

Exploring Costs and Benefits of Using UML on
Maintenance: Preliminary Findings of a Case Study in a

Large IT Department

Ana M. Fernández-Sáez1, Michel R.V. Chaudron2, Marcela Genero1

1ALARCOS Research Group, Instituto de Tecnologías y Sistemas de Información,
University of Castilla-La Mancha, Spain

ana.fernandez@alarcosqualitycenter.com,
Marcela.Genero@uclm.es

2 Joint Computer Science and Engineering Department,
Chalmers University of Technology & University of Gothenburg, Sweden

chaudron@chalmers.se

Abstract. UML has become the de-facto standard for graphical modelling of
software. One source of resistance to model-based development in software or-
ganizations is the perception that the use of UML is not cost-effective. It is im-
portant to study what costs and benefits are experienced in industrial use, and in
what context. In this paper we pay special attention to the maintenance phase,
because maintenance consumes a significant part of software project resources.
This paper describes a case study in an industrial context: the software depart-
ment of a large multinational company. This case study presents qualitative
analysis based on 2 0 out of 36 interviews performed with employees who
played different roles in the company and provided different views about the
use of UML. The results revealed that the investment needed for using UML in
a company is relatively small and that it is mostly related to tooling and train-
ing. The principal use of UML diagrams is communication. The use of UML
diagrams is also found to be related to fewer software defects. The costs of
UML use should not be considered as a high investment. The paybacks of using
UML are a better understanding of the problem domain, improved communica-
tion, reduction of software defects, improvement in software quality or reduc-
tion of software maintenance effort.

Keywords: UML, Software Maintenance, Modelling Languages, Case Study

1 Introduction

Modelling is a common aspect of effective software engineering, and UML is the de-
facto standard notation for this. How to do software modelling effectively is still an
open question. Given that a large portion of software development effort is spent on
software maintenance [1], it is important to understand the impact of software model-
ling on software maintenance. In this paper, the term “maintenance” refers to those
projects that modify or correct existing systems instead of creating new ones, i.e., the

mailto:ana.fernandez@alarcosqualitycenter.com
mailto:Marcela.Genero@uclm.es
mailto:chaudron@chalmers.se

focus is on repairing bugs and on creating new releases. In this study we explicitly
aim to elicit factors related to the costs of using modelling, thus adding fresh findings
to the hitherto scarce evidence on payoffs and costs of software modelling.

The principal goal of our research is to find out what industrial software profes-
sionals perceive as costs and benefits of software modelling, with special attention to
software maintenance tasks. We focus our attention particularly on UML as a specific
modelling language, because it is widely used in industry[2, 3]. In this paper we pre-
sent empirical evidence obtained in the IT department of a large multinational com-
pany. This evidence was collected over a 12-month period in 2012.
Using the Goal-Question-Metrics template, we can formulate the goal of this study as
follows: “Analyze the use of UML modelling for the purpose of investigating its costs
and benefits, with respect to software maintenance tasks, from the perspective of the
researcher, in the context of a large IT department”.

We wish to investigate whether the investment in UML is justified by benefits in
software maintenance projects, such as improved productivity and improved product
quality. We define the following research questions:

RQ1) What is the cost of using UML in software maintenance projects?
RQ2) What is the payback of using UML in software maintenance projects?
This paper is organized as follows. Section 2 presents the related work. Section 3

describes the case study and how it was designed. The results obtained are set out in
Section 4, whilst the summary is provided in Section 5. Finally, Section 6 outlines our
main conclusions and future work.

2 Related Work

After carrying out a Systematic Literature Review (SLR) [4] and later extending the
search period till August 2013, we found 6 experiments related to the use of UML on
the maintenance of source code. Only 2 experiments, using professionals as subjects,
were discovered [5, 6], which concluded that the correctness or quality of the mainte-
nance of the code is improved when UML diagrams are available, although the time
of maintenance is not influenced. Related to the results obtained in academic envi-
ronments with students, the results of Scanniello et al. [7] revealed that the availabil-
ity of UML diagrams produced in the design phase positively influence the perfor-
mance of maintenance tasks. But on the other hand, the presence of UML analysis
diagrams does not show a clear influence on the understandability and modifiability
of the source code[8]. This means that the phase in which the diagrams are created is
an influential factor. But, is that difference based on the Level of Detail (LoD) pre-
sented in the diagrams? It seems that a higher LoD UML diagram improves the un-
derstanding and modifiability of source code compared to lower LoD UML diagrams,
but the differences are not conclusive [9]. Focusing on the origin of the UML dia-
grams, in [10] we found that there is a clear preference for human-created diagrams
(built during the development phase) over those generated using automatic reverse
engineering tools, because they reduce the reading problems. The difference in per-
formance is not significant, however.

The pattern that emerges from the results of these experiments is that, under con-
trolled conditions, both students and professionals benefit to some extent from the use
of UML in software maintenance. An important issue is to study if these results also
hold in an industrial environment under real conditions. Pursuing this goal, we carried
out the case study described in this paper.

3 Case Study Design and Execution

In this section, we discuss underlying aspects of the case study, following the sugges-
tions provided in the literature for that purpose[11].

3.1 Specific Research Questions

It is difficult to measure the payback and costs of the use of UML precisely, because
there is much noise in project administrations. We chose to aim for qualitative find-
ings by performing interviews with different roles (software engineers, testers, devel-
opers, etc.). We broke down the research question further into the following:

1. What are the costs related to UML tooling? This question is related to RQ1.
2. What are the costs related to UML training? This question is related to RQ1.
3. What is the impact of UML diagrams on software maintainers’ understanding and

product quality? This question is related to RQ2.

3.2 Case and Subject Selection

For our case study we obtained data in an IT department of a multinational company.
The IT department has between 800-1000 employees. In this department most pro-
jects are mainly of a software maintenance character. Following the classification of
Yin[12], our study is a s ingle, embedded case study. Our units of analysis are the
different roles.

3.3 Data Collection Procedures

To obtain data about the use of UML during maintenance tasks we used two sources:

• Department shared project files: The IT department has a file server in which all
the relevant documentation of the department and the projects is shared. Through
these shared files the maintenance projects shares the project documentation and
relevant documentation of the IT department.

• Company personnel: The researcher himself, as a temporary member of the or-
ganization and in the capacity of research intern, had direct access to the company
staff and, in particular, to the people involved with the maintenance projects.

Using the first source, we obtained the quantitative data related to the investment
carried out by the company for the introduction or improvement of UML modelling.

We also obtained qualitative data by interviewing personnel. We used semi-structured
interviews1 where the interviews are “guided conversations”[13]. The interviews are
standardized, in the sense that each interviewee is asked similar questions, yet they
are also open-ended, in that there is ample room for interviewees to elaborate.

3.4 Case Study Execution and Analysis Procedure

We performed 36 interviews of about one hour each, which were recorded and tran-
scribed. We analysed each transcription, highlighting the important and surprising
statements, using the NVivo tool. After that, we coded the statements and grouped
them under more general themes. The interviews were performed with people of dif-
ferent roles, to obtain different points of view. The interviewee roles include: project
managers, information analysts, project architects, technical lead, programmers or
application developers, test engineers, delivery leads, SCRUM masters, system ana-
lysts.

4 Results

In this section we present the highlights from the findings of the study, based on the
analysis of 20 of the 36 interviews. However, we already saw saturation of findings;
hence we do not expect many new findings from fresh analysis.

4.1 What Are the Costs Related to UML Tooling?

We made an inventory of the tools in use in the company: Visio (15% of people using
a modelling tool), Bizz Design Architect (5%) and Sparxs Enterprise Architect (80%),
taking into account that one person might use more than one tool. The prices of li-
censes of these tools are between 135€ and 160€; a total of 150 licenses were needed
in an IT department of 800-1000 employees. In addition, an amount of between
4,000€ and 6,500€ per year was paid as maintenance costs related to the use of the
tools.

Although the tools used are part of the “expensive range” of tools, their costs are
very small, relatively, compared to the yearly budget (mostly in manpower) of soft-
ware maintenance projects. Moreover, the costs of tooling are fixed and can be paid
off fast.

4.2 What Are the Costs Related to UML Training?

To answer this question, we used historical data provided by the person who manages
internal/external training and courses for employees at the company; this data was
from 2006 to May 2012. We selected those courses which were related to training on
UML and separated them from other related topics (like Object Orientation, RUP,

1 The interview questions can be found at: http://alarcos.esi.uclm.es/download/list-of-

questions.pdf.

http://alarcos.esi.uclm.es/download/list-of-questions.pdf
http://alarcos.esi.uclm.es/download/list-of-questions.pdf

etc.), but sometimes those topics are taught together. Those courses usually take one
week (40 hours approximately), and they do n ot have a l earning test at the end of
them.

The total amount of money spent by the company in UML adds up to 24,313€ in a
period of 6 and a half years (which is approximately 3,750€ per year). Again, as for
tooling, this amount is small, compared to the total budget of the department.

4.3 What Is the Impact of UML Diagrams on Software Maintainers’
Understanding and Product Quality?

To answer this question, we performed interviews with different people involved in
software maintenance projects. We present the results grouped by topic in the follow-
ing subsections. The percentages presented below indicate the percentage of inter-
viewees that mention this term/topic.

UML Usage.
The UML diagrams which the interviewees mentioned that they usually use during

maintenance are the following: sequence diagrams (80% of interviewees), class dia-
grams (60%), activity and use case diagrams (50%), deployment diagrams (40%),
component diagrams (30%) and collaboration diagrams (10%). These diagrams are
used during the whole maintenance process, from the requirements specification start-
ing with the design of use case diagrams, to the deployment of the system maintained
in the operation environment using the deployment diagrams.

Purpose of Use of UML.
One of the questions during the interview was: “Why do you use UML diagrams? /

For what purpose is UML modelling used?” The answers to these questions were
varied. The majority of people use UML as a communication tool (22%). This com-
munication can be between team members, including stakeholders (8%), or members
of other teams (5%). UML is also used to communicate the current situation to new-
comers to the project (7%). The broad use of UML as a representation for communi-
cation might be due to its being a standard notation, and also because it is well-
known, both by professionals and recent graduates. At the same time, people recog-
nize that UML diagrams are used to complement verbal communication (face to face
or written), but not to replace it: “[…] UML helps to improve the communication, but
it doesn´t replace it […]”.

The next most common uses of UML diagrams are for: enhancing people’s own
understanding of the system under maintenance (8%), analysing risks (7%) and guid-
ing testing (7%). Less-often mentioned are possible uses for: getting an overview
(5%) or guiding implementation (5%).

Uses that were mentioned, but only rarely (2-3%), include: documenting, following
the mandatory process, justifying costs, planning, supporting maintenance, determin-
ing responsibilities for success (offshore team), monitoring implementation, profes-
sional way of developing, or showing progress.

Finally, we should remark that some possible purposes which we expected to find
were not actually mentioned by any of the interviewees, like certification, deploy-
ment, generation of implementation, knowledge transfer or reasoning about design.

Cost of Using UML.
We also asked the interviewees about the possible cost factors or investment relat-

ed to the use of a modelling notation like UML in a software maintenance company:
“What cost factors are related to using UML modelling in your work?”

Table 1 shows the responses to this question. The majority of those interviewed
consider training as an important investment. This might be due to a fear of their own
poor understanding of UML. Another investment which is often mentioned by inter-
viewees is the cost of migration of the current situation to the new one, especially in
the documentation. Formally speaking, this is related more to the introduction of
UML than to the use of UML, yet it is potentially a major investment. Most com-
ments related to migration came from people who are currently working on non-UML
projects, and who would like to introduce it, but they consider the migration of the
documentation to be an impassable hurdle.

Table 1. Cost factors related to the use of UML.

Cost factor % references
Training
 on UML notation
 on modelling tool

33%
 22%
 5%

Migration 28%
Change of people’s mind 11%
Tooling 11%
Central governance 5%
Learning curve 5%
Change of process 5%

Advantages and Disadvantages of UML.
We also asked the interviewees about the perceived advantages and disadvantages

of the use of UML diagrams: “Do you think UML has advantages? What are these?
And disadvantages?” The results are shown in Table 2.

Note that “high level of abstraction” is mentioned as an advantage and a d isad-
vantage at the same time. This may be because architects feel abstraction is beneficial,
but developers need diagrams which are closer to the source code.

We should take into account that the majority of the advantages commented, espe-
cially those related to the UML characteristics, are not benefits in themselves. They
can, however, be considered as benefits in comparison with other modelling lan-
guages.

Some of the disadvantages mentioned (like “No semantics”, “Unclear syntactics”,
“Difficulties in understanding the notation”) might be caused by a poor understanding
of UML diagrams. This problem could be solved by providing training in UML to
users who do not feel comfortable with employing it.

Table 2. Advantages and disadvantages of UML.

Advantages Disadvantages
Related to UML characteristics

High level of abstraction
High suitability for designing OO systems
Shows different points of view
Standardized

Not executable
No/Unclear Semantics
Freedom in styles - naming - layering...
High level of abstraction
Lack of user's point of view
Low capability of designing SOA
No enforcement for separation of what and
how

Related to UML usage
Helps to clarify procedures
Helps in structuring the way of modelling
Improves documentation
Is a common language - world acceptance
Is the only modelling language learnt properly
Reduces misunderstandings/ gaps in offshoring

Difficulties in understanding the notation
Difficulties modelling complex things
Not enough expressiveness

UML Usage and the Quality of Software.
We asked the interviewees about the quality of the final product and its relation-

ship with the use of UML diagrams: “Do you think UML helps to improve the quality
of the final product? How?”

In this case interviewees considered quality of source code related to performing
correct testing and obtaining positive results from it; i.e., obtaining a s ource code
aligned with requirements and design: “[…] Quality is the result of checking the re-
sult also, so UML is your reference of what this should be, but you have to check if
the code that is delivered is in fact aligned with your UML diagram. […]”

Employees of projects which are not using UML diagrams commonly believe that
the presence/absence of diagrams is related to high/low quality of documentation,
respectively. It is very important to note that there is universal agreement amongst all
interviewees that the use of UML improves the software quality (100%).

In relation to software quality, we also asked the interviewees about the possible
relationship between the use of UML diagrams and the presence of defects in the code
of the system: “Do you think that the use of modelling introduces errors?”

17% of the interviewees considered that UML usage reduces the introduction of
defects in the code of the system, i.e., prevents defects, while 8% believed that UML
increases them. 8% of those interviewed think that there is no relation between soft-
ware defects and UML in itself; the defects are caused by an incorrect solution, but
UML is not the problem. Almost half of the interviewees (42%) are of the opinion
that the use of UML is helpful when we need to find the cause of a problem in the
source code.

Standardization.

We asked the interviewees about standardization in ways of working. In this case,
we focussed on those standards used to document the system and the activity of dia-
gramming. Only 10% of the interviewees considered that there is excessive standardi-
sation, while 37% believed that there is a lack of standardization. These last respond-
ents felt a need for more standardization related to the following:

• Naming: naming conventions for classes, attributes, etc. in code and diagrams.
• Layering: it is not clear what the recommended layering of the system is.
• Style: There are a l ot of issues related to the style of diagramming (and subse-

quently of coding) which are not clear.
• Level of detail: it is not clear at what level of detail systems should be modelled.

Independently of their opinion on the presence of standards at the company, most
of those interviewed (53%) agreed that there is a lack of conformance to the stand-
ards. Mechanisms to incentivise the correct use of standards should thus be intro-
duced: “If you let people choose, you lose all your advantages. So, yes, force them.”

5 Threats to Validity

We must consider certain issues which may threaten the validity of the case
study[11]:

• Internal validity: The age, education, role or experience of the interviewees might
be influential factors in being for, or against, the use of UML. This factor will be
analysed in future work.

• External validity: the sample of the case study might be a threat to the validity of
this study, although the sampling process was as randomized as possible. The gen-
eralization of the results might be extended to cases which have common charac-
teristics.

• Construct validity: the transcript of interviews and observations were sent back to
the interviewees to enable correction of raw data. Apart from that, analyses were
presented to them and to the internal research supervisor, in order to maintain their
trust in the research.

• Reliability: the chain of evidence from the interviews and documentation analyzed
through to the synthesized evidence was maintained using a word-for-word tran-
scription (so as not to reach mistaken interpretation while the analysis was being
undertaken; this analysis took a long time to carry out). Tools were also used dur-
ing the analysis of the data. In addition, randomized pieces of the analysis were
discussed by the researchers, so that they could verify and reach an agreement on
them.

6 Conclusions and Future Work

This work aimed to discover the costs and benefits of using UML modelling in the
setting of maintenance-intensive software development.

In an effort to answer the first two research questions of this study, we have report-
ed on the costs of use and introduction of UML modelling. In the context of a large IT
department these costs related to tooling and training can be considered relatively
small. In addition, the cost of building the UML documents is considered as low by
the majority of interviewees. The cost of maintenance of the UML documents is zero,
due to the fact that in the majority of cases the UML documents are not synchronized
with the updates performed in the source code. The payback of UML use is very dif-
ficult to measure, because one of the main benefits is the improvement of communi-
cation between stakeholders. That is why we decided to investigate the impact of
UML diagrams on software maintainers’ understanding and product quality as a third
research question. We therefore asked employees for their subjective opinion of the
use of UML diagrams, as well as about their benefits. As on all issues, there are those
in favour and those against the use of UML, but we detected more people in favour of
using it. Proponents of modelling could be found within project architects, developers
and maintenance engineers. Opponents to modelling could be found in Agile for-
mation and people who are less familiar with UML. We speculate that people who are
opposed to UML modelling are individuals who have been working at the company
for a very long time, who are used to working in a certain way and thus are fearful of
change.

Several benefits have been reported regarding the use of UML: better understand-
ing of the problem domain, improved communication, reduction of SW defects, im-
provement in quality or reduction of software maintenance effort. We would recom-
mend strengthening the benefits mentioned in the employees’ ideas, also introducing
the rest of the possible advantages to them (like reducing rework, improving the re-
quirements, a better understanding of the solution space, etc.).

As part of the analysis of the costs and paybacks of the modelling during mainte-
nance, several additional issues were detected, which should be dealt with in the com-
pany in the quest to improve the maintenance process. There is a need for standardiza-
tion – which should focus in particular on the style of modelling: 1) Naming and lay-
ering conventions should be defined; and 2) The level of detail which should be pre-
sented on diagrams should be defined.

A very important issue which must be improved is the need to keep diagrams and
the documentation in-synch with source code, representing on these all the changes
performed in the system. In order to keep the diagrams updated, we recommend the
use of a version management tool of diagrams. In relation to this topic, we observed
that the process and responsibility for updating the documentation is often not clearly
assigned. Finally, we recommend incentivizing or giving training on the long term
benefits of using modelling languages (especially UML) to those subjects who do not
know them and who cannot feel there is any possible benefit from a change in the
process. People should also be incentivized regarding the benefits of maintaining the
documentation.

Nevertheless, we will continue analysing the remaining interviews, in order to cor-
roborate the results obtained. The analysis of the documentation of each project and
its relation with employees’ opinion will also be done as part of future work.

Acknowledgements
This research has been funded by the GEODAS-BC project (Ministerio de

Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER,
TIN2012-37493-C03-01).

References
1. Pressman, R.S.: Software engineering: a practitioners approach. McGraw Hill (2005).
2. Dobing, B., Parsons, J.: How UML is used. Communications of the ACM. 49(5), 109–

113 (2006).
3. Scanniello, G., Gravino, C., Tortora, G.: Investigating the Role of UML in the Software

Modeling and Maintenance - A Preliminary Industrial Survey. Presented at the Interna-
tional Conference on Enterprise Information Systems (2010).

4. Fernández-Sáez, A.M., Genero, M., Chaudron, M.R.V.: Empirical studies concerning the
maintenance of UML diagrams and their use in the maintenance of code: A systematic
mapping study. Information and Software Technology. 55(7), 1119–1142 (2013).

5. Dzidek, W.J., Arisholm, E., Briand, L.C.: A realistic empirical evaluation of the costs and
benefits of UML in software maintenance. IEEE Transactions on Software Engineering.
34(3), 407–432 (2008).

6. Arisholm, E., Briand, L.C., Hove, S.E., Labiche, Y.: The Impact of UML Documentation
on Software Maintenance: An Experimental Evaluation. IEEE Transaction on Software
Engineering. 32(6), 365–381 (2006).

7. Scanniello, G., Gravino, C., Tortora, G.: Does the Combined use of Class and Sequence
Diagrams Improve the Source Code Comprehension? Results from a Controlled Experi-
ment. Presented at the Experiences and Empirical Studies in Software Modelling Work-
shop (2012).

8. Scanniello, G., Gravino, C., Genero, M., Cruz-Lemus, J.A., Tortora, G.: On the Impact of
UML Analysis Models on S ource Code Comprehensibility and Modifiability. ACM
Transactions On Software Engineering And Methodology (In press) (2013).

9. Fernández-Sáez, A.M., Genero, M., Chaudron, M.R.V.: Does the Level of Detail of UML
Models Affect the Maintainability of Source Code? Presented at the Experiences and Em-
pirical Studies in Software Modelling Workshop (2012).

10. Fernández-Sáez, A.M., Chaudron, M.R.V., Genero, M., Ramos, I.: Are forward designed
or reverse-engineered UML diagrams more helpful for code maintenance?: a co ntrolled
experiment. Presented at the International Conference on Evaluation and Assessment in
Software Engineering (2013).

11. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software Engi-
neering: Guidelines and Examples. Empirical Software Engineering, 14, 131-164 (2012).

12. Yin, R.K.: Case Study Research: Design and Methods. SAGE Publications (2002).
13. McNamara, C.: General guidelines for conducting interviews. Authenticity Consulting,

LLC, Minneapolis, MN (1999).

	1 Introduction
	2 Related Work
	3 Case Study Design and Execution
	3.1 Specific Research Questions
	3.2 Case and Subject Selection
	3.3 Data Collection Procedures
	3.4 Case Study Execution and Analysis Procedure

	4 Results
	4.1 What Are the Costs Related to UML Tooling?
	4.2 What Are the Costs Related to UML Training?
	4.3 What Is the Impact of UML Diagrams on Software Maintainers’ Understanding and Product Quality?
	UML Usage.
	Purpose of Use of UML.
	Cost of Using UML.
	Advantages and Disadvantages of UML.
	UML Usage and the Quality of Software.
	Standardization.

	5 Threats to Validity
	6 Conclusions and Future Work

