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Abstract. Model transformations play a major role in model-driven
engineering. For increasing development productivity as well as qual-
ity of model transformations, different kinds of reuse mechanisms have
been proposed. However, it remains unclear to which extent reuse mech-
anisms have made their way into practical application. Thus, this paper
presents an empirical study on the ATL Transformation Zoo to analyze
the application frequency of reuse mechanisms. For this, we developed a
semi-automated process for extracting transformation projects from the
ATL Transformation Zoo, which are classified and analyzed with respect
to the application frequency of reuse mechanisms. Finally, limitations of
current reuse mechanisms, which potentially hinder their practical appli-
cability, are critically reflected, pointing out further research directions.

1 Introduction

Model-Driven Engineering (MDE) [15] proposes an active use of models to con-
duct the different phases of software development. Provided the fact that ev-
erything is a model, every systematic manipulation thereof may be considered
a model transformation [16,18]. Consequently, model transformations are vital
for MDE. Given their prominent role and their use in increasingly complex sce-
narios, appropriate reuse mechanisms are indispensable to increase development
productivity as well as quality, e.g., in terms of maintainability of model transfor-
mations. To address this need, a plethora of reuse mechanisms has been proposed
by the research community, cf., e.g., [1,2,3,4,7,8,10,11,13,17,21,22,23,25,26], to
mention just a few. In [9], we have surveyed and categorized several different
reuse mechanisms for model transformations by using a conceptual compari-
son framework. However, it remains still unclear, if at all and how often reuse
mechanisms are employed in practical settings.

To shed some light on this area and to estimate the application frequency of
current reuse mechanisms for model transformations, we performed a case study



based on a real-world transformation repository and its population. In partic-
ular, following the guidelines for conducting empirical explanatory case studies
by Runeson and Höst [14], we analyzed the population of the Atlas Transforma-
tion Language (ATL) Transformation Zoo4 (in the following denoted as “Zoo”
for short) [6]. The Zoo has been chosen, because to the best of our knowledge,
this repository is—at the time of writing—offering the most comprehensive col-
lection of publicly available model transformations. Furthermore, the Zoo has
been source for several previous studies concerning, e.g., the evaluation of model
metrics [24], the validation of the results of metamodel matching tools [5], or the
estimation of how end-users employ ATL in practice [19], to mention just a few.
Thus, we consider the population of the Zoo as a representative set of model
transformations. For analyzing the Zoo, we developed a semi-automated process
for extracting transformation projects from the Zoo. The extracted transforma-
tion projects have then been classified and analyzed with respect to indicators
for the application of reuse mechanisms. The results show that up to now reuse
mechanisms are rarely used in practice. Thus, we conclude by discussing po-
tential barriers that might harm the practical applicability, thereby pointing to
further research topics.

Outline. Section 2 discusses the basic setup of the case study and gives
an impression on the transformations that are available in the Zoo. The case
study as well as the results thereof are presented in Section 3, whereby Section 4
critically reflects the results and discusses threats to validity, before Section 5
concludes the paper.

2 Case Study Setup

To estimate the application frequency of current reuse mechanisms for model
transformations, we conducted an empirical explanatory case study in order to
analyze the population of the Zoo. The study was performed to quantitatively
assess the application frequency of reuse mechanisms in model transformations of
the Zoo. More specifically, we aimed at answering the following research question:

With which frequency are reuse mechanisms currently applied in model
transformation projects?

2.1 Case Study Design

For performing the analysis of the Zoo’s population, we extracted all transfor-
mation projects from the Zoo’s website5. To reason about the Zoo’s population,
not only the transformation definitions are required, but also accompanying ar-
tifacts such as the input and output metamodels, launch configurations, and
build scripts. For instance, the metamodels are of interest to relate their size

4 http://www.eclipse.org/m2m/atl/atlTransformations
5 The complete data of this snapshot is available on our project website http://www.
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and structure to the size and structure of model transformations. The launch
configuration files and build scripts for running the transformations are an im-
portant source to reason about the execution processes of the transformations,
e.g., how a set of transformations interact.

The Zoo provides a collection of 103 different transformation projects, mostly
provided as .zip archives, containing 1689 files in total. Before starting the au-
tomated analysis of the transformation projects in a subsequent step, the rele-
vant files (transformations, metamodels, launch configurations, and build scripts)
have been extracted from the .zip archives on basis of their file extensions. Con-
sequently, we selected 873 out of the 1689 files: 231 ATL transformations (.atl
files), 525 metamodels (.ecore and .km3 files), 57 build scripts (.build or .xml
files), and 95 launch scripts (.launch files). The remaining 781 files, being, e.g.,
readme files for documentation or test input/output models, have not been con-
sidered in this case study (cf. Fig. 1(a)). Furthermore, since transformations
have been reused in different projects, duplicates may exist. In particular, we
regarded two transformations as duplicate, if they have the same name and iden-
tical metric values for their intrinsic properties, i.e., the same number of rules
and helpers. In this respect, 40 duplicates have been removed resulting in 191
transformations for further investigation. The remaining transformations may
be further divided into three different kinds of ATL transformations. First, a
transformation may either be (i) a model-to-model transformation (168), (ii) a
library of reusable helpers (17), which are importable to other transformations,
or (iii) queries (6), which derive information from models by using Object Con-
straint Language6 (OCL) expressions, e.g., to select a set of model elements from
an input model, as depicted in Fig. 1(b).

2.2 Characteristics of the Zoo

To give an impression on the complexity of the transformation tasks supported,
we list in the following some meta-information about the transformations. First,
the transformation size ranges from a minimum of 1 rule to a maximum of 84
rules. Concerning the numbers of input and output metamodels, the majority are
1-to-1 transformations, but there is also a small amount of 1-to-n (2 transforma-
tions), n-to-1 (12 transformations), and n-to-m transformations (2 transforma-

6 http://www.omg.org/spec/OCL
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Fig. 1. Overview on the ATL Transformation Zoo.



tions) in the Zoo available. The metamodels used in the transformations range
from small metamodels (below 10 meta-classes) to large metamodels (about 280
meta-classes). The languages represented by the metamodels range from mod-
eling languages such as UML, QVT, and OCL over markup languages such as
HTML and SVG to general-purpose programming languages such as Java or
domain-specific languages such as BibTeX. Finally, since support for different
reuse mechanisms has been successively added over the last years, e.g., functions
have been introduced with the first version of ATL (2005), whereas inheritance
(2006) and superimposition (2007) have been introduced in subsequent versions,
the submission date to the Zoo is of interest.

3 Analysis of the ATL Transformation Zoo

Table 1. Reuse mechanisms’ applications
and frequency.

Reuse
Mechanism

Total
Number of 
Applications

Relative 
Application 
Frequency

Au
to
m
at
ic
 D
et
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tio

n Functions 134 79%

Rule Inheritance 6 4%

Superimposition 0 0%

HOTs 7 4%

Transformation 
Orchestration 11 11%

Se
m
i‐A
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om

at
ic
 

De
te
ct
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n

TPLs 0 0%

External DSL 0 0%

Generic 
Transformations 0 0%

After introducing the setup of
the case study, it is described
to which extent the reuse mech-
anisms available for ATL are
practically applied by transfor-
mations in the Zoo, whereby we
distinguish between a fully au-
tomatic detection and a semi-
automatic detection. For each
reuse mechanism, we (i) shortly
characterize the according reuse
mechanism, (ii) discuss, how it
might be (semi-)automatically
detected, (iii) analyze the re-
sults, and finally (iv) provide a
critical discussion thereof. The results are summarized in Table 1. For calculat-
ing the relative application frequency, we refer to the ratio between applications
detected and total amount of model transformations (168). However, for the
application frequency of transformation chains, we employ the ratio between ap-
plications and total amount of transformation projects (103), because a chain is
not tailored to one transformation, but to a complete transformation project.

3.1 Automatically Detected Reuse Mechanisms

Reuse mechanisms, whose applications might be detected automatically include
functions, inheritance, superimposition, higher-order transformations (HOTs),
and transformation orchestration, as described in the following.

Functions. As well-known from procedural programming languages, func-
tions in transformation languages provide means to extract and to reuse recur-
ring transformation logic. In ATL, functions are called helpers and are defined
in OCL. The application frequency of functions in ATL transformations may be
detected automatically by querying, if helpers are contained in a transforma-
tion as indicated by the following OCL query.



Transformation . allInstances ( ) −> select ( t | t . helpers .notEmpty( ) )

When analyzing the result, it may be seen that helpers are used in nearly 80% of
the inspected transformations (cf. Table 1) and the higher the amount of rules
within a transformation, the higher the amount of helpers is (cf. Fig. 2(a)). This
might be due to the fact that helpers are included, since the very first version
of ATL and also because functions are a well-known reuse mechanism from
traditional software engineering. Furthermore, functions might be that popular,
because they are expressed in OCL, and consequently, there is no further learning
curve for the transformation designer, since she is typically familiar with OCL.

Rule Inheritance. Inheritance between meta-classes in metamodels neces-
sitates the usage of inheritance between transformation rules to avoid code dupli-
cation, e.g., duplicate assignments. The application frequency of rule inheritance
may be automatically detected by searching for rules that extend other rules,
which is indicated by the reference Rule.superRule in the ATL metamodel and
exploited in the following OCL query.

Transformation . allInstances ( ) −> select ( t | t . rules −> exists ( r | r .
↪→superRule <> OclUndefined ) )

Although, a tremendous amount of metamodels of the Zoo employs inheritance
(around 75%), rule inheritance is rarely used in the Zoo (6 applications, only),7

whereby there is a strong correlation (correlation coefficient about 0.90) be-
tween the amount of meta-classes and the amount of inheritance relationships
(cf. Fig. 2(b)). Consequently, rule inheritance would be especially beneficial for
large metamodels. However, most surprisingly, inheritance between rules has
been used rather by middle-sized transformations. A reason for the poor adop-
tion of inheritance in model transformations might be that the support for in-
heritance in ATL is still limited, e.g., the declarative part of ATL is considered in
rule inheritance [27], only. Furthermore, there is only limited support for static
semantic checks, aggravating the correct application of rule inheritance.

Module Import. Module import allows to build the union of transforma-
tion rules from different model transformations. Thereby, rules or helpers may be

7 It has to be noted that inheritance has been introduced in the ATL 2006 compiler.
This induces that rule inheritance may have been theoretically employed in about
60% of all transformations.
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redefined, i.e., a rule or a function may be replaced by a new one, and additional
rules and functions may be added. This concept is known in ATL as superimpo-
sition [25]. To automatically recognize superimposition, the launch scripts have
been analyzed, since superimposition is introduced at load-time in ATL (cf. OCL
query below). Thereby, superimposition is assumed to be used, if a launch script
contains an entry with a key Superimpose and a non-empty value.

LaunchScript . allInstances ( ) −> select ( ls | ls . entries −> exists ( entry |
↪→entry . key = ’ Superimpose ’ and entry . value <> OclUndefined ) )

Although superimposition has been introduced in 2007 already, currently no
transformation in the Zoo applies this reuse mechanism. A reason for this might
be that this mechanism is rather coarse-grained, i.e., rules that should be rede-
fined must be redefined from scratch without the possibility of reusing parts of
the refined rule. Consequently, it would be beneficial, if superimposition could
be combined with inheritance. Unfortunately, superimposition is not compatible
with inheritance, i.e., the rule inheritance hierarchy is broken, if a superrule is re-
defined with superimposition. Furthermore, ATL imports modules at load-time,
whereas numerous other transformation languages import modules at compile-
time [9], entailing the advantage that static checks may be applied.

Higher Order Transformation (HOT). HOTs are model transformations
that either take a model transformation as input, produce a model transforma-
tion as output, or do both and may thus, be used for transformation synthe-
sis, transformation analysis, transformation (de-)composition, or transformation
modification [21]. For automatically detecting the usage of a HOT, one has to
analyze, whether the input metamodel and/or the output metamodel of a trans-
formation is of type ATL as done by the following OCL query.

Transformation . allInstances ( ) −> select ( t | t . models −> exists ( m | m . name =
↪→ ’ ATL ’ ) )

When analyzing the transformations of the Zoo, one may find that the applica-
tion frequency for HOTs is around 4%. HOTs are available in the Zoo, especially
for (i) transformation synthesis, e.g., to produce from metamodels a copying
transformation for their models and for (ii) transformation modification, e.g.,
to enrich ATL transformations by adding debugging functionality or tracing ca-
pabilities. The low application frequency of 4% may result from the challenging
development of HOTs [20] and from the specialized application cases.

Transformation Orchestration. Transformation orchestration is used to
reuse transformations in the large, i.e., whole transformations at once. For or-
chestrating model transformations, build files on basis of ANT8 may be used.
Therefore, the automatic detection of transformation orchestrations relies on the
recognition, if more than one task for executing a transformation is defined in
the build script as formalized by the following OCL query.

BuildScript . allInstances ( ) −> select ( bs | bs . tasks −> select ( t | t . name = ’
↪→atl . launch ’ or t . name = ’ am3 . atl ’ ) −> s ize ( ) > 1)

8 http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Tools#ATL_ant_tasks
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When investigating the Zoo, transformation orchestration is used in around 11%
of the projects, especially in transformation projects that establish bridges be-
tween technical spaces. Some transformation chains are quite complex such as
employing not only sequences, but also loops of transformation executions, i.e.,
a transformation is employed for an arbitrary sized collection of models. In the
largest model transformation chain, nine transformations are involved. Finally,
also HOTs are used in the chains to produce transformations on-the-fly that are
applied directly in the later phases of the transformation process.

3.2 Semi-Automatically Detected Reuse Mechanisms

Besides those reuse mechanisms that might be detected fully automatically, some
reuse mechanisms allow for a semi-automatic detection, only, including transfor-
mation product lines (TPLs), external domain specific languages (DSLs), and
generic transformations (cf. [9] for details). In this context, TPLs allow to config-
ure a transformation externally, i.e., to use, e.g., a feature model to configure a
transformation and by this to reuse the already predefined transformation rules.
An example for this might be a Class2Relational transformation, which allows
to follow different object-relational mapping strategies, which might be config-
urable by a feature model. External DSLs on top of ATL allow to simplify the
specification of recurring transformation logic by dedicated language constructs,
which finally get translated into ATL code. Finally, generic transformations al-
low to parameterize transformation logic with types, and thus, allow to decouple
transformation logic from concrete metamodel types.

Current best practice in ATL to implement a TPL is to use an additional
input model to configure a transformation. Thus, we selected each transformation
having more than one input model as a potential candidate that has to be
inspected manually.
Transformation . allInstances ( ) −> select ( t | t . inModels −> s ize ( ) > 1)

External DSLs and generic transformations typically employ a HOT that either
generates a new ATL transformation (external DSL) or that rewrites an existing
one (generic transformations). Consequently, hints for the application of these
reuse mechanisms may be detected by analyzing, if the ATL metamodel is used as
the target metamodel of a transformation (cf. OCL query below). The resulting
hints need to be verified by manual inspection of the transformations.
Transformation . allInstances ( ) −> select ( t | t . outModels −> exists ( m | m .

↪→name = ’ ATL ’ ) )

Although candidate transformations for these reuse mechanisms have been de-
tected, the manual inspection thereof showed that none of these reuse mecha-
nisms have been applied in the transformations of the Zoo, which might be due
to the fact that those reuse mechanisms just emerged recently and are thus, not
reflected in the Zoo. Finally, please note that we did not investigate internal
DSLs defined for ATL (e.g., HNL [2], ATL4pros [12]), and reflection as provided
by Mistral [8], because these approaches require for a modified ATL execution
environment and the transformations contained in the Zoo are executable with
the official distribution of ATL, only.



4 Discussion

We now present (i) a critical discussion of the results and (ii) we elaborate on
several factors that may jeopardize the validity of our results.

Well-known Reuse Mechanisms Made their Way into Practice. With
respect to the posed research question, one may see that the frequency of the
application of reuse mechanisms varies strongly between the different reuse mech-
anisms. Helpers are frequently used in transformations. This seems quite natural,
because (i) factorization of recurring logic to functions is well-known from proce-
dural programming languages, (ii) OCL, which is mainly used to define helpers,
is a well-known language for transformation developers, and (iii) helpers have
been provided from the early stages of ATL – thus, it is also well-documented in
the ATL user guide and well-demonstrated by several examples. Furthermore,
at least some transformations apply rule inheritance, which is comparable to
inheritance in object-oriented programming languages. Finally, orchestration is
also a common and well-understood reuse mechanism in software engineering
and has achieved practical application.

Reuse Occurs in a Narrow Scope. By further investigating the applied
reuse mechanisms, it may be seen that reuse occurs most often within a single
transformation, only, i.e., reuse across transformation boundaries is performed
rarely. Thus, it may be concluded that reuse mechanisms that have a direct and
instant benefit for the transformation developer, when creating a single trans-
formation are applied more frequently. Other reuse mechanisms such as TPLs,
generic transformations, and external DSLs, which unfold their full potential over
the time and require more complex abstraction and specialization mechanisms,
still have to wait for their frequent application.

Challenging Abstraction/Specialization may Hamper Application.
Any reusable artifact needs abstraction as well as specialization to be adapted
to the current context. However, the abstraction of reusable artifacts is often
challenging. This applies especially to HOTs as also stated by Tisi et al. [20],
where the user must be familiar with the abstract syntax of the transforma-
tion language. In case of generic transformations, specialization requires that
mappings between the metamodels of the transformation to reuse and the new
transformation have to be defined by the transformation designer in order to
overcome heterogeneities between the involved metamodels.

Threats to Validity. Internal Validity: Are There Factors, Which Might Affect
the Results in the Context of ATL? Applications of superimposition may have
not been found, because of missing launch scripts. Sometimes screenshots are
provided, only that may not be processed automatically to detect applications
of reuse mechanisms. The same holds for missing build scripts in case of trans-
formation chains or chains that are executed manually or by Java programs.

The results may be biased, because only ATL transformations residing in
the Zoo have been analyzed. Latest trends in transformation reuse may have not
been reflected, since the latest transformations stem from October 2010.



External Validity: To What Extent is it Possible to Generalize the Findings?
So far, we cannot claim any results outside the context of the Zoo. Nevertheless,
the analysis methods may be applied to arbitrary transformation repositories to
compute the frequency of the employed reuse mechanisms. Thus, replaying the
presented case study for other transformation languages and repositories should
enable the possibility of reasoning about the reuse mechanism applications for
those languages/repositories as well.

5 Conclusion

In this paper, we reported on a case study for analyzing the Zoo’s population
with respect to the application frequency of reuse mechanisms. For this, we
developed a framework for analyzing the population in a semi-automated way.
This framework is publicly available and is customizable to investigate other
language usage aspects in the future as well.

We see the following topics as possible next steps of this work. First, by
having transformations in the Zoo identified that are not using rule inheritance,
although the source and target metamodels are heavily using inheritance between
meta-classes, would allow to experiment with automated refactorings [28] for
improving the transformations’ designs. Second, we plan to explore additional
transformations that are publicly available but outside of the Zoo. Finally, we
also want to expand our work to other transformation languages that offer reuse
mechanisms such as QVT.
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24. E. Vépa, J. Bézivin, H. Bruneliére, and F. Jouault. Measuring Model Repositories.

In Workshop on Model Size Metrics (MSM’06), 2006.
25. D. Wagelaar, R. Van Der Straeten, and D. Deridder. Module Superimposition: A

Composition Technique for Rule-based Model Transformation Languages. SoSyM,
9(3):285–309, 2010.

26. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and
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