
Correctness and Completeness of Generalised
Concurrent Model Synchronisation Based on

Triple Graph Grammars

Susann Gottmann1, Frank Hermann1, Nico Nachtigall1, Benjamin Braatz1, Claudia
Ermel2, Hartmut Ehrig2, and Thomas Engel1
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Abstract. Triple graph grammars (TGGs) have been applied successfully for
specifying and analysing bidirectional model transformations. Recently, a formal
approach to concurrent model synchronisation has been presented, where source
and target modifications are synchronised simultaneously. In addition to meth-
ods for update propagation, the approach includes a semi-automatic strategy for
conflict resolution. Up to now, this approach has been limited to deterministic
propagation operations.
In this paper, we generalise the approach to arbitrary TGGs and consider non-
deterministic operations which might yield different results and require back-
tracking. We show correctness and completeness of the extended approach and
provide a technique for reducing and possibly eliminating backtracking to im-
prove efficiency.
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1 Introduction

Bidirectional model transformations have been specified and analysed successfully us-
ing triple graph grammars (TGGs) [17,18]. More recently, TGGs have also been applied
in case studies for model integration and model synchronisation [14,5,7]. Model syn-
chronisation aims to propagate updates between interrelated domains in order to derive
updated models that are consistent with each other. The formal results concerning cor-
rectness and completeness are a major advantage of TGGs in this field [12]. Consistency
conditions are specified in a concise way and they are automatically respected by the
synchronisation process. In an industrial project on model transformations for satellite
systems, we make explicit use of these properties with great advantage [13].

Since model changes may occur concurrently in related domains and in a distributed
way, model synchronisation has to cope with update propagation, update merging, and
conflict resolution. In this paper, we use the concurrent model synchronisation approach
based on triple graph grammars [9]. Possible conflicts are resolved in a semi-automated
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Fig. 1. Concurrent model synchronisation: running example

way. The operations are realised by model transformations based on TGGs [12] and
tentative merge constructions solving conflicts [9].

Fig. 1 illustrates the running example of this paper in concrete syntax. The source
domain (left) contains employees of the marketing department and trainees (indicated
by a box trainee). The target domain (right) contains all employees. Upper right boxes
indicate their assignment to departments (M = Marketing, empty = trainees). In target
update dT

1 , Willy Wilson and Molly Murphy get hired by the marketing department.
Bonus and salary values for Alex Archer are increased synchronously on both domains.

The synchronisation framework presented in [9] is limited to a restricted kind of
TGGs that ensure deterministic propagation operations. This requirement is often com-
plex to check for medium and large scale applications. In this paper, we generalise the
approach to arbitrary TGGs, such that the operations are in general non-deterministic.
This includes the deterministic case, but we do not have to check for determinism. Non-
determinism means that the operations may require backtracking and may yield several
possible results. In our first main result (Thm. 2.5), we show that the derived non-
deterministic synchronisation framework is correct and complete for any given TGG.

In order to reduce backtracking efforts, we eliminate conflicts between operational
rules by adding additional negative application conditions (NACs), called filter NACs.
This concept was already applied successfully in the area of model transformations [10].
In a second step, the synchronisation operations are extended automatically with com-
patible NACs and we show in the second main result (Thm. 3.4) that these changes
do not affect the correctness and completeness results for the derived synchronisation
framework. In case that all relevant conflicts are eliminated, this ensures that concurrent
model synchronisation can be performed efficiently, i.e., without backtracking.

Sec. 2 generalises the formal framework for concurrent model synchronisa-
tion [11,9] to non-deterministic forward and backward propagation operations. Sec. 3
provides an automated technique for improving efficiency. After discussing related
work in Sec. 4, we conclude the paper and discuss directions for future work in Sec. 5.
We provide full details of the example and the formal theory in an accompanying tech-
nical report [6].

2 Non-Deterministic Concurrent Synchronisation Framework

The synchronisation of concurrent model updates in two domains means to derive a
new consistent integrated model together with corresponding updates on both domains.
This section generalises the formal framework in [11,9] to the non-deterministic case.
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Fig. 2. Triple graph morphism and transformation step

Triple graph grammars (TGGs) are a suitable formal approach for defining a lan-
guage of consistently integrated models [17,3]. An integrated model is represented by
a triple graph G consisting of graphs GS , GC , and GT , called source, correspondence,
and target graphs, together with two mappings (graph morphisms) sG : GC → GS and
tG : GC → GT for specifying the correspondence links between elements of GS and GT .

Triple graphs are related by triple graph morphisms m : G → H [17,3] consisting of
three graph morphisms that preserve the associated correspondences (i.e., left diagrams
in Fig. 2 commute). Triple graphs are typed over a triple type graph TG and attributed
according to [3]. For a triple type graph TG = (TGS ← TGC → TGT ), we use L(TG),
L(TGS ), and L(TGT ) to denote the classes of all graphs typed over TG, TGS , and TGT ,
respectively.

A triple graph grammar TGG = (TG, S ,TR) consists of a triple type graph TG, a
triple start graph S and a set TR of triple rules, and generates the triple graph language
of consistently integrated models L(TGG) ⊆ L(TG) with consistent source and target
languages LS = {GS | (GS ← GC → GT ) ∈ L(TGG)} and LT = {GT | (GS ← GC →

GT ) ∈ L(TGG)}. A model update d : G → G′ is specified as a graph modification d =

(G ←i1−− I −i2−→ G′) with inclusions i1 : I ↪→ G and i2 : I ↪→ G′. Intuitively, all elements in
G \ I are deleted and all the elements in G′ \ I are added by d.

dep
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Birth: String
Salary: Real
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LastName: String
Base: Real
Bonus: Real
IsTrainee: Boolean

Fig. 3. Triple type graph

Example 2.1 (Triple Type Graph). Triple
type graph TG in Fig. 3 specifies the
structure of source and target models. In
the source domain, persons are attributed
with their first and last name, their de-
tailed salary information (base and bonus)
and their state of employment (trainee or
permanent). Persons in the target domain
are attributed with their first and last name, birth date and their total salary. The mem-
bership to a department is provided by a direct link to the department. Trainees have no
link to any department.

A triple rule tr = (trS , trC , trT ) is non-deleting and therefore, can be formalised as
an inclusion from triple graph L (left hand side) to triple graph R (right hand side),
represented by tr : L ↪→ R. The application of a triple rule tr via a match morphism
m : L → G yields a triple graph transformation (TGT) step G =

tr,m
==⇒ H with triple

graph H defined by the pushout diagram (PO) in Fig. 2 (L is replaced by R in G) [18].



:PP

4:Trainee2Trainee()

++
:Person

++

++
++

++
:Person

IsTrainee = T

:PP

++
++

2:Person2NextMarketingP()

:dep

:Person ++
++++

:Department
name=“Marketing“++

:Person
IsTrainee = F

3:FName2FName(n:String)

:PP
:Person

FirstName = n++
:Person

FirstName = n++

1:Person2FirstMarketingP()

:PP

++
++ :Person ++

:dep

++

++

:Department
name=“Marketing“

++

++
:Person

IsTrainee = F
N
A
C

:Department
name=“Marketing“

Fig. 4. Triple rules

Moreover, triple rules can be extended by negative application conditions (NACs) for
restricting their application to specific matches [10].

Example 2.2 (Triple Graph Grammar). The TGG of our scenario is given by the triple
type graph shown in Fig. 3, the empty start graph and the set of triple rules illustrated
in compact notation in Fig. 4. All elements (nodes, edges or attributes) that are marked
with ++ (green border) are added by a triple rule. Parts marked with a rectangle contain-
ing the label NAC (red border) describe negative application conditions [10]. The first
triple rule Person2FirstMarketingP inserts a new department called “Marketing” into
the target domain. The NAC ensures that there is no other department with the same
name. In addition, this rule creates a person in both, the target and the source domain
and creates a link to the marketing department (edge :dep). Attribute IsTrainee is set
to F. Rule Person2NextMarketingP extends the model with a new person employed at
the marketing department. Rule FName2FName sets the first name of a person in both,
the source and the target domain. Rule Trainee2Trainee adds a trainee in both domains
and creates a correspondence. The full TGG is presented in [6].

The signature of the concurrent synchronisation operation CSync is formalised in
Fig. 5 (left) and specifies the type of the in- and output elements. Given an integrated
model G0 = (GS

0 ↔ GT
0 ), source model update dS

1 = (GS
0 → GS

1 ) and target model
update dT

1 = (GT
0 → GT

1 ), we need to find source update dS
2 = (GS

1 → GS
2 ) and target

update dT
2 = (GT

1 → GT
2 ) together with a new integrated model G2 = (GS

2 ↔ GT
2 ) [9].

The integrated model may not be unique in the case of a non-deterministic synchro-
nisation operation. Correctness (right of Fig. 5) ensures that any resulting integrated
model G2 = (GS

2 ↔ GT
2 ) is consistent (law (a)), i.e., G2 ∈ L(TGG). Furthermore, if the

given input is initially consistent and the updates do not change anything, then one of
the possible outputs of operation CSync is identical to the input itself (law (b)). In case
of deterministic TGGs, law (b) requires that the output is always the identity, because
there is exactly one output. Completeness means that CSync yields at least one possible
output for any input.

Definition 2.3 (Non-Deterministic Concurrent Synchronisation Problem and
Framework). Given a triple type graph TG, the concurrent synchronisation problem
is to construct a non-deterministic operation CSync leading to the signature diagram
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Fig. 6. Concurrent model synchronisation with conflict resolution (forward case: fSync)

in Fig. 5 with concurrent synchronisation operation CSync. Given a triple graph gram-
mar TGG = (TG,∅,TR) and a concurrent synchronisation operation CSync, the non-
deterministic concurrent synchronisation framework CSync(TGG,CSync) is called cor-
rect, if laws (a) and (b) in Fig. 5 are satisfied; and it is called complete, if operation
CSync is a left total relation.

The formal approach to concurrent model synchronisation based on TGGs [9] is
performed in five steps (see Fig. 6). We describe the forward case (operation fSync),
i.e., the synchronisation is initiated in the source domain. The symmetric backward case
(bSync) works analogously by switching the roles of source and target domains and
exchanging fPpg with bPpg, and CCS (consistency creating on source domain) with
CCT (consistency creating on target domain). The concurrent synchronisation operation
CSync = (fSync ∪ bSync) is defined by the union of both cases.

Concept 2.4 (Execution of non-deterministic synchronisation framework). In contrast
to previous work [9], we do not require deterministic TGGs, such that all five steps
may yield several results and steps 1,2,4, and 5 may require backtracking. The first
step (1:CCS) is executed via consistency creating operation CCS on the source do-
main and computes a maximal sub-model GS

1,C ∈ LS of the given model GS
1 that is

consistent with respect to the language LS (language of consistent source models).
We obtain source update dS

1,CC : GS
0 → GS

1,C . In general, consistency creating oper-
ations CCS (source domain, step 1) and CCT (target domain, step 4) remove struc-



tures that cannot be translated, i.e., those that cannot appear in any consistent integrated
model. In step 2, we apply forward propagation operation fPpg (Fig. 6) to propagate
the changes to the target domain and we obtain target update dT

1,F and integrated model
G1,F = (GS

1,C ↔ GT
1,F). In step 3, we apply conflict resolution operation Res [9] in order

to merge the two updates on the target domain: the propagated update dT
1,F and the given

update dT
1 . This leads to a new target update d′T2,FC : GT

1,F → GT
2,FC. We apply consis-

tency creating operation CCT to obtain the maximal consistent sub-model of GT
2,FC and

derive the target updates dT
B : GT

2,FC → GT
2,FCB and dT

2,CC : GT
1,F → GT

2,FCB. Finally, we
propagate update dT

2,CC from the target to the source domain via backward propagation
operation bPpg leading to source update dS

2,CB : GS
1,C → GS

2,FCB and integrated model
G2,FCB = (GS

2,FCB ↔ GT
2,FCB).

Our first main result (Thm. 2.5) shows that the non-deterministic concurrent syn-
chronisation framework is correct and complete, such that all outputs are consistent and
all all inputs can be processed. Termination is ensured, if each operational translation
rule changes at least one translation attribute, which can be efficiently checked [9,12].

Theorem 2.5 (Correctness and Completeness of Non-Deterministic Concurrent
Synchronization Framework). Given a triple graph grammar TGG, the derived non-
deterministic concurrent synchronisation framework CSync(TGG,CSync) is correct
and complete.

Proof (Idea). We extend the result for deterministic TGGs in [9] using the general
composition and decomposition theorem for TGGs [3]. The main step is to show that
backtracking of forward propagation (step 2) and backward propagation (step 5) ensures
that the approach computes a correct sequence. For the full formal construction and
proof see [6]. ut

3 Efficiency Improvement

This section shows how to reduce and possibly eliminate backtracking of the general
non-deterministic concurrent model synchronisation framework in Sec. 2 by removing
conflicts between the operational rules of a TGG using the concept of filter NACs [10].

The derived operational rules of a TGG consist of consistency creating rules TRCC,
forward translation rules TRFT , and backward translation rules TRBT [12]. These rules
contain additional Boolean valued translation attributes, which are used to mark the
elements (nodes, edges or attributes) that are translated by the rules (TRFT and TRBT )
or marked as consistent (TRCC), respectively. The translation attributes are named tr x,
where x is the name of the respective element. See for example the rules in Fig. 7. For-
ward translation rules translate elements from the source domain and add the missing
elements in the correspondence and target components according. Analogously, back-
ward translation rules translate elements of the target domain and consistency creating
rules mark the elements that are consistent.

A filter NAC specifies a context of a translation rule, which will always lead to an
incomplete translation [10]. This means that applying the rule in any context containing
the NAC pattern will require to backtrack this step. Such steps are avoided by the NAC.
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Example 3.1 (Addition of Filter NACs). The target model update GT → G′T in Fig. 1
creates the person Molly Murphy belonging to the marketing department. During the
synchronisation process of this update, backtracking is necessary for the following
reason. Fig. 4 shows the derived and the extended operational translation rules for
triple rule Trainee2Trainee in Fig. 4. These rules use translation attributes (prefix tr)
for flagging the elements that have been translated already. Backward translation rule
Trainee2TraineeBT (top left in Fig. 7) is applicable to the new target model G′T in the
backward propagation phase of the update. But it leads to an incomplete translation, be-
cause the adjacent edge of type : dep will remain untranslated. Instead, if one of the two
rules {Person2FirstMarketingBT ,Person2NextMarketingBT } that are derived from the
triple rules in Fig. 4 would be applied, then the problematic edge would be translated in
the same step. The solution for eliminating this need for backtracking is to introduce a
filter NAC yielding the new rule Trainee2TraineeBN (top right of Fig. 7). The NAC was
obtained via the automated generation technique for filter NACs in [10]. It avoids an
application to persons that belong to a marketing department. The new set of backward
translation rules does not require backtracking any more, which we checked with the
automated analysis of the tool AGG as described in [10].

The introduction of filter NACs causes a new problem for model synchronisation:
the consistency creating rules TRCC used for marking the already consistent elements
are no longer compatible with the modified backward translation rules (see Ex. 3.2).
Extending the consistency creating rules TRCC by propagating the filter NACs solves the
problem of incompatibility between TRCC and TRBT . Moreover, this does not introduce
new incompatibilities with TRFT , if each filter NAC is domain specific, i.e., it does not
forbid structure on the source and target domains simultaneously.

Example 3.2 (Extension of Consistency Creating Rules). The consistency creating rule
Trainee2TraineeCC (bottom left of Fig. 7) is used for marking consistent occurrences
of a trainee in both domains. However, the rule can also be applied to full employees.
In that case, the update propagation process will finally have to backtrack. Consider our
running example illustrated in Fig. 1. Trainee Willy Wilson becomes a full employee.
Therefore, he gets assigned to a department. The initial target update would be an ad-
dition of an edge of type : dep. Therefore, the consistency creating rules will still mark
every element of the integrated model G to be consistent except the new edge. How-
ever, the backward translation cannot continue at this point, because the additional edge



cannot be translated separately by any rule. Hence, we introduce a corresponding NAC
and derive the consistency creating rule Trainee2TraineeCN (bottom right of Fig. 7).

Concept 3.3 (Extension of non-deterministic concurrent synchronisation framework
with filter NACs). Let the sets TRFN and TRBN be derived from the operational triple
rules TRFT and TRBT of a given TGG, respectively, by adding domain specific filter
NACs to the rules. For each of these filter NACs we propagate the filter NACs to the
rules in TRCC leading to an updated set TRCN of consistency creating rules. The formal
definition of filter NAC propagation is given in [6]. Altogether we obtain a concur-
rent synchronization framework with filter NACs CSync(TGG,CSyncFN) based on the
extended sets operational rules TRCN ,TRFN , and TRBN .

Our second main result (Thm. 3.4) shows that domain specific filter NACs do not
affect the formal properties of correctness and completeness. Filter NACs concerning
adjacent edges as in our example can be generated automatically [10]. Using the tool
AGG, TGGs can be verified to ensure deterministic operations [12]. Moreover, con-
servative policies can be introduced to eliminate backtracking for attribute computa-
tions [12]. Thus, concurrent model synchronisation can be performed efficiently also
in cases where the TGG operations initially require backtracking, but do not require
backtracking using the generated filter NACs.

Theorem 3.4 (Correctness of Concurrent Synchronization Frameworks with Ef-
ficiency Improvement by Filter NACs). Given a triple graph grammar TGG and
a set of domain specific filter NACs for the operational translation rules that have
been propagated to the consistency creating rules TRCC. Then, the derived non-
deterministic concurrent synchronisation framework with domain specific filter NACs
CSync(TGG,CSyncFN) is correct and complete.

Proof (Idea). The equivalence result of complete forward translation sequences with
and without filter NACs in [10] has to be extended to the more complex case of forward
and backward propagation. The precondition of domain specific filter NACs ensures
that the propagation of filter NACs towards the consistency creating rules has no effect
for further operational rules. For the full technical details and proof see [6]. ut

4 Related Work

Triple Graph Grammars were introduced in [17] and since then have been applied
successfully, among others, for (concurrent) model synchronisation [5,11,9] using the
generated operations for bidirectional model transformations [18,10]. The (concurrent)
model synchronisation approach we use in this paper is inspired by the symmetric delta
lens (sd-lens) approach introduced in [2].

Several works focus on correctness properties and functional behaviour of the model
synchronisation based on triple graph grammars [11,9,16]. In [4], a categorical merge
construction for two conflicting model updates is given. In [9], a general synchroni-
sation framework for concurrent model updates is given using the results from [4] for



resolving conflicts between concurrent model updates. In this work, we extend the con-
cept of filter NACs, which were introduced in [10] for model transformation, to concur-
rent model transformation.

Xiong et. al. [19] introduce requirements, which shall hold for all bidirectional
model updates, namely consistency, stability and preservation. These requirements are
in close correspondence with the laws of correctness and identity ensured for the syn-
chronisation framework in this present paper. The concurrent synchronisation frame-
work in [19] requires conflict-free updates as input and is based on model difference
approaches. Our approach does not require conflict freeness and occurring conflicts are
resolved in a semi-automated way. Moreover, model updates are formalised as graph
modifications, which are either available directly from the used modelling tool or can
be derived automatically from model difference plugins.

In [15] an efficient control algorithm for bidirectional model transformation based
on triple graph grammars is introduced and its correctness, completeness and efficiency
is proven. The idea of the control algorithm is to determine dependencies of forward
rules (and backward rules, respectively) in order to reduce non-deterministic behaviour
in selecting the appropriate rule sequence for the transformation. This work is extended
to model synchronisation in [16]. In both works, this algorithm either provides correct
models as result or an error. In our approach, conflicts do not lead to errors, but are
made explicit and solved semi-automatically via operations (operation Res, CCS and
CCT).

5 Conclusion

In this paper, we have shown how concurrent modifications in source and target models
that are linked by a TGG can be synchronised. More precisely, we have first introduced
a non-deterministic concurrent synchronisation framework generalising the existing ap-
proach [9] to arbitrary TGGs. Furthermore, we have used filter NACs to improve the
efficiency of the forward and backward propagations avoiding backtracking in cases,
where parts of the models would remain untranslated.

We already applied TGGs and Henshin [1,8] in a large-scale industrial project with
the satellite operator SES for the translation of satellite control procedures between
different programming languages [13]. The satellite Astra 2F is the first satellite running
on the translated software and is operational in space since 2012. In future work, we will
apply the presented concepts to synchronisation case studies in this field. Particularly,
we apply TGGs to visualise and generate source code of satellite procedures at SES.
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