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Abstract. We present a method and initial results on reverse engineering the ar-
chitecture of monolithic software systems. Our approach is based on analysis of
system binaries resulting in a series of models, which are successively refined
into a component structure. Our approach comprises the following steps: 1) in-
strumentation of existing binaries for dynamically generating execution traces
at runtime and connected analysis, 2) static inspection of binaries, 3) interpre-
tation using domain knowledge, and 4) identifying component boundaries using
software clustering. We motivate a generic method which covers a large class
of software systems, and evaluate our method on concrete software tools for in-
dustrial automation systems development, focusing on Intel x86 and Microsoft
Windows-compatible applications.

1 Introduction

We present an architectural reverse engineering approach. Instead of solely analysing
binaries statically, we perform analysis at runtime thereby taking into account runtime
dependencies between entities. This detailed dependency information denotes an ab-
stract system model. Clustering is used to identify candidates for a component-based
software architecture view suitable for human understanding. Additional information
from binary inspection and domain specific knowledge is used to select an architectural
system model. Furthermore, in the experimental part of this paper, we apply our method
to tools for distributed industrial automation programmable logic control (PLC) spec-
ification and configuration. Such tools typically support specifications compliant with
the IEC 61131–3 or IEC 61499 standards (e.g. CoDeSys [6] and 4DIAC [8], respec-
tively). Restriction to a particular domain gives us information for calibrating our anal-
ysis. In this paper our novel contributions are as follows: 1) A suggested architecture
reverse engineering method based on runtime instrumentation, automated clustering,
hand-inspection of binaries, and domain knowledge. 2) Tailoring this method for Intel
x86, in particular Microsoft Windows. 3) A case-study applying our method to PLC
specification and configuration tools.

Related Work Published work on architecture reconstruction and related reverse engi-
neering tasks focussing on derivation of component candidates and inter-dependencies
is covered in existing surveys and overview papers [5, 15, 3]. Two main directions are 1)
based on analysis of source code and 2) based on the analyses or execution of system bi-
naries. In [3] a taxonomy of reverse engineering techniques by classifying according to



the artefacts used, and whether analysis is static (based on syntactic analysis of source
or executable) or dynamic (based on running, observing and/or animating the system
itself) is presented. We focus on runtime analysis for architecture derivation (also called
dynamic analysis) [7]. DiscoTect [16, 17] is a framework that observes running systems
to reconstruct their architectures. A key feature of DiscoTect is its flexibility to cope
with a range of high architectural styles and a range of possible realizations in im-
plementations. DiscoTect uses a language: DiscoSTEP to define mappings interpreting
low level system events as more abstract architectural operations, which are formally
defined as coloured Petri Nets. The authors note that such mappings must be provided
by experts with correct domain knowledge. Reconstructing software architecture from
execution traces requires the analysis of the execution traces and the identification of
potential components. Combining potential component candidates into disjunct sets de-
noting suggestions for aggregation of components is known as clustering and is an im-
portant step for gaining suggestions on the original and potential future architectures.
The field of clustering for software components has been studied by several authors
including [10] featuring a proposition, [12] featuring the analysis of source code for
component detection, [9] studying clustering in the context of software evolution. In
this work we are using the Pin tool [4] for binary instrumentation and tracing hints
about architecture. Other well known tools comprise the more heavy weight [13] tool
which does not have native Windows support, but offers a wider range of instrumenta-
tion possibilities potentially resulting in slower code.

2 Our Approach

Our method for collecting runtime based architecture information has these steps:1)
We instrument an existing tool such that dynamically loaded libraries and control flow
events are tracked and collated as execution traces. These traces contain information
(e.g. available methods) for dynamically loaded libraries, as well as the order of method
calls. Instrumentation is done on a binary level. 2) The instrumented tool is run and exe-
cution traces are generated. A user interacts with the tool (e.g. editing, simulating, com-
piling). All dynamically loaded libraries and method calls (traced by memory address)
and time of invocation are traced. The generated execution traces are further processed
and abstracted. This involves the resolution of traced memory addresses to primitives
such as methods, objects or executables. Calls between methods denote a graph. Here,
each primitive corresponds to a node and the number of distinct caller/callee combi-
nations in the execution trace is annoted as a weight on a directed edge. We cluster
primitives into candidate components using the LIMBO algorithm (see below). This
gives first candidates for a component architecture. Final clustering is based on interac-
tions between methods, existing dll structure, analysis of names and knowledge about
reference architectures. 3) The generated data is interpreted by using information from
binaries and the domain, to derive information about the underlying architecture of the
tool. Manual binary inspection and domain knowledge are used to complete reconstruc-
tion.Several tasks are carried out for the runtime-based analysis part of our method:

Usage Scenarios for Runtime Based Evaluation We evaluate our tools with the help of
usage scenarios. These are sequences of user interactions with tools. The component



interactions are then extracted from the generated execution trace in order to gain hints
on architectural details. The idea is to invoke the distinct components of a tool by user
interaction. For example a user may trigger a compilation at a certain time and the
execution trace may show the loading of distinct libraries and the invocation of the
desired methods. We can also compare interaction sequences in order to see if different
tools have a similar way of interacting e.g. with a compilation component.

Evaluating Execution Traces, Clustering and Component Candidate Identification We
aim to generate a graphical view showing a few high-level components and their interac-
tions. In Windows and similar environments components are most often associated with
distinct executables and libraries (or possibly packages), and their inter-dependencies
(associated with dynamic linking, import or transfer of control between their respec-
tive methods). However a high-level view at such a level is often inappropriate because
the view has either too many or too few executables. We therefore tried to identify
high level component candidates by clustering groups of other programming language-
specific notions such as classes/object or method. We will use the term primitives to
refer to low-level component categories selected for clustering.

Software clustering is a long-standing and commonly used method for imposing
abstract, high level structure on an over-detailed view of primitives and their relation-
ships. For software, a set of low-level components is typically clustered on the basis of
properties such as which other components they call, authorship, or location in source
directories. As shown, clustering may be thought of as partitioning a collection of ob-
jects based on the similarity of their properties. Typically clustering is based on static
analysis, here, we are using clustering based on the dynamic call structure between
primitives observed at runtime.

Figures 1 (a) and (b) depict the clustering for a usage scenario in the open source
tool PLCEdit [14]. Both take the dynamic call structure between primitives into account
and are generated from the same execution trace file. Primitives of each cluster are
listed in nodes (boxes). The number of calls between primitives are provided as labels
on the edges. The main call direction is given first. Calls in the opposite direction are in
parentheses. The figures exemplify that based on the same execution trace files there are
different possible ways to depict abstract system structure. Arguably, good component
structures are selected based on domain specific knowledge.

We use the LIMBO clustering algorithm [2]. LIMBO is based on a generic method
called Agglomerative Information Bottleneck (AIB). It has been used for the analysis
of large systems across scientific disciplines. LIMBO and the underlying AIB method
are generic in the sense that they operate fundamentally on a set of objects O, a set
of attributes A and relation R ⊆ O × A with non-negative real number weighting
w : O × A → R+ ∪ ⊥. In our approach we represent primitives as follows. Each
primitive is modelled both by an object in O and an attribute in A. The weighting w
reflects the number of different ways an object o in O calls a different object o′ in A.
R and w are constructed from the execution traces in an application-dependent way.
LIMBO uses a generic information-theoretic approach as its basis for clustering. First,
weights are modified via a suitable weighting transformation such as TF.IDF, which
transforms weights according their significance (the more rarely held an attribute A is
overall by all objects, and the more frequently by some given object O, the more sig-
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Fig. 1: Example control flow graphs for 5 and 10 components

nificant, thus heavily weighted, A is for O.) Next, the new weights are converted to
probabilities such that the sum of all weights per object is 1. Finally, LIMBO attempts
to compress its representation of R by iteratively merging the closest pair of objects
and generating a new relation R′ which approximates R under merging. The closest
pair is the one for which merging minimises information loss in R′. LIMBO’s gener-
icity enables it to support both “structural” and “non-structural” attributes. Structural
attributes reflect program dependence structure as described above. In our work so far
clustering is purely on a structural basis. Non-structural attributes refer to the general
case and cover properties such as a time stamp or authorship. There is ambiguity about
whether it is best to generate structural attributes by interpreting the primitive call graph
as directed or undirected—That is, whether two primitives which call each other have
the same value in both directions (sum of the number of ways they can call each other)
or possibly-distinct values. In our work the call graph is interpreted as undirected.

Additional Static and Domain Specific Information Binaries like .dll files can encap-
sulate multiple components and provide hints on development history. Names and size
of components can indicate usage. Binaries can contain method names and plain text
that hint on component functionality. A major source of knowledge in our reverse en-
gineering method is the PLC development domain. For example we know what types
of components to expect. We started with the following expected components: Source
and target code storage manage the modeling, storage and exchange of source and
target specification models and code by using a file system or a database. Compilers,
Analyzers and Simulators parse specification models and perform operations on them,
like generating target code, interacting with a GUI component in order to visualize
behaviour or properties. Editors manage the editing of models by the user. License
Management and other miscellaneous functionality can be realized as a separate com-
ponent e.g. that may interact with a third party license server. The GUI provides a user



interface. It does not have to be realized as a separate component inside the tool, since
existing GUI frameworks can be used.

3 Analysis and Evaluation

Instrumentation of binaries is done by using the Intel Pin tool [4]. We instrument the
binaries of our analyzed tools to extract: (i) A list of the loaded binaries and the names of
the methods (called routines) inside these binaries, if available, including their memory
addresses. (ii) A list of control flow operations that occurred during the execution of the
tool, and in particular the source and destination addresses.

Case Study Tools We have used our method for analysing the architecture of a mix of
proprietary and open source tools. Tools are designed for performing at least some of
the following operations for the development of PLC software: 1) Editing PLC speci-
fication models, 2) Saving and loading of PLC specification models, 3) Analysing and
compiling PLC specification models, 4) Simulating PLC specification models. We ini-
tially expected that this functionality is provided by distinct software components as de-
scribed in the previous section. Open source systems considered included PLCEdit [14],
Beremiz [1] and MATIEC [11]. Of these, PLCEdit and MATIEC (also a Beremiz com-
ponent) were immediately suitable, consisting of plain binary executables. Beremiz is
written in Python and thus the Pin-based method is not immediately suitable.

Example Runs An Example usage scenario (Section 2) consists of the steps: Start tool;
Create new project file; Add ladder diagram; Invoke editor; Add coil (lamp) and contact
(switch) to ladder diagram, add connections; Save project; Compile and check project;
Close project; Start simulation of saved project; Close tool.

Evaluation and Improvements The method was applied to different PLC development
tools. Execution of the usage scenarios was done manually, while the processing of the
execution traces was done automatically to generate models – one single model for each
usage scenario and number of desired components – comprising component candidates
and their interactions. Clustering based on dynamically linked libraries and executa-
bles did not always provide the right granularity, since several major components are
typically encapsulated in a main executable. Determining the begin and end of entities
like methods or classes in the binaries as a basis for clustering was sometimes possi-
ble. In some cases e.g. due to the use of different programming languages, additional
information on the location of entities for the basis of clustering was provided by the
tool developers and used by us. For example for some applications while symbol table
information is not available in the executable, a “.map” file provides similar informa-
tion for debugging purposes. There are a number of possible reasons why a clustering
may not reflect a system’s true architecture, for example there may be insufficient data
in the run time call graph, or architectural anti-patterns may be present. It may be de-
sirable to associate each component with a meaningful name or feature. As discussed
in clustering literature, this depends on understanding what abstractions (e.g. aspects)
are semantically common to all objects of a component, or the principle abstraction of



the component, which can be difficult. Currently all attributes are structural, derived
from the Pin call graph, however the graph is created by exercising tools using just a
few use case scenarios. There is scope to assign so-called non structural attributes, that
is, properties other than call relationships on which clustering could be based, possibly
based on manual assessment and with input from domain experts. These could pertain
to specific features or aspects such as GUI or safety. For example if several objects are
clearly GUI components, an additional GUI attribute could be assigned to those objects
and taken into account during clustering. There are existing aspect mining approaches
in the literature which may be applicable or adaptable to this purpose.

The LIMBO algorithm was implemented by us in few hundred lines of Python. This
is supported by additional scripts which process output from our pin plugin.
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