
RDFGrowth, a P2P annotation exchange algorithm for
scalable Semantic Web applications

Giovanni Tummarello1, Christian Morbidoni1, Joakim Petersson2, Francesco Piaz-
za1, Paolo Puliti1

1Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni
 Università Politecnica delle Marche,

Via Brecce Bianche – 60131 Ancona (ITALY)
{g.tummarello, c.morbidoni, upf,

p.puliti}@deit.univpm.it
http://semanticweb.deit.univpm.it

2 KTH, Royal Institute of Technology,
Stockholm (SWEDEN)

jocke@kth.se
http://www.kth.se

Abstract. We present RDFGrowth, an algorithm that addresses a specific yet
important scenario: large scale, end user targeted, metadata exchange P2P appli-
cations. In this scenario, peers perform browsing and querying of semantic web
statements on a local database without directly generating network traffic or re-
mote query execution. The database grows by learning from other peers in the
P2P group using only a minimal amount of direct queries that are guaranteed to
be executable with a low, predictable computational cost. Although full RDF
graphs could be treated, the design allows a peer to learn only about resources
considered interesting by a specific “community” and makes it possible to tag the
received information according to individual trust rules. Inspired by well known
viral distributed information techniques, the algorithm is in agreement with the
RDF semantics and is specifically suited for the properties of Distributed Hash
Table P2P networks. A few assessments about the applicability of RDFGrowth
to real semantic web applications are also given.

1. Introduction

P2P models have long been considered very promising technologies for the Semantic
Web [1][2]. There are, however, a number of difficult theoretical and practical chal-
lenges, see section 2, which have hindered widespread usage. A number of frameworks
have been proposed targeted at specific scenarios (see section 2.2) but so far none
have addressed directly the problem of large scale, end user targeted metadata ex-
change P2P applications. This scenario has a few fundamental requirements that we
take as starting point for the work in this paper. As an example, browsing and querying
“the semantic web” shouldn't be a direct burden for others peers.

We detail our setting in section 3: in the P2P network each peer has a local RDF
database and, using the presented algorithm (RDFGrowth), increases its internal
knowledge by discovering and importing it from the others. Some real world applica-
tion ideas based on RDFGrowth are highlighted in section 4.

2. Semantic web and P2P: challenges and related works

While there are multiple challenges in P2P semantic web system (e.g. Ontology inte-
grations), we focus here on CPU and Network traffic scalability issues in general RDF
utilization.

2.1.1. Computational burden
On the WWW, the interaction is based on HTTP requests/replies that in the great ma-
jority of the cases will be of limited impact on the server (e.g serving a file). This
means that, disregarding anomalous cases, both the computational resources and net-
work traffic required by a HTTP request are bounded.
On the contrary, “requests” on the semantic web are naturally expressed in query lan-
guages and, given the graph nature of RDF structured information, the complexity of
execution is not bounded a priori as it is a function of the query type as well as the
quantity and the structure of the data. In other words, whoever would decide to offer
the ability to answer “arbitrary questions” on a SW P2P, would easily open himself to
“denial of service” situations even in the ideal, good faith usage.

2.1.2. Network traffic
In [3], drawing inspiration from research in classic relational databases, a heuristic is
proposed to optimize the query execution plan taking into consideration both the com-
putational and data transfer costs. In case of queries involving the RDF equivalent of
“joins” over distributed data sources, however, large dataset transmission is usually un-
avoidable unless sources provide natively the required “join” capabilities. Providing
such capability (as in a mediator) outside the original sources is essentially equivalent
to copying the whole dataset.

Finally, it is to be noticed that the classic distributed DBMS techniques are just of
limited applicability. While in typical DB scenarios there is a concept of “table” aggre-
gating statements about a certain class of resource (e.g. a table responsible for state-
ments about all the users), RDF annotations are distributed in nature as statements
about a given URI can be made in different locations on the web and could all be use-
ful when answering a semantic query, with heavy consequences on network traffic.

2.2. Existing P2P Semantic Web frameworks and related works
Considering the above complexities, alternative approaches have been proposed in lit-
erature to address the specific needs of different distributed RDF use cases.

2.2.1. Centralized repository plus crawlers
One approach could be to have a central repository where crawlers deliver RDF anno-
tations [4][5]. While this would require large infrastructure, it would certainly not al-
low arbitrary complexity queries and there could be considerable refresh times between
successive updates. Additionally, when information spread and searching is concerned,
centralized systems are to be questioned about their ability to guarantee unbiased treat-
ment of information.

2.2.2. P2P Query distribution
In cases where there is a limited number of powerful query servers and a limited num-
ber of disciplined users (e.g. interlibrary query) the P2P approach investigated in the
Edutella [6] seems ideal. In this system, RDF queries are broadcasted for execution
trough the entire network and results are collected when they are sent back. Although
a successive version of the system [7] has introduced super peers and schema based
routing to limit the number of queries sent to the final servers, the approach seems lim-
ited to the proposed applications. Query results are in fact limited to the union of those
obtainable in the query execution space of the single servers, thus resembling more the
union of traditional DB results rather than queries across a distributed information
graph. Secondly, the approach has limited scalability since each query server is individ-
ually going to sustain a load that is proportional to the number of users. In case the
query syntax is not fixed a priori, the computational burden issue as expressed in sec-
tion fully applies.

2.2.3. P2P RDF storage
Distributed RDF storage is considered in the RDFPeers framework [8]. By making use
of distributed indexes on the Subject, Predicate and Object of each stored RDF triple,
efficient retrieval can be obtained. Simple queries, e.g. in the form of selecting all
triples with a given subject, are shown to be solved using a number of network hops in
the order of log(N) where N is the number of peers participating. Unlike [7] however,
due to its indexing structure, the system does not make use of schema knowledge nei-
ther for storing or query execution. As a result of this, trying to answer queries that
make use of ontologies or even simple RDF schemas (as in second generation RDF
query languages [9]) could require massive amount of data (potentially all the graph)
to be moved from the network to the individual querying peer for local execution.

While the system guarantees that the computational requirements for each remote
invocation is minimal, the number of remote invocation per peer in a scenario where
each peer is querying at a constant rate remains a function of the number of partici-
pants, thus indicating a limit for usage scalability. Furthermore, each request will be
answered with the list of all the triples with the given subject, predicate or object and
this generates not only a lot of requests for peers storing popular RDF nodes but also
each answer could be large in size due to the same node appearing in many statements.

Overall, this approach seems ideal for graph size scalability and information seek
time, while relatively good overall scalability is obtained under the assumption that
peer queries will be limited to simple or very infrequent complex ones.

3. The knowledge growth algorithm

3.1.1. Semantic Web P2P User Communities: scenario and features
In this paper we introduce a scenario of a P2P network where each peer has a local
RDF database and is interested in growing its internal knowledge by discovering and
importing it from others peers in a group.

As all the searching and browsing is based on the local database, this scenario is of
particular practical interest, main reasons being:

1) The local computational power is almost fully available for queries originated loc-
ally.

2) Local filtering policies. When information is received the users have the ability to
locally “tag” it with a trust rating to be then used at browse time. Information that
does not reach a selected trust level would simply not contribute at all to the
browsing experience.

3) Browsing activity does not directly cause network traffic. A single peer bandwidth
limitations will be shown to cause minor bottlenecks in the overall growth perfor-
mance. Browsing or inserting new information off-line or over dial up lines is pos-
sible.

This knowledge base “growth only” scenario is rooted in the monotonic nature of
the RDF semantics [10]. To obtain more information about a resource can’t in fact
“hurt” since, by definition, previously inferred statements will still hold when new data
is presented. It will be of course possible, in the real world applications, to rely on non
monotonic rules and “context” information (e.g. Digital signatures) on the local data-
base for several purposes (e.g. inference, smart visualization) but it should remain a
local peer decision to do so with no consequences on the shared knowledge.

As an example of non-monotonic reasoning useful when applied to a local database,
especially in such heterogeneous P2P scenario, we can imagine a “Semantic spam fil-
ter” which, e.g., would only visualize the statements coming from “the three most trus-
ted sources currently known”.

3.1.2. Requirements and guidelines
The analysis of the scalability limitations of the existing approaches suggested the fol-
lowing design principles in addressing the P2P communities scenario previously high-
lighted:

P1) The system can’t assume any reliability. Over a loosely coupled distributed sys-
tem communication may fail, peers might disappear at any time or refuse to
answer remote request. Furthermore the system should behave reasonably also
in “high churn rate” conditions, that is when peers frequently decide to join
and leave.

P2) Each peer must be requested to answer only queries which generate a bounded
computational and network load sufficiently low for end user machines. This
rule should apply uniformly in all the states of the system.

P3) The system should reward social cooperative behaviours rather than relying on
pure enforcing of the protocol [11].

P4) Users tend to cluster around specific aspects of knowledge (communities) [11].
The algorithm should therefore allow the user to restrict the attention to the
topics he is interested in, with the consequent advantages in terms of efficiency
of information exchange.

The following definitions naturally introduce the actual algorithm description.

3.2. Defining subspaces of interest in the RDF knowledge

Goal of the algorithm is to allow a local database to grow its knowledge with state-
ments found by exchanges with other peers. According to P4 design principle, we
define a way for peers to select which rdf knowledge they are interested to learn about.

Given R the set of resources identifiable with any URI schema, if we define a G se-
lector operator:

G:R{True , False}

and call RG the induced set:

RG={r∈R:G r =True}

If we then define a “RDF neighbours” (RDFN) function shared across the peers:

RDFN : R x RDFRDF

which given a URI and a database containing RDF statements, will select a subset
of the RDF knowledge “about” a URI. The overall subspace of interest (RDFinterest)
that a single peer can obtain is then given by:

RDF interest=
def. U

∀ RDFdb Ur∈RG RDFN r , RDFdb
Where for RDFdb we mean a repository of RDF knowledge that participates in the

exchange. As a result of the growth algorithm (see 3.7), the RDFN function results
will begin to converge and become identical across peers. In this equilibrium state the
RDFinterest is therefore a sole function of the G operator.

3.3. Implementing the G “resource selector” function (GUEDs)
We implement the above mentioned G function, extracting from the local database a
set of resources matching a specific topic, with an operator called “Group URI Expos-
ing Definition” (GUED).

GUEDs, in a sense, define what the “goods” are in the specified “information mar-
ket” and can be considered similar to what happens in existing Internet discussion
mediums such as the “Group FAQ” often posted in specific Usenet discussion groups
to specify what topic are appropriate and what are not.

Example of a such operator for an exchange network interested in “Rap Music”
would be “Select all the songs with “rap” genre , select all the albums containing these
songs, all the musicians who performed them, and all concerts where they were
played”. It is clear how this, in practice, could be simply implemented as the aggrega-
tion of results obtained from a prespecified set of queries in one of the semantic web
query languages. As the GUED operator will be run very seldom (usually when a peer
joins a group) there are no strict requirements on the computational cost of calculating
it. As a result it might be interesting to consider more complex rule sets as GUEDs,
maybe expressed in higher level language.

As the GUED is itself a resource, in the P2P group it will be indicated with its own,
agreed upon, URI. We will see in 3.7 how a GUED-node, is used for the purposes of
the algorithm.

3.4. Defining RDFN, the annotation “directly” concerning a specific resource
Given a URI denoting some resource, we define as “RDF neighbourhood” (RDFN) of
that resource the set of RDF statements, explicitly asserted and/or inferred, comprised
of the following:

1. All statements in which subject or object denotes the resource in question;
and

2. Recursively, for all statements included in the description thus far, for all an-
onymous node objects, all statements where subject or object denotes an-
onymous resource in question; and

3. Recursively, for all statements included in the description thus far, for all re-
ifications of each statement, the “RDF neighbourhood” of each reification.

This definition is similar to that of Concise Bounded Resource Description (CBRD)
given in [12], but is extended to comprise also statements where the resource appears
as object. The need for such extended definition is clear when considering that human
communications, even when structured and expressed with well thought ontologies, is
inherently not making a distinction between active and passive statements. As an ex-
ample:

author  composed  song
song  composed by  author

are both reasonable structured statements with the same overall semantics and should,
for the purpose of the considered P2P system, be equally threaded.
While the RDFN seems suited for the current application, future studies might also in-
volve a even broader definition including statements where the selected resource ap-
pears as “predicate” and recursively so.

For the purpose of evaluating the scalability of the overall system, it is of great in-
terest to analyze the computational cost of retrieving a resource RDFN. Simply, it can
be noticed that in the most common situation, when no blank nodes are present, this
function can be mapped to a simple relational database query on a unique indexable
field. When blank nodes or reifications are present the algorithm explores them but will
stop at the first non-blank node. The cost associated with the operation, in terms of
simple queries, is therefore linear with the number of blank nodes or reifications at-
tached to the original URI. On top of the low computational cost, it is also very
simple to create a local cache of URIRDFN.

Given that the RDFN description of a resource is the only thing a peer can ask an-
other in the described algorithm (see 3.7 and 3.6), we comply with the P2 design rule.

3.5. RDFN “oracle signatures”
A “signature” heuristic is used to avoid interrogating all the group peers about their
specific RDFN about a given URI.

We define a RDFN signature as a concise information that represents the informa-
tion known by the peer about a URI that will enable an “oracle heuristic” to select

among a list of signatures the one corresponding to the peer to whom it is optimal to
have an exchange with, if such exchange exists, or will allow it to stop exchanging oth-
erwise.

In the above definition, “optimal”, has to refer to a particular aspect one decides to
optimize (e.g. Minimal number of overall exchanges, vs fastest personal knowledge
growth) but the important part is that a signature will effectively determine a stop con-
dition so that a convergence state is determined.

In our implementation, for example, one of the signatures is a MD5 hash of a
canonicalized RDFN (a procedure similar to [13]) and is therefore capable to avoid
that peers having identical RDFN will initiate calls to each other.

Thanks to the mutual importing of information, after a full exchange two peers will
have identical signatures. From this can be shown that, under normal condition, the
simple RDFN hash signature is sufficient for the algorithm to converge the RDFinterest in
the peers.

It is clear how the convergence speed can be optimized by using more advanced sig-
natures techniques. Adding a local memory signature or using combinatory techniques,
for example, often prevents that peers initiate calls to others who have information
corresponding to older states of the local db. Further RDFN signature aiding heuristics
might include indicating the date of the production of the most current information in
the RDFN or the size of the RDFN itself.

3.6. Knowledge Exchange Network Interface
The “Knowledge Exchange Layer” (KEL) is the generic API on top of which we build
the knowledge growth algorithm. We define an “Entrypoint” (EP) as a concise and op-
timized structure composed of: a record containing a URI, a network peer address and
the relative RDFN oracle signatures. A KEL implementation (driver) can be built on
top of any network facility by supporting the following schematized API:

 Publish (EP)
Publish will take a URI and publish it along with its “oracle signatures” as
evaluated by the publishing peer

 Lookup(URI)
The peer performing a Lookup on a specified URI will get a list of EPs
each indicating a peer that has previously Published that URI. The signa-
tures will be immediately available attached to the list of EPs.

 GetRDFN(EP)
This will return the RDFN associated with the EP. This usually corre-
sponds to a direct P2P call to the peer that published the EP.

 [optional] Join/Leave(group-name)
This optional but recommended function acts as a partition of the space
of the “publish” and “lookup” API calls. Intuitively this would map to
join an “interest” group as in P4 design principle.

 [optional] Broadcast(EP)
This optional function will notify the participating peers of an EP that
we think its highly worth for them to import. This is the case when a
peer is certain it possesses more annotations than the commonly known
RDFinterest. To be noticed that this function, when not natively available,

can be simulated with very positive results using techniques as described
in 3.8.1.

Interestingly, due to the minimal API required, KEL drivers can be implemented on
top of a large variety of mediums. Currently, a local network emulation driver and one
based on a Jabber client/server model are available. A fully distributed JXTA driver is
under development. Future drivers might be developed to work over Email, Mailing
Lists, NewsGroups, Existing P2P networks, Web Publishing and possibly also over
Freenet1 (thus introducing an interesting scenario of anonymous metadata publication
and retrieval).

3.7. Main algorithm

The syncronize(URI) procedure
The principal component of the algorithm is the “synchronize” procedure. Taking a
URI as a parameter, the peer calls LOOKUP to receive a set of remote EPs. It re-
moves the ones with the same signature as that calculated about the URI on the local
DB and will call a heuristic Hrdfn which will suggest, using the signatures provided,
the best remote EP to get information from. If a valid reply is received when request-
ing the RDFN from a remote EP, the peer will import the data into the local database.
To keep the local EP and our “public state” updated, the signature is then recalculated
and the EP republished.

Before republishing the EP, the peer checks if it is in possessions of information not
otherwise known in the group, that is, if the newly calculated signature is not among
those of the received EPs. This is usually the case when the peer synchronizes a URI
about which new information was inserted locally.

If this is the case, it will attempt to “broadcast” or, if not available, issue a “news-
flash” procedure before reinserting. The newsflash procedure is explained in 3.8.1 and
avoids being the only peer exposing a new piece of information in a crowded group.

If, at the earlier stage, the GETRDFN had failed, the peer would have removed the
corresponding EP from the set and proceeded in the loop.

As a result of this procedure, at the end of the transient period, the local RDFN
about a URI will converge to the one of the other peers that also chose to publish and
synchronize.

The main loop
The algorithm starts with an indication of the GUED to use (main() parameter). In the
main cycle, an RDF graph is created or merged with the previous where the GUED-
Node is connected directly with the GUED-matching URIs. This graph, by definition,
is fully contained in the RDFN of the GUED URI and will be used to communicate to
the other peers the existence of a new URI belonging to the GUED itself.

The peer then cycles by synchronizing its knowledge about the GUED URI and
then continuing to synchronize on the URIs which, in the local database, are linked to
it.

 The pseudo-code is listed below:

1 http://www.freenetproject.org

1 MAIN(GUED)
2 WHILE is ACTIVE
3 MERGE_GUED_RDFGRAPH(GUED.URI,GETMATCHINGURI(GUED))
4 SYNCHRONIZE(GUED.URI)
5 URIs ← GETMATCHINGURI(GUED)
6 URIs ← RANDOMIZE(URIs)
7 FOR URI IN URIs DO
8 SYNCHRONIZE(URI)
9 ENDFOR
10 ENDWHILE

11 SYNCHRONIZE(URI)
12 REPS ← LOOKUP(URI)
13 REPS ← REPS - { rep | rep ∈ REPS,

SIGNATURE(rep) = SIGNATURE(URI,LOCALDB) }
14 WHILE REPS ≠ { 0 }
15 REP ← Hrdfn (REPS)
16 RDFData ← GETRDFN(REP)
17 IF RDFDATA ≠ {0}
18 IMPORTRDF(RDFDATA)
19 EP ← RECALCULATESIGNATURES(EP)
20 GOTO END
21 ELSE
22 REPS ← REPS – {REP}
23 ENDIF
24 ENDWHILE
25 END:IF SIGNATURE(EP) ∉ SIGNATURES(REPS)
26 IF BROADCAST_AVAILABLE
27 BROADCAST(EP)
28 ELSE
29 NEWSFLASH(EP)
30 ENDIF
31 ENDIF
32 PUBLISH(ENTRYPOINT)

3.8. Optimizations and specific issues
A considerable number of optimizations and scalability solutions have been considered
and implemented. For space limitations, however, we will not discuss the details in this
article except for those addressed in 3.8.1. Addressed issues not discussed here in-
clude: minimizing the average delay in discovering newly inserted information, maxi-
mizing the growth rate of the system therefore minimizing the exchanges using better
heuristic signatures and intelligently reducing the overall number of published EP and
splitting too large RDFN into different URI entries so that the signature based news
discovery maintains efficiency.

3.8.1. Newsflashing
As the transport layer (KEL) can have many widely different implementations, a num-
ber of optimizations deal with peculiar behaviors in presence, i.e., of delays, network
cost or bandwidth limitations. From here, let P be the number of peers in a group, U
the number of different URIs in the common GUED and Dl the delay before a new
published information is available to those that call the lookup call. Let delays and oth-
er time units be measured in “timesteps”, the basic units in a discrete time simulation
stepping on each call to the KEL API.

If we assume Dl = 0, the detection of new information can be shown to take on av-
erage U/2 time steps, full group convergence to be reached after U time steps and the
average load of direct requests on the peer that first published the new information to
be in O(log(P)). This sustainable load comes from the fact that the peers that learn the
new information will republish it and immediately share the request load. When signi-
ficantly high values of Dl are present, however, the peer might have to answer all P
peers in the system. It is therefore realistic to consider that a single peer will decide not

to answer more than a certain amount of calls per unit of time. This limit is from here
called Rmax.

While there are a number of strategies to deal directly with Rmax limitation, we il-
lustrate an “epidemic newsflash” procedure, similar to that explored in [14], which ef-
fectively not only lower the number of requests on a single peer but also significantly
lower the average time for the discovery of new information.

When recalculating the local URI signature, after synchronizing with the group, the
peer will be able to determine if it is in possession of information not yet known to the
group. This is usually the case if information was added locally.

If this is the case, the peer will select a few random peers from the list of those that
were publishing the old signature and propagate the new information. In turn, they will
repeat this procedure lowering time-to-live (TTL) counter.

As an additional stop condition, under certain condition, one might consider
propagating the news if the TTL is greater than 0 and the news was not already locally
known. Implications of these rules are discussed extensively in [14]. Interestingly, un-
der ideal condition such as DL=0 and sufficently high RMax, new information can be
proven to spread on average in time independent from U, that is, in log(P) steps.

In conclusion, the newsflash procedure can be seen as either a way to emulate a
broadcast call, by putting a high TTL (e.g higher than log(P)), or a simply a way to
overcome the Rmax limit, reaching a small but adequate number of peers before “go-
ing public”. In a actual network, the optimal parameters are the results of an optimiza-
tion problem considering the network status and the costs associated with each opera-
tion. Experimental results when applying this procedure are shown in the next section.

3.9. Implementation and experimental results
When DL=0 and Rmax=inf, given that both the updated GUED node and the RDFN of
the new node will be discovered in a uniformly distributed probabilistic time due to the
randomize procedure in the main() loop, it can be shown that the resulting overall
knowledge function is linear in the center with parabolic segments at the beginning and
at the end.

In the simulation, a group of 100 peers is populates a group with a converged equi-
librium state of 100 commonly known URIs. At time 0, a new peer knowing a new
URI with a non empty RDFN is introduced in the network. The results in terms of
overall knowledge about the new informations are shown in in image 1, 0 being no
knowledge and 1 being full knowledge by all the peers. In the same figure, the other
plots illustrate the behaviour in case of non zero Dl, when a Rmax limit is introduced
and when the auxiliary newsflash procedure is also employed. For completeness it is to
be noticed that the newsflash implementation here plotted waits for complete GUED
synchronization before spreading the RDFN. A more efficient implementation could
merge the two steps.

4. Applications

Upon such framework, a wealth of innovative applications can be imagined. In the
same way as keeping a classic P2P file sharing has become a habit for many net users,
P2P metadata information sharing software would steadily discover new information

about topics in which the user expresses interest (e.g. baseball cards, Italian Opera). At
the same time, applications based on such paradigm would be interesting and motivat-
ing to use since things that one would insert would be certain to, slowly but steadily
and democratically, reach those that have expressed interest into it.

Furthermore, while on classic communication channels (e.g. newsgroups, mailing
lists) information can only reach those who chose to read that specific group in which
the post was inserted, in this scenario, this limitation is overcome. Annotations about a
URI, in fact, are intrinsically and automatically bridged by peers that are attending dif-
ferent groups at the same time or that have been in those groups at an earlier time.

Under a usage point of view, it is to be noticed how point 1 in section 3.1.1 directly
results in no inherent limitation on the complexity of the operativity, e.g. of the local
browsing as well as of the queries. User with less powerful hardware would select sim-
pler interfaces as opposed to richer ones performing more involved queries or infer-
ences at each browsing step.

5. Conclusions and future works

In this paper we presented RDFGrowth, an algorithm for semantic web P2P applica-
tions. RDFGrowth is targeted at a particular scenario where peers participate in “inter-
est groups” to grow their internal knowledge about one or more “topics”. Being in a
untrusted environment, they accept to answer only queries with minimal computational
burden and provide no guarantee to answer a query. Furthermore, network traffic is

Image 1 Knowledge Growth Performance with respect to typical network limita-
tions. The 100 peer network with 100 URIs in the GUED, is monitored as one new
URI is inserted. The effects of delay and network limitations are overcome by the
epidemic "newsflash" procedure. The Hp value indicates the maximum number of di-
rect calls that a single peer (usually the newcomer) had to answer.

Knowledge Growth Algorithm performance with respect to typical network limitations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298

Time steps

O
ve

ra
ll

kn
ow

le
dg

e
ab

ou
t t

he
 n

ew
 R

D
FN

delay=0, Rmax=inf (Hp=9) delay=20, rmax=inf (Hp=33) delay=20, Rmax=1/5 (Hp=15) delay=20,Rmax=inf, Newsflash (Hp=10)

not a direct function of the user read activitiy and computational burden is kept local.
Given these conditions, we consider this approach scalable and useful to a number of
applications.

Work is actively in progress both about the algorithm, e.g. about the optimizations
mentioned in 3.8, and on the first actual P2P application embedding it. For these ap-
plications to be useful, “trust” and avoidance of “semantic spam” are issues that must
be taken in early consideration. Current and future work is therefore concentrating pri-
marily on modules supporting this aspect. While, in the current version of the algo-
rithm, peers can only “tag” received information according to local trust rules, an ad-
vanced version is being developed to allow explicit P2P refusal of “unwanted” metada-
ta with little impact on the overall convergence properties. Other work, in the DBIN
project [15], deals with the integration in this SW P2P scenario of MPEG-7 multime-
dia metadata modules. A description of this integration is given in [16]. All the work
presented here has been implemented in Java as Open Source, multi-platform, Free
Software. We believe it is in fact fundamental to seek model usefulness assessment by
feedback from actual user communities.

6. Acknowledgments

Our gratitude goes to Johan Johansson and Michele Catasta for the support provided.

References
[1] http://p2p.semanticweb.org
[2] Madhan Arumugam, Amit Sheth, and I. Bu-
dak Arpinar , "Towards Peer-to-Peer Semantic
Web: A Distributed Environment for Sharing
Semantic Knowledge on the Web" WWW2002
[3] Heiner Stuckenschmidt, Richard Vdovjak,
Geert JanHouben, Jeen Broekstra , "Index
Structures and Algorithms for QueryingDis-
tributed RDF Repositories" WWW2004, May
17-22, 2004, New York, New York, USA.
[4] Kalvis Apsitis , "RDF Crawler"
[5] A. Maedche, M. Ehrig, S. Handschuh, R.
Volz, L. Stojanovic , "Ontology-Focused
Crawling of Documents and Relational Meta-
data" 2002 Proceedings of the Eleventh Inter-
national World Wide Web Conference WWW-
2002, Hawaii
[6] Wolfgang Nejdl, Boris Wolf , "EDUTEL-
LA: A P2P Networking Infrastructure Based on
RDF" 2002 WWW2002, Honolulu
[7] Wolfgang Nejdl, Wolf Siberski, Martin
Wolpers, Alexander Löser, Ingo Bruckhorst ,
"SuperPeer Based Routing and Clustering
Strategies for RDF Based Peer-To-Peer Net-
works" 2003 Twelfth International WWW03
Conference, Budapest

[8] Min Cai, Martin Frank , "RDFPeers: A
Scalable Distributed RDF Repository based on
A Structured Peer-to-Peer Network" 2004 13th
International World Wide Web Conference
WWW2004, New York
[9] Jeen Broekstra and Arjohn Kampman ,
"SeRQL: A Second Generation RDF Query
Language" 2003 13-14 November 2003, Vrije
Universiteit, Amsterdam
[10] RDF Semantics, W3C Recommendation ,
2004
[11] G. Paliouras, Ch. Papatheodorou, V.
Karkaletsis, and C.D. Spyropoulos , "Learning
communities of users on the Internet" 2001
[12] "URIQA The URI Query Agent Model"
[13] Jeremy Carroll , "Signing RDF Graphs"
ISWC2003
[14] Alan Demers, Dan Greene, Carl Houser,
Wes Irish, John Larson, "Epidemic algorithms
for replicated database maintenance" 1988
[15] "DBin project" http://dbin.org
[16] G. Tummarello, C. Morbidoni, P. Puliti,
A. F. Dragoni, F. Piazza , "From Multimedia to
the Semantic Web using MPEG-7 and Compu-
tational Intelligence" 2004 WedelMusic 2004 ,
Barcellona

