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Abstract. The use of Model Driven Software Development (MD@pproach
is increasing in industry. MDSD approach raiseslével of abstraction using
models as main artifacts of software engineeriracgsses. Models are closer
to the problem domain than the solution domain aredeasier to understand
than the code. Models could be used for early atiidh and verification or for
the automatic generation of code. When models sed €or code generation, a
system based on metamodels and transformatiorevédaped in order to allow
automatic code generation from models. Maintaiftgtalnd evolution of these
systems is a real and complex issue. Moreover, wihesoftware architecture
of the targeted systems evolves, the system thagergees the code should
evolve too. This means to adapt the transformatibes, the input metamodel
and models.

To reduce the adaptation time of MDSD system hasibe crucial. In this
paper we present an approach and a tool for perigrautomated analysis of
the impact of software architecture changes duevtdution, concretely soft-
ware architecture migrations, on model driven cgédaeration systems. The
approach and the tool improve the process of magaand implementing the
required changes in MDSD due to Software architecthanges. To demon-
strate the usefulness of the approach the toobbes applied to a MDSD sys-
tem that generates ANSI-C code semi-automaticadignftUML models (a de-
sign based on UML2 components).
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1 Introduction

Industrial software systems must continually evadtieerwise the solution they pro-
vide could become increasingly less satisfactorytlie@ users and the marketplace.
Concepts and techniques of Software Architectueefamdamental in software devel-
opment [1]. A key aspect of software evolution @édtware architecture evolution.
Depending on the requirements of the software ewwiuifferent abstraction level
elements of the software architecture are affe¢®defines three kinds of software
architecture evolution: Endogenous, architecturgration and exogenous migration.



Endogenous evolution refers to software architectdesign refinements, such as
splitting a component in two. Exogenous evolutiefers to changes in the architec-
ture modeling language. Software architecture rtigmeoccurs when the architecture
must adopt a new technical infrastructure chartiersuch as moving from client

server architecture (CS) to service oriented agchite (SOA), or changing frame-
work or execution platform. This work is focused swftware architecture migration

in which aspects, such as the concurrency APIljrtteg-component communication

mechanism or execution platform evolve.

The combination of model driven software developt{&tDSD) and software ar-
chitecture concepts is considered especially adgaous for developing complex
systems. One of the weak points of MDSD is the rgangent of the evolution of
software architectures. When software architectin@nges the adaptation of the de-
signed and implemented MDSD system is criticale Bim of the work is to reduce
the development cost of model driven code germratystems when a software ar-
chitecture migration must be done. In this papepvesent a methodology and a tool
for automatic impact analysis of software architeetmigrations in MDSD systems.
The tool concretely deducts the transformationsribeat must be modified and the
changes that must be made in the transformatias tol adapt the MDSD system to
software architecture migrations. The impact ansalysol is designed for MDSD
systems that generate automatically code, bunibeaused in any MDSD system that
has a M2M transformation. First, in section 2, apts of MDSD evolution and soft-
ware architecture evolution concepts are explaifdek third section describes the
implementation of the impact analysis tool. Theségction 4 a case study which vali-
dates the usefulness of the tool is presentedli¥rimasection 5 and 6 we present the
conclusions and future works respectively.

2 M DSD and Softwar e Architecture Evolution

The adaptation process of MDSD systems for any kihévolution has the same
steps as in traditional software development :

(a) Identify an emergent need

(b) Understand and analyze the change impact
(c) Implement changes

(d) Validate the implementation

However in MDSD systems the evolution not onlyeaf§ the final source code,
also the metamodels, transformation rules (inclgdiemplates) and models are af-
fected. MDSD systems can evolve in different dinems [3]: regular evolution,
metamodel evolution, platform evolution and abgtosmcevolution.In regular evolu-
tion the models are the modified elements, the metkels and transformation rules
don’t require any change. In metamodel evolutivm modeling language is mod-
ified to increase its expressivity. The changeshin metamodel impact the models
and therefore the models must be migrated teetlsdved metamodel. In [4][5][9]



co-evolution between metamodels and models istetieén metamodel evolution co-
evolution between metamodels and transformatioesrig also needed. In platform
evolution, MDSD system must adapt the automatiogdigerated output to new APIs,
frameworks or provide different implementationsceftain services. Such changes
require modifications in the model to model (M2M)damodel to text (M2T) trans-
formations. When the source metamodel does notostpipe abstractions required
for the new platform requirement it is necessargxtend the metamodel or to add a
new metamodel. These situations are defined asaalien evolutions and new do-
main concepts are inserted in the MDSD system.bistraction evolution all the
MDSD artifacts are affected.

Continuous adaptation of software architecturedugiam in MDSD system is essen-
tial. Regarding evolution of software architectyrdere are three different types of
architectural evolution: Exogenous, endogenoussaffiivare architecture migrations.
Table 1 shows the relation between architecturaluton and MDSD evolution..
Endogenous evolution requires only model refinemémta MDSD code generation
system. Architectural exogenous evolution requiregetamodels and meta-
metamodels changes. . When architecture migratieare the MDSD must adapt the
transformation rules that generate the code amdayt also be necessary to extend the
architecture metamodel.

Table 1. SW Architecture Evolution relation with MDSD ewtibn dimensions

SW ar chitecture Evolution type MDSD Evolution
Dimension Elements to modify
Endogenous Regular Evolution Models
Migration Platform Evolution Metamodels, models and transformation
Abstract Evolution rules
Exogenous Metamodel and meta-metamodel evolutiorMetamodels, models and transformation

rules

In most MDSD co-evolution proposals the input metdei evolution differential is
the initial entry point for the adaptation procdssthese cases, changes impact analy-
sis and changes implementation (co-evolution) reguadaptation mechanisms based
on input meta-model evolution. [6] defines a frarnekvbased in megamodeling for
analyzing the impact on transformation rules du¢htoevolution of the metamodel.
The solution is based on relationships between extésnof the metamodel and trans-
formation rules for the impact analysis on the sfarmation rules. There are several
works where different elements of MDSD are addyatetomatically. For example,
[4] and [5] automatically migrate existing modedsiew metamodel specifications. In
[7] transformations are semi-automatically adapbeded on the input metamodel
evolution differential. However, sometimes the etioln requirement provides infor-
mation about the changes to be made in the MDS®2msysutput, for example in the



generated code. In these situations the input netehrmay require changes or not.
For example, if a UML MARTE [8] design needs a djparf the execution platform
API, the metamodel is not affected. Sometimes gkarin the input metamodel are
also needed but it is not clear how to do the esitanor there are several metamodel
extension options. Architectural software oftendtéa create this kind of evolution
scenarios in MDSD code generation systems. Eveanuiie architectural evolution
is expressed in the metamodel , as done in [2[ipr and determine the changes of
the transformation rules that generate the oumidé cequires an exhaustive inspect.
In these situations an automatic impact analysitherMDSD system transformation
rules based on the output models is very usefth for designing a metamodel ex-
tension properly, as to guide the engineer in adggtansformation rules, especially
when breaking and unresolvable changes[8] appeathe metamodel.

Design metamodel Programming
language metamodel
/ f

/
/ Conforms to / Conforms to
- " Model -
Application design M2M vepresentingihe M2T Application source
model Transformation app code Transformation code

Fig. 1. MDSD code generation system generic design

In this paper, we present a tool for automatic ictaalysis of MDSD code genera-
tion systems for SW architecture migration scermsariche impact analysis is done on
the M2M transformation. The solution uses a difféied model of the models
representing the code to establish the adaptatiiatsnust be made in the transforma-
tion rules. The differential model represents thW¥ &rchitecture migration in the
source level. The Figure 1 shows a MDSD code giogr system with an interme-
diate step that generates a model that representote; the approach is for this kind
of MDSD systems. The impact analysis process dwedbitectural software migra-
tion consists of the following phases:

1. Capture new software architecture migration reaquoéet

2. Increase manually a previous output model withbatrequirement and obtain the
differential model

3. Obtain the traceability between a previous desigaleh an output model without
the requirement and the transformation rules

4. Deduct the adaptations to be made in the transtosmaules of the MDSD sys-
tem.

To automate the analysis process a JAVA & EMF t@d been created. The tool can
be applied to any MDSD system implemented with EAfild ATL. The tool is inde-
pendent of the metamodel used in the design anautut metamodel as long as
they are based on the EMF meta-metamodel.



3 Automaticimpact analysistool design

The automatic impact analysis tool and the proasss are described in detail in this
section, see figure 2. First how the SW architectmigration requirement must be
captured is explained. Then how the output mod#fsrdntial and the traceability
model must be obtained is described. Finally tlgorithm used to deduct the re-
quired changes in the transformation rules is thioed.

M2M transformation rules II SW Architecture
Migration
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ﬂ Difference Model /t> Weawng\lmda
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Fig. 2. Impact analysis process for architecture SW miignat

3.1 Capturenew architectural software migration requirements

An EMF metamodel has been created to express fhease architecture migration
by actions to perform to achieve the requiremehts fnetamodel is based in [16] and
allows specifying different level characteristidssource code that must be added and
modified in the generated code when a softwareiteathire evolution is needed.
When a new software architecture migration requineimrappears the software archi-
tecture engineer defines a model specifying theatjpms that are needed to adapt the
software architecture of the applications. An aexttural migration requirement ex-
ample model is on figure 3. This metamodel candpgaced in the tool by another
metamodel for expressing the output elements ewvolwithout modifying the tool.
This way the tool is independent of the metamodeduo specify the evolution, arc-
hitectural or not architectural.

3.2  Output Modelsdifferential

Using the information of the architectural softwaneration requirement model the
software architecture expert modifies a previowslyomatically generated output
model to meet the new requirements. Knowledgeéhergenerated software is needed
in this step. Next the difference model betweeniticeemented output model and the



previous model output is obtained. This differdngaobtained by EMFCompare tool
[10] that uses EMFDiff metamodel. After this stéje software architecture engineer
must establish the relationship between the diffezs and the architecture migration
requirement model. This traceability informationused in the impact analysis algo-
rithm. This relationship is done using Atlas Motiétaving (AMW) [11].

3.3  Transformation rulestraceability

In the next step the ATL2Trace [12] Higher Ordemafsformation (HOT) [13] is
applied to the M2M transformation of the MDSD systunder development. The
result of the HOT is a refinement of the ATL traovsfiation rules under analysis.
This new transformation rules creates tracealkitityrmation when they are executed
for an input design model and generates an outmaeithat represent the source
code of the design. The refined rules are execwiti the input design model that
creates the output model without new requiremerEach traceability data saves the
target element, the source model element and #msformation rule responsible of
generating the target model element.

34 MDSD system changes deduction phase

Using the differential model of the output mod#taceability model and the weaving
model between the architectural software migratemuirement model and the output
differential model the impact analysis can be dantmatically. The tool performs

the analysis in three stages: First it gets a cetaplist of possible changes to be
made, then it performs a filtering process to avhiglications and finally deducts the
modifications to perform. The following sub secsatescribe the different stages.

Relationship between the output models differentials and transformations. First,

it is established and collected which transformmatiale is related to which difference
of the output models differential. The tool géte element of each output difference
and searches in the trace model the transformatierassociated with the target ele-
ment. Each relationship between a transformatitmand a difference is called adap-
tation goal The tool relates EMFDiff metamodel difference wttie modification
operation to be applied on the transformation ru@srrently onlyModel Element-
ChangelLeft and ReferenceChangel eftTarget difference types from EMFDiff meta-
model are considered by the tool. For eReferenceChangeleftTarget, the type of
modification that must be done in the transformai®to add a new binding. When
the difference is &odelElementChangeleft, adaptation goal is established slightly
differently. This difference type requires a birglim the related rule and a new rule
to create the new output elemeAtsimple metamodel has been defined to express
adaptation goals. Adaptation goals are composed sburce element, a target ele-
ment, the transformation rule and rule refinemeuetrations. The result data of the
impact analysis is an adaptation goals model.



Adaptation goals filtering. Because the relationship between the transformation
rules and the difference model is based on modehehts and not on metamodel
elements several adaptation goals may be refeoréitet same change to be made in
the transformation rules. We therefore must filldaptation goals to obtain the final
list of changes. The filtering is based on the @#d transformation rule, the source
element type, the target element type and the aodtvarchitecture migration re-
quirement operation associated to the differeneeneht. Due to space reason the
filtering algorithm has been omitted.

Semi-Automatic adaptation of the transformation rules adaptations. With the
information provided by the impact analysis, fommple table 2 adaptations goals
model, the MDSD system developers can start to nla&erequired changes in the
transformation rules. To facilitate this procesd@T has been defined to refine any
ATL transformation rules using the impact analysfsrmation. From the source and
target elements the element type data is used. VehealdRule change operation
must be applied, a rule is created with its comesiing binding and is inserted into
the corresponding ATL module. When the type of rfiodiion to be made in the
transformation rules is aaddBinding operation, the HOT refines this rule. The HOT
also creates the header of the helper functioetosed in the binding assignments.
For reason of space the HOT list is not shown ifocessary you can request it via
email.

4  Casestudy

In this section the automatic analysis of the impacapplied to a concrete MDSD
code generation system. The MDSD system used @ dhse study can generate
ANSI-C code for component-based SW architecturevipusly designed by UML
[14]. UML designs are transformed to ANSI-C codeotlgh a M2M transformation
and a M2T transformation, as shown in figure 1thia first stage, the M2M transfor-
mation, the UML component models are transforme@IlMPLEC (a meta-model
representing a subset of ANSI-C) models. M2M tramshtion is implemented in
ATL. M2M transformation is performed incrementably superimposition mechan-
ism of ATL [15]. M2M transformation consists of Bes, 40 matched rules, 30 lazy
rules and 44 helper functions. In a second stalgAND?2 based templates are ap-
plied to SIMPLEC models to generate ANSI-C codeioTarchitectural software
migration requirements have been used to testrtipadt analysis method and the
developed tool. Originally the MDSD system of trese study did not offer concur-
rency characteristics on the components. Theffiigtation requirement was to add
concurrency capabilities to the generated codhe. Second requirement was a mi-
gration from a bare-metal cyclic executive concucseAPI to freeRTOS. For space
limitations only the first one is shown.

To perform the impact analysis a previously usedLUMsign was selected: a UML
design of an automatic door controller. To staithvthe impact analysis, first, the



architecture software migration was specified. Tesv platform requirement is to
provide concurrent components under an API. Figushows the architectural SW
migration model of this case study. The next sgeeimanually edit the SIMPLEC
output model with the code elements necessarydccancurrent tasks under the se-
lected API. Once the target output model with ceorency is created the difference
model between the original and the incremented msdgenerated using EMFCom-
pare Tool. A total of 12 changes were foundedbrhter to add information about the
reason for the difference in the model represerttiegcode, each difference is related
to architectural software migration operations wkedi previously in software architec-
ture migration model. Finally the traceability mbteobtained.

a|lg platform:/resource/CaseStudyFromUmI2SimpleC/models/simpleDoor.swarchitecturemigrationrequirements
4 4 Migration Requirements Model SimpleDoorApp
4 4 Migration Requirement ComponentsWithTasks
4 < SW Architecture Change Context AddingAndCreatingTasks

4 <4 Concurrent Processes NewTasksCreation
<4 Change Action AddTasks

a4 4 Layers ConcurrencyAPL
<4 Change Action Include AP headers

4 <4 Moedule Decomposition AddTaskModel
<4 Change Action DefineTaskMethod
<4 Change Action DefineTaskCreationMethod

Fig. 3. Architectural software migration specificatifum adding concurrency characteristic

All the inputs needed by the impact analysis toel @ady: Traceability model, out-
put differences model, weaving model betweerediffices and software Architectu-
re migration operations, the automatic door UMLigesand the corresponding door
SIMPLEC model. With this information the tool can e b executed.
Table 2 shows the adaptation goal list for corenoy adaptation of the case study.

Table 2. Final adaptation goal list for concurrency adaptat

Adaptation id. Transformation rule Sour ce Element Target Element Modification operation type
1 lazy rule createAppComponentinstange Uml::Component AppOS SimpleC::Module AppOS addBinding

2 lazy rule InstanceModuleFile Uml::Component AppOS SimpleC::File AppOS addBinding

3 lazy rule createDeploymentPackage | Uml::Component AppOS SimpleC::Package AppOS addRuleaddBinding

4 lazy rule componentinstance Uml::Component SimpleDoor SimpleC::M odule SimpleDoor addBinding

5 lazy rule InstanceModuleFile Uml::Component SimpleDoor SimpleC::File SimpleDoor addBinding

6 rule createComponentPackage . Uml::Component . SimpleC::Package addRuleaddBinding

SimpleDoor SimpleDoor
7 X X SimpleC::Method AddTask addRuleaddBinding
8 X X SimpleC::Method Schedule addRuleaddBinding

This architectural software migration requires folah evolution and abstract evolu-
tion in the MDSD system because requires changekeirgenerated code and new
metamodeling elements. The OMG MARTE profile SRMkse [8] was selected to
specify the concurrency in the design. The chaimgpkmented in the transformation
rules to adapt the MDSD system to the new requirésna@ere those suggested by the
tool. This same process has been used successfidlyapt the selected MDSD sys-
tem to a different concurrency API. Due to theigiesharacteristic of MARTE pro-



file SRM package this architecture migration regoient did not need different or
new metamodeling elements, so platform evolutvas only required in the selected
MDSD system.

5 Conclusions

The article has presented an impact analysis metitoblDSD code generation sys-
tems for software architecture migrations. The ysialmethod has been automated
by a Java tool & EMF. The benefits of using thel toave been also demonstrated
comparing the impact analysis done without and withtool for a selected MDSD
system in the context of two software architecturgrations. The tool can be applied
to any MDSD legacy system that has a M2M transfeionamplemented in ATL. To
apply the tool it is enough knowing the changes #na necessary in the M2M trans-
formation output models. The tool is independenthaf metamodel used to express
the evolution. In this case a metamodel has beknedeto specify software architec-
ture evolutions. There are studies about co-evaiuior models migration [4] [5] and
for adaptation of transformations [7] when metanaslelution occurs. The work
presented complements these works because it dechantiges that should be done in
the transformation rules independently of the inpatamodel evolution. In [6] mega-
modeling is used to determine the impact that naigerevolution of a meta-model on
the transformation rules. This type of solutionuiegs previous knowledge of the
MDSD system to establish the corresponding relatigs between the meta-model
elements and the transformation rules. Using ambyii and output models previously
used to validate the MDSD system the presenteldcen be used to understand the
MDSD system and establish the relationships necg$ésathe mega-modeling. The
work shows that combining traceability informatiand output models differential it
is possible to analyze the impact of evolution refraents for M2M transformations.

6 Futurework

The tool has been tested with one MDSD system sfasly. It is necessary to apply
the automatic impact to other MDSD systems. Culyeht tool only works with two
types of EMFDiff difference types. The tool mustdsdended to deal with more dif-
ference types. Therefore, it is essential to amaljifferent types of software evolu-
tion and architecture migrations situations. Thésvrsituations will require new re-
finements operations and patterns for the transition rules. At short term, the
impact analysis result will be used in the desifmetamodel extensions in software
architecture migration situations that require iusion evolution of the MDSD sys-
tem. The goal is to predict the adaptation tima &®DSD system mixing the impact
analysis data and the metamodel extension design.
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