
A Traceability-Driven Approach to Model
Transformation Testing

Nicholas D. Matragkas, Dimitrios S. Kolovos, Richard F. Paige, and
Athanasios Zolotas

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK

{nicholas.matragkas,dimitrios.kolovos,richard.paige,amz502}@york.ac.uk

Abstract. Effective and efficient support for engineering model trans-
formations is of paramount importance for automating Model-Driven
Engineering (MDE) in practice. Such support should include techniques
and tools for testing the correctness of model transformations. In this
paper, we present a novel approach for identifying incorrect parts of
model transformations by using the traceability information produced
during the execution of a transformation by a transformation engine.
The proposed approach relies on a transformation postprocessor in or-
der to enrich the produced traceability information with domain-specific
semantics and then to check automatically its conformance to the trans-
formation specification.

1 Introduction

Model transformations are considered to be the “heart” and “soul” of MDE [14].
As such, they are critical to its success and thus their quality must be ensured.
Due to the nature of typical MDE processes (e.g. successive transformations of
models until the final implementation of the system is obtained) a fault in a
transformation can have unpredictable consequences. When such a transforma-
tion is executed, it can result in a faulty model, which itself can be used as
input to subsequent transformations. Thus, such a fault can be propagated to
successive development steps, resulting in faults in the final implementation of
the system [2]. Therefore, to ensure the quality of the developed system, efficient
techniques and tools are needed to validate and verify model transformations.
Following [10], model-based testing is such a technique and it can contribute to
improving the quality of model transformations.

In this paper, we present a novel, tool-supported approach to identifying
faults in model transformations and therefore reducing their defect density.
When a transformation is executed by a transformation engine, an internal trace
is generated. The proposed approach relies on a transformation postprocessor in
order to enrich the produced internal trace with domain-specific semantics and
then to check automatically its conformance to the transformation specification.
A transformation, which generates a non-conforming trace, is erroneous and it
should be corrected.



In section 2, we present the motivation for this work, while in section 3 the
proposed approach is discussed. Section 4 presents how the proposed approach
can be used in a test-driven manner in order to test model transformations.
Finally, in section 5 we conclude this paper and we present future work to be
carried out.

2 Motivation

Following [13], two main challenges are associated with model transformation
testing. The first one has to do with how adequate test data (i.e. test input
models) can be generated, while the second one is related to the prediction of
the expected outcome of the transformation and its comparison to the actual
outcome of the transformation for particular test data.

Generating test cases, manually or automatically, is a very important activity
in model transformation testing. Therefore, much research work has focused on
this area (e.g., [3, 7, 10]). However, the generation of test cases is out of the scope
of this paper and thus we will not discuss about it in more detail. The focus of
this paper is on the second challenge, namely the oracle specification problem.

According to the relevant literature, there are two types of oracle functions:
complete and partial. Complete oracle functions can be specified either by pro-
viding an expected output model for each test input model [11], or by specifying
the oracle on the basis of the trace links between the input and output models
[9]. In the first case, to verify the correctness of the transformation, the expected
and actual models are compared using model comparison algorithms for every
test case. If the expected model matches the actual one then the transformation
contains no faults. However, model comparison can be both complicated and
computationally expensive [1]. Moreover, the tester has to specify an expected
output model for every single test case. [13] suggests that for large test input
models, which result in large output models, the approach of model compari-
son is neither practical nor efficient. In such scenarios, partial oracle functions
are more appropriate. In the case of the traceability-driven oracle functions, the
verification of the correctness of the transformation is performed by comparing
a set of correct trace links with the trace links generated by the execution of
the transformation on the various test input models. The main advantage of
this approach is that the tester does not have to provide an expected output
model for every actual output model. Moreover, the set of traces, which is re-
quired by such approaches can be rather small [9]. However, the performance of
traceability-driven approaches relies heavily on the availability and correctness
of good transformation examples in order to generate the correct trace links.
Such examples could be difficult to collect [9].

The second category of approaches to oracle specification consists of partial
oracle approaches. These approaches are also called specification-conformance
checking approaches [9]. Instead of comparing in some way expected and actual
output data of transformations, partial oracle functions test transformations
against desired properties. Such properties can be either generic or custom.



Generic properties are common for all model transformations, such as conflu-
ence or termination. On the other hand, custom properties are transformation
specific properties, which have to be checked in order to test the correctness of a
specific model-to-model transformation. An example of a partial oracle approach
is the one presented in [4]. In this work, the authors use the Object Constraint
Language (OCL) [12] to define contracts for the transformation of interest, which
consists of pre- and post-conditions. The specified conditions are used to check
that when the transformation is executed on the test data, it yields models,
which satisfy particular properties. The main limitation of this type of approach
is the fact that pre- and post-conditions might be difficult to specify in practice
[4]. Moreover, many different conditions might need to be specified in order to
cover all different transformation possibilities [1]. According to [15], the com-
plexity of defining contracts for model transformations is of similar complexity
to implementing model transformations and therefore it is error-prone as well.

3 Traceability-driven testing of model transformations

In this section we will present a novel approach to reducing the defect density
of model transformations, that is the number of defects per model transfor-
mation rule. The proposed approach can be considered as a traceability-driven
specification-conformance checking approach.

Figure 1 illustrates how model transformation testing is currently conducted.
When a transformation specification is executed over a set of input of models,
output models are generated by the transformation engine and then an appropri-
ate oracle function (partial or complete) is defined using one of the approaches
described in Section 2.

Transformation 
Definition

Target 
Metamodel

Target
Model

conformsTo

Source
Metamodel

Source
Model

conformsTo

Transformation 
Engine

input output

executes

Oracle 
Function

input

detect 
errors

Fig. 1. Current practice of model transformation testing.

In this paper, we propose a different approach to model transformation test-
ing (Figure 2). When a transformation is executed, an internal trace is produced
by the transformation engine in addition to the output models. The format of
this internal trace depends on the transformation engine, but usually it consists
of trace links, which capture mappings between elements in the source model(s),



their corresponding elements in the target model(s), and the rules used to trans-
form the source to the target elements. In the proposed approach, these internal
traces can be semantically enriched with domain-specific information such as
trace link types. In the spirit of MDE, the enriched trace models have to con-
form to a metamodel. This case-specific metamodel defines valid mappings be-
tween the metamodels of interest. Erroneous parts of a transformation therefore
can be identified by generating traces, which do not conform to the traceability
metamodel or which violate the metamodel’s correctness constraints.

Transformation Postprocessor

Transformation 
Definition

Target 
Metamodel

Target
Model

conformsTo

Source
Metamodel

Source
Model

conformsTo

Transformation 
Engineinput output

executes

Internal 
Trace

output

Enriched 
Traceability

Model

Traceability 
Metamodel

conformsTo

detect 
errors

Fig. 2. Proposed approach to model transformation testing.

This approach is based on two main assumptions. First, a detailed trace-
ability metamodel needs to be specified before testing. Second, we assume that
the traceability metamodel is correct and complete (i.e. captures all the valid
relationships between the metamodels of interest). In the following sections we
will briefly present in more detail the proposed approach.

3.1 Specifying the domain-specific traceability metamodel

Defining the correspondences and requirements of a model transformation before
its implementation is considered to be best practice [8]. Such correspondences
can be modelled using different mapping languages such as transML [8], the
Atlas Model Weaver [5] or the Traceability Metamodeling Language (TML) [6].
What all these approaches have in common is the way they encode mappings
between metamodels. The mappings are typed, conforming to domain-specific
metamodels, which are accompanied by additional correctness constraints. Map-
pings, which poses these characteristics, are amendable to automatic tool ma-
nipulation and analysis. In our reference implementation, we are using TML to
capture such mappings.

Imagine a scenario where we want to transform a Class model to a Compo-
nent model. The Class model conforms to the Class metamodel illustrated in
Figure 3(a), while the Component model conforms to the Component metamodel
illustrated in Figure 3(b). Such a scenario can arise in a component-based de-



velopment environment, where class diagrams are used to refine the architecture
specified by component diagrams into a concrete design.

name: 
String

Model Package

Class
name: String
Method

name: String

PackageableElem
ent

+contents +package

+methods

+owner *

name: String
System

name: String
Component

name: String
Service

+components

+services *

*

[b][a]

Fig. 3. [a] Class metamodel [b] Component metamodel

ComponentClassMetamodel

TraceLink

ComponentPackage ServiceMethod

ComponentLinkEnd PackageLinkEnd

name: String
Component

name: String
Package

ServiceLinkEnd MethodLinkEnd

name: String
Service

name: String
Method

servicecomponent

packageEnd serviceEnd

traceLinks

componentEnd methodEnd

package method

*

1 1 1 1

Fig. 4. Mappings metamodel

In this scenario, we want to transform instances of Package from the Class
metamodel to instances of Component from the Component metamodel. Addi-
tionally, we want to transform instances of the Method meta-class to instances
of the Service meta-class. These mappings can be captured in a scenario-specific
TML model. This model is illustrated in Figure 4. It consists of the two aforemen-
tioned mappings, namely the ServiceMethod and the ComponentPackage. Each
of the two links has references to the corresponding elements in the metamodels
of interest.

Additionally, the following exemplar constraint must be satisfied by the map-
ping model:

(C1) For each instance of Service in the Component metamodel there is
exactly one instance of ServiceMethodTraceLink in the mapping model
that links it with an instance of Method in Class metamodel.



When the mappings and their constraints are captured, the transformation
can be implemented and tested.

3.2 Detecting erroneous transformation rules

Once the transformation is implemented, it can be executed over a set of input
models. One of the assumptions of our approach is that such a set is available
to the engineer.

When the transformation is executed, the transformation engine generates
a generic internal trace. Such a trace is generated by most of the contempo-
rary model transformation engines. The metamodel of the internal trace is very
similar across the various transformation engines and it is illustrated in Figure
5.

InternalTrace

TraceLink
traceLinks*

TraceLinkEnd
traceLinkEnds *

TransformationRule
rule1

Fig. 5. Internal trace metamodel

We propose the use of a transformation’s engine postprocessor, which can
use this internal trace in conjunction with the mappings specification described
in section 3.1 in order to generate links with case-specific semantics. In the case
where the transformation is error-free, the resulting set of case-specific mappings
should conform to the TML specification. If there are errors in the implementa-
tion of the transformation, then it will generate invalid mappings.

To enrich the internal trace of the transformation engine with case-specific
semantics, the postprocessor attempts to match the various links of the internal
trace to types of links in the TML model. This can be done by matching the
link end types and their cardinalities and by checking whether any mapping
constraints are violated.

3.3 Examples of error types

The proposed approach to model transformation testing can detect only errors,
which generate invalid traces. Therefore, it can be used ideally in combination
with other transformation testing approaches in order to minimise as much as
possible the defect density. In this section we will provide some examples of
transformation error types, which can be detected by our approach.



Error type I: A possible transformation error might be introduced when an
engineer transforms an entity of the source metamodel to an invalid entity in
the target metamodel. For this example, consider the scenario where the en-
gineer transforms erroneously instances of the Class meta-class to instances of
the Component meta-class. The transformation rule for this transformation is
illustrated in Listing 1.1.

Listing 1.1. Class2Component ETL transformation - error type I

rule Class2Component transform s : ClassModel!Class

to t : ComponentModel!Component {

t.name = s.name;

}

When this transformation is executed the transformation postprocessor at-
tempts to generate a traceability model which conforms to the TML model
in Figure 4. However, in doing so it can not find any valid link types for the
Class2Component rule, since there is no link type, whose link ends point to the
two meta-classes of the transformation rule. As a result, the transformation post-
processor generates a warning marker next to the rule that caused this problem.
This is illustrated in Figure 6.

Fig. 6. ETL editor with warning markers.

Error type II: This error type describes transformation rules, which create
trace links with wrong cardinalities. Imagine for example that an engineer trans-
forms an instance of the Package meta-class to two instances of the Component
meta-class. This transformation rule is illustrated in Listing 1.2. The post pro-
cessor of the transformation engine will generate a warning, since in the TML
model the relationship between instances of the Package meta-class and instances
of the Component meta-class is a 1-to-1 relationship and not 1-to-2 as indicated
by this rule.

Listing 1.2. Class2Component ETL transformation - error type II

rule Class2Component transform s : ClassModel!Package

to t1 : ComponentModel!Component, t2 : ComponentModel!Component {



t1.name = s.name +’1’;

t2.name = s.name +’2’;}

Error type III: The third type of errors describes erroneous rules which create
mappings, which conform to the traceability metamodel but they violate the
correctness constraints, which accompany the traceability metamodel. Imagine
for example that for every Package meta-class of the Class metamodel there is
a mapping of type Package2Component. The implementation of this constraint
is illustrated in Listing 1.3.

Listing 1.3. EVL constraint

context Package {

constraint OneForEachPackage{

check : Package2ComponentTraceLink.all.exists(e|e.Package.target =

self)

message : ’No links of type Package2Component found for Package ’ +

self

}

}

A possible transformation rule might transform instances of the Package meta-
class to instances of the Component meta-class, but only when they contain
instances of the Class meta-class. This constraint is expressed as a guard in line
3 of the transformation illustrated in Listing 1.4.

Listing 1.4. Class2Component ETL transformation - error type III

rule Class2Component

transform s : ClassModel!Package to t : ComponentModel!Component {

guard : s.contents.select(c|c.isTypeOf(Class)).size()>0

t.name = s.name;

}

When this transformation rule is executed, it generates a traceability model
which conforms to the traceability metamodel. However, if an instance of the
Package meta-class does not contain at least one instance of the Class meta-
class, then this instance will not be used to generate a corresponding instance
of the Component meta-class and therefore no trace link will be generated for
this particular instance. This violates the constraint of Listing 1.4 Therefore, a
validation error will be generated when the validation is executed by the trans-
formation engine’s postprocessor.

4 Incremental development and testing of model
transformations

In Section 2 we discussed various limitations to specification conformance check-
ing approaches. One of these limitations has to do with the complexity involved



in defining a complete specification for a transformation. To address this issue,
we propose the incremental co-development of the transformation and its speci-
fication in a test-driven manner. This process is illustrated in Figure 7.

Start

Specify mapping & 
Constraints

Execute 
Transformaion

Implement 
Transformation Rule

Are there any 
errors? Stop

Is 
transformation 

completed?

Refactor 
Transformaion Rule

yes

no

yes

no

Fig. 7. Process for the co-development of model transformations and specifications.

Initially the engineer specifies a single mapping between the metamodels of
interest. This mapping should be atomic in the sense that it will be generated by
a single transformation rule. Once the first mapping is defined, the corresponding
transformation rule can be implemented and then executed over a set of input
models. If the transformation engine postprocessor detects any errors, the engi-
neer can change the implementation of the transformation rule and re-execute
it. This process should continue until the postprocessor produces no errors when
the transformation rule is executed. Then, the engineer can continue in a similar
manner to implement the rest of the transformation.

The benefits of using this incremental approach is twofold. First, since the
mapping and its corresponding transformation rule are developed together, the
engineer can understand in more depth the various requirements of a particular
transformation rule. Moreover, by building the specification in small increments
and by testing the transformation after each increment, the complexity of defin-
ing the entire specification, as well as implementing the entire transformation,
in one go is reduced.

5 Conclusion and future work

In this paper, we presented a novel specification-conformance checking approach
to model transformation testing. The proposed approach relies on the traceability
information generated by transformation engines in order to identify erroneous
transformation rules. Moreover, the proposed approach can be implemented in
an incremental manner and thus reducing the complexity of developing trans-
formation specifications and implementations in one go. In the future, we would



like to investigate the integration of the proposed approach with other model
transformation testing approaches and how such an integration improves the
testing results.

References

1. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Le Traon, Y.: Model transformation testing challenges. In: ECMDA
workshop on Integration of Model Driven Development and Model Driven Test-
ing. Bilbao, Spain (Jul 2006), http://www.irisa.fr/triskell/publis/2006/

baudry06b.pdf
2. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers

to systematic model transformation testing. Commun. ACM 53, 139–143 (Jun
2010), http://doi.acm.org/10.1145/1743546.1743583

3. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test
generation for model transformations: an algorithm and a tool. In: Proc. ISSRE’06.
pp. 85–94. IEEE Computer Society, Washington, DC, USA (2006)

4. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: Ocl for the specification of
model transformation contracts. In: in Proceedings of Workshop OCL and Model
Driven Engineering (2004)

5. Didonet, M., Fabro, D., Bèzivin, J., Valduriez, P.: Weaving models with the eclipse
amw plugin. In: In Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

6. Drivalos, N., Kolovos, D.S., Paige, R.F., Fernandes, K.J.: Software language
engineering. chap. Engineering a DSL for Software Traceability, pp. 151–
167. Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/

978-3-642-00434-6_10
7. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: testing

model transformations. In: Model, Design and Validation, 2004. Proceedings. 2004
First International Workshop on. pp. 29–40 (2004)

8. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: transml: a
family of languages to model model transformations. In: Proceedings of the 13th
international conference on Model driven engineering languages and systems: Part
I. pp. 106–120. MODELS’10, Springer-Verlag, Berlin, Heidelberg (2010), http:

//dl.acm.org/citation.cfm?id=1926458.1926470
9. Kessentini, M., Sahraoui, H., Boukadoum, M.: Example-based model-

transformation testing. Automated Software Engineering 18(2), 199–224 (2011)
10. Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. Model-

Driven Software Development pp. 219–236 (2005)
11. Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation testing: oracle is-

sue. In: Software Testing Verification and Validation Workshop, 2008. ICSTW ’08.
IEEE International Conference on. pp. 105–112 (2008), http://dx.doi.org/10.
1109/ICSTW.2008.27

12. Object constraint language, version 2.2. OMG Group (2010), version 2.2
13. Schönböck, J.: Testing and Debugging of Model Transformations. Ph.D. thesis,

Faculty of Informatics, Vienna University of Technology (2011)
14. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-

driven software development. IEEE Software 20, 42–45 (2003)
15. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal spec-

ification and testing of model transformations. In: Proc. SFM’12. pp. 399–437.
Springer-Verlag, Berlin, Heidelberg (2012)


