independent of the metamodel used to specify the evolution, arc-
hitectural or not architectural.

3.2 Output Models differential

Using the information of the architectural software migration requirement model the
software architecture expert modifies a previously automatically generated output
model to meet the new requirements. Knowledge on the generated software is needed
in this step. Next the difference model between the incremented output model and the

M2M trans formation rules

Refined M2M

transformation rules

ATL2Tracer HOT

Input:

Application
Design

Ou tput

Model

SW Architecture

Migration

Specification Model

Traceability
Model

Incremented

Ou tput

Model

EMFCompare

Difference Model Weaving model

 Automatic Impact Analysis Tool

Impact Analysis Result

previous model output is obtained. This differential is obtained by EMFCompare tool
[10] that uses EMFDiff metamodel. After this step the software architecture engineer
must establish the relationship between the differences and the architecture migration
requirement model. This traceability information is used in the impact analysis algo-
rithm. This relationship is done using Atlas Model Weaving (AMW) [11].

3.3 Transformation rules traceability

In the next step the ATL2Trace [12] Higher Order Transformation (HOT) [13] is
applied to the M2M transformation of the MDSD system under development. The
result of the HOT is a refinement of the ATL transformation rules under analysis.
This new transformation rules creates traceability information when they are executed
for an input design model and generates an output model that represent the source
code of the design. The refined rules are executed with the input design model that
creates the output model without new requirements. Each traceability data saves the
target element, the source model element and the transformation rule responsible of
generating the target model element.

3.4 MDSD system changes deduction phase

Using the differential model of the output models, traceability model and the weaving
model between the architectural software migration requirement model and the output
differential model the impact analysis can be done automatically. The tool performs
the analysis in three stages: First it gets a complete list of possible changes to be
made, then it performs a filtering process to avoid duplications and finally deducts the
modifications to perform. The following sub sections describe the different stages.

Relationship between the output models differentials and transformations. First,
it is established and collected which transformation rule is related to which difference
of the output models differential. The tool gets the element of each output difference
and searches in the trace model the transformation rule associated with the target ele-
ment. Each relationship between a transformation rule and a difference is called adap-
tation goal. The tool relates EMFDiff metamodel difference with the modification
operation to be applied on the transformation rules. Currently only ModelElement-
ChangeLeft and ReferenceChangeLeftTarget difference types from EMFDiff meta-
model are considered by the tool. For each ReferenceChangeLeftTarget, the type of
modification that must be done in the transformation is to add a new binding. When
the difference is a ModelElementChangeLeft, adaptation goal is established slightly
differently. This difference type requires a binding in the related rule and a new rule
to create the new output element. A simple metamodel has been defined to express
adaptation goals. Adaptation goals are composed of: a source element, a target ele-
ment, the transformation rule and rule refinement operations. The result data of the
impact analysis is an adaptation goals model.

Adaptation goals filtering. Because the relationship between the transformation
rules and the difference model is based on model elements and not on metamodel
elements several adaptation goals may be referred to the same change to be made in
the transformation rules. We therefore must filter adaptation goals to obtain the final
list of changes. The filtering is based on the affected transformation rule, the source
element type, the target element type and the software architecture migration re-
quirement operation associated to the difference element. Due to space reason the
filtering algorithm has been omitted.

Semi-Automatic adaptation of the transformation rules adaptations. With the
information provided by the impact analysis, for example table 2 adaptations goals
model, the MDSD system developers can start to make the required changes in the
transformation rules. To facilitate this process a HOT has been defined to refine any
ATL transformation rules using the impact analysis information. From the source and
target elements the element type data is used. When an addRule change operation
must be applied, a rule is created with its corresponding binding and is inserted into
the corresponding ATL module. When the type of modification to be made in the
transformation rules is an addBinding operation, the HOT refines this rule. The HOT
also creates the header of the helper functions to be used in the binding assignments.
For reason of space the HOT list is not shown, but if necessary you can request it via
email.

4 Case study

In this section the automatic analysis of the impact is applied to a concrete MDSD
code generation system. The MDSD system used in this case study can generate
ANSI-C code for component-based SW architectures previously designed by UML
[14]. UML designs are transformed to ANSI-C code through a M2M transformation
and a M2T transformation, as shown in figure 1. In the first stage, the M2M transfor-
mation, the UML component models are transformed in SIMPLEC (a meta-model
representing a subset of ANSI-C) models. M2M transformation is implemented in
ATL. M2M transformation is performed incrementally by superimposition mechan-
ism of ATL [15]. M2M transformation consists of 8 files, 40 matched rules, 30 lazy
rules and 44 helper functions. In a second stage XPAND2 based templates are ap-
plied to SIMPLEC models to generate ANSI-C code. Two architectural software
migration requirements have been used to test the impact analysis method and the
developed tool. Originally the MDSD system of the case study did not offer concur-
rency characteristics on the components. The first migration requirement was to add
concurrency capabilities to the generated code. The second requirement was a mi-
gration from a bare-metal cyclic executive concurrency API to freeRTOS. For space
limitations only the first one is shown.

To perform the impact analysis a previously used UML design was selected: a UML
design of an automatic door controller. To start with the impact analysis, first, the

architecture software migration was specified. The new platform requirement is to
provide concurrent components under an API. Figure 3 shows the architectural SW
migration model of this case study. The next step is to manually edit the SIMPLEC
output model with the code elements necessary to use concurrent tasks under the se-
lected API. Once the target output model with concurrency is created the difference
model between the original and the incremented model is generated using EMFCom-
pare Tool. A total of 12 changes were founded. In order to add information about the
reason for the difference in the model representing the code, each difference is related
to architectural software migration operations defined previously in software architec-
ture migration model. Finally the traceability model is obtained.

Fig. 3. Architectural software migration specification for adding concurrency characteristic

All the inputs needed by the impact analysis tool are ready: Traceability model, out-
put differences model, weaving model between differences and software Architectu-
re migration operations, the automatic door UML design and the corresponding door
SIMPLEC model. With this information the tool can be executed.
Table 2 shows the adaptation goal list for concurrency adaptation of the case study.

Table 2. Final adaptation goal list for concurrency adaptation.
Adaptation id. Transformation rule Source Element Target Element Modification operation type

1 lazy rule createAppComponentInstance Uml::Component AppOS SimpleC::Module AppOS addBinding

2 lazy rule InstanceModuleFile Uml::Component AppOS SimpleC::File AppOS addBinding

3 lazy rule createDeploymentPackage Uml::Component AppOS SimpleC::Package AppOS addRule,addBinding

4 lazy rule componentInstance Uml::Component SimpleDoor SimpleC::Module SimpleDoor addBinding

5 lazy rule InstanceModuleFile Uml::Component SimpleDoor SimpleC::File SimpleDoor addBinding

6 rule createComponentPackage • Uml::Component

SimpleDoor

• SimpleC::Package

SimpleDoor

addRule,addBinding

7 x x SimpleC::Method AddTask addRule,addBinding

8 x x SimpleC::Method Schedule addRule,addBinding

This architectural software migration requires platform evolution and abstract evolu-
tion in the MDSD system because requires changes in the generated code and new
metamodeling elements. The OMG MARTE profile SRM package [8] was selected to
specify the concurrency in the design. The changes implemented in the transformation
rules to adapt the MDSD system to the new requirements were those suggested by the
tool. This same process has been used successfully to adapt the selected MDSD sys-
tem to a different concurrency API. Due to the design characteristic of MARTE pro-

file SRM package this architecture migration requirement did not need different or
new metamodeling elements, so platform evolution was only required in the selected
MDSD system.

5 Conclusions

The article has presented an impact analysis method for MDSD code generation sys-
tems for software architecture migrations. The analysis method has been automated
by a Java tool & EMF. The benefits of using the tool have been also demonstrated
comparing the impact analysis done without and with the tool for a selected MDSD
system in the context of two software architecture migrations. The tool can be applied
to any MDSD legacy system that has a M2M transformation implemented in ATL. To
apply the tool it is enough knowing the changes that are necessary in the M2M trans-
formation output models. The tool is independent of the metamodel used to express
the evolution. In this case a metamodel has been defined to specify software architec-
ture evolutions. There are studies about co-evolution for models migration [4] [5] and
for adaptation of transformations [7] when metamodel evolution occurs. The work
presented complements these works because it deducts changes that should be done in
the transformation rules independently of the input metamodel evolution. In [6] mega-
modeling is used to determine the impact that may raise evolution of a meta-model on
the transformation rules. This type of solution requires previous knowledge of the
MDSD system to establish the corresponding relationships between the meta-model
elements and the transformation rules. Using only input and output models previously
used to validate the MDSD system the presented tool can be used to understand the
MDSD system and establish the relationships necessary for the mega-modeling. The
work shows that combining traceability information and output models differential it
is possible to analyze the impact of evolution requirements for M2M transformations.

6 Future work

The tool has been tested with one MDSD system case study. It is necessary to apply
the automatic impact to other MDSD systems. Currently the tool only works with two
types of EMFDiff difference types. The tool must be extended to deal with more dif-
ference types. Therefore, it is essential to analyze different types of software evolu-
tion and architecture migrations situations. This new situations will require new re-
finements operations and patterns for the transformation rules. At short term, the
impact analysis result will be used in the design of metamodel extensions in software
architecture migration situations that require abstraction evolution of the MDSD sys-
tem. The goal is to predict the adaptation time of a MDSD system mixing the impact
analysis data and the metamodel extension design.

7 Acknowledgments

This work has been developed in the DA2SEC project context funded by the Depart-
ment of Education, Universities and Research of the Basque Government. The work
has been developed by the embedded system group supported by the Department of
Education, Universities and Research of the Basque Government.

References

1. Jazayeri M., “On architectural stability and evolution”, Proceeding of Ada-Europe’02,
2002

2. A. Amirat, A. Menasria and N. Gasmallah, "Evolution Framework for Software Architec-
ture Using Graph Transformation Approach," The 2012 International Arab Conference on
Information Technology (ACIT'2012), 2011.

3. A. van Deursen, E. Visser, and J. Warmer, Model-driven software evolution: A research
agenda, in Proceedings of Int. Workshop on Model-Driven Software Evolution (MoDSE)
held with the ECSMR'07, March 2007

4. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled evolution of
metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
52–76. Springer, Heidelberg (2009)

5. Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, Fiona A. C. Polack: Model Migra-
tion with Epsilon Flock. ICMT 2010: 184-198

6. Ludovico Iovino, Alfonso Pierantonio, Ivano Malavolta: On the Impact Significance of
Metamodel Evolution in MDE. Journal of Object Technology 11(3): 3: 1-33 (2012)

7. Jokin García, Oscar Díaz, Maider Azanza: Model Transformation Co-evolution: A Semi-
automatic Approach. SLE 2012: 144-163

8. OMG: Modeling and Analysis of Real-time and Embedded systems (MARTE), Version
1.0, http://www.omg.org/spec/MARTE/1.0/. (2009)

9. Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, Alfonso Pierantonio: Automating
Co-evolution in Model-Driven Engineering. EDOC 2008: 222-231

10. A. Toulmé. Presentation of EMF Compare Utility. Eclipse Modeling Sympossium 2006,
pages 1-8, 2006.

11. Didonet Del Fabro, M ; Bézivin, J. ; Valduriez, P . Weaving Models with the Eclipse
AMW plugin. In: Eclipse Summit Europe 2006, 2006, Esslingen. Eclipse Modeling Sym-
posium, Eclipse Summit Europe 2006, 2006

12. Joault, F., “Loosely Coupled Traceability for ATL”, University of Nantes, ATLAS -
INRIA Group, 2005

13. Massimo Tisi, Jordi Cabot, Frédéric Jouault: Improving Higher-Order Transformations
Support in ATL. ICMT 2010: 215-229

14. Joseba Andoni Agirre, Sagardui Goiuria , Leire Etxeberria."A flexible model driven soft-
ware development process for component based embedded control systems", III Jornadas
de Computación Empotradas JCE, SARTECO, Elche,Spain, 2012

15. Dennis Wagelaar, Ragnhild Van Der Straeten and Dirk Deridder, Module superimposition:
a composition technique for rule-based model transformation languages, Software and
Systems Modeling, 2009

16. Byron J. Williams, Jeffrey C. Carver: Characterizing software architecture changes: A sys-
tematic review. Information & Software Technology 52(1): 31-51 (2010)

