
Instrumenting the Atomic Decomposition: software
APIs for OWL

Dmitry Tsarkov, Chiara Del Vescovo, and Ignazio Palmisano

School of Computer Science, The University of Manchester, UK

Abstract. The Atomic Decomposition (AD) of an ontology O is a compact rep-
resentation of all the modules of O. Besides its theoretical value, it has some
practical applications, which include optimised reasoning techniques. In this pa-
per we describe the existing programming APIs that allow for the use of the AD
of an ontology in Java and C++ programs.

1 Introduction

Some notable examples of ontologies describe large and loosely connected domains.
This is the case for SNOMED–CT, the Systematized Nomenclature Of MEDicine, Clin-
ical Terms,1 which describes more than 300,000 terms used in medicine, including dis-
eases, drugs, etc. Hence, users often are not interested in a whole ontology, rather only
in a limited relevant part of it. In this context, the idea has been recently explored to use
modules, i.e., suitably small subsets of ontologies that behave for specific purposes as
the original ontologies over a given signature Σ, i.e., a set of terms.

In reuse scenarios, for example, users may want to gather all the knowlege captured
in well-established, comprehensive ontologies, that concerns a “topic of interest” spec-
fied by a user by means of a signature Σ. In this field, a family of widely used modules
arises from the notion of syntactic locality [2]: syntactic locality allows for the efficient
identification in an ontologyO of “good sized” sets of axioms ofO that preserve all the
entailments over Σ. From now on we will use the term “module” to mean “a module
based on syntactic locality”.

In general, a moduleM can still describe loosely connected areas of the domain,
i.e.,M can be decomposed into logically unrelated parts. This is not the case for gen-
uine modules, introduced in [4] and defined as modules that cannot be decomposed
into the union of two or more modules. The genuine modules of an ontology O are at
most as numerous as the axioms of O, can be efficiently extracted, and can be tersely
represented by a Directed Acyclic Graph called the Atomic Decomposition (AD) of O,
which keeps track of the set inclusion relation occurring between the genuine modules.

The AD reveals crucial semantic relations between the axioms of O, and it is cur-
rently investigated for being used in several applications, including optimised tech-
niques able to tackle reasoning tasks over huge and complex ontologies [6].

This paper aims at giving a brief introduction and underlying intuitions behind the
Atomic Decomposition, and at describing the implementation and methods for the use
of the AD of an ontology in Java and C++ programs available in the OWL API Tools2.

1 http://www.ihtsdo.org/snomed-ct/
2 http://owlapitools.sourceforge.net/

2 Theoretical Background

We assume the reader to be familiar with OWL and the underlying Description Logics
[1], and only briefly sketch here some of the central intuitions behind locality-based
modularity [2] and Atomic Decompositions [4]. As seen in Section 1, we use O for
ontologies, i.e. finite sets of OWL axioms, M ⊆ O for subsets thereof, and Σ for
signatures, i.e., finite sets of class, property, and individual names. Moreover, we use α̃
for the signature of an axiom α, i.e., the set of terms used in α, and given an ontologyO
we denote by Õ the signature obtained as the union of the signatures of all the axioms
in O.

Given two ontologies M,O with M ⊆ O, and a signature Σ, we say that M
provides coverage for Σ if, for each axiom α such that α̃ ⊆ Σ, it holds thatM entails
α if, and only if, O does. In this case we say that M is a module for Σ in O. Some
modules can be efficiently found by making use of the notion of syntactic locality,
available in the OWL API.3 The technical details behind this notion go beyond the
scope of this paper, so we refer the interested reader to [2].

Locality-based modules come in 3 flavours, namely>,⊥, and>⊥∗: roughly speak-
ing, a >-module for Σ gives a view “from above” because it contains all the subclasses
of class names in Σ; a ⊥-module for Σ gives a view “from below” since it contains
all the superclasses of class names in Σ; and >⊥∗-modules are the smallest, contained
in both the corresponding >- and ⊥-module, containing all the axioms to imply that
two classes in Σ are in the subclass relation, but not necessarily all their sub- or super-
classes. Given a module notion x ∈ {>,⊥,>⊥∗}, we denote by x-mod(Σ,O) the
x-module of O w.r.t. Σ. From now on, we will drop the symbol x when the notion of
module is clear from the context, or irrelevant.

Let us fix a notion x of modules, and let Fx(O) be the set of all the x-modules of
an ontology O. In general, a module can deal with logically unrelated elements of a
domain, for example in SNOMED–CT the user is allowed to extract the module for the
signature Σ = {Heart Disease ,Tibia Fracture }. In contrast, a special class G ⊆ F(O)
of logically coherent modules, called genuine, is identified in [4]: these modules can be
said to be coherent since they are undecomposable, i.e. none of them can be split into
the union of two “⊆”-uncomparable modules.

For each notion x, the corresponding genuine modules satisfy some additional in-
teresting properties: they define a base for all the modules ofO, and can be obtained by
extracting the modules for the signatures of each single axiom in O. As a consequence,
the number of genuine modules is linear in the number n of axioms of O, whilst the
number of modules can even be exponential in n [3]. An optimized quadratic procedure
to extract all the genuine modules is described in [5].

Given a notion x of modules, and two axioms α, β ∈ O, the genuine modules of O
reveal two kinds of logical relations between these two axioms [4]:
(1) α ∼x β, occurring when, for each genuine moduleM ⊆ O, we have that α ∈ M
if, and only if, β ∈ M. A maximal set a ⊆ O of co-occurring axioms is called an
atom. In other words, two axioms α and β always co-occur when they are so strongly
interrelated that the notion of module is not able to separate them. Please note that each

3 http://owlapi.sourceforge.net

axiom belong to one, and only one, atom ofO, i.e., the set of atoms forms a partition of
O.
(2) α >x β, defined to occur when, for each genuine moduleM⊆ O such that α ∈M,
then β ∈M. This relation can be extended to atoms in the following way: an atom a is
dependent on a distinct atom b (written a �x b) if, for each genuine moduleM such
that a ⊆ M, then b ⊆ M holds too. In other words, an atom a depends on an atom b
when a “needs” to import b to make up to a module of O.

The set of atoms of O is denoted by A, and the pair (A,�x) is called the x-Atomic
Decomposition (AD) of O. The AD of an ontology is a terse representation of the gen-
uine modules of O since there is a 1-1 correspondence between atoms and genuine
modules. In [4] it is proven that the dependence relation � on A is a partial ordering4

(i.e., transitive, reflexive, and antisymmetric). As a consequence, the pair (A,�) can be
represented by means of a DAG, as shown in Example 1.

Example 1. Let us consider the ontology Teetotaller defined as follows:

{α1 : Animal SubClassOf hasHabitat min 1 Thing ,

α2 : Animal SubClassOf hasGender exactly 1 Thing ,

α3 : Person SubClassOf Animal ,

α4 : Vegan EquivalentTo Person and eats only (Vegetable or Mushroom),
α5 : TeeTotaller EquivalentTo Person and drinks only NonAlcoholicThing ,

α6 : Student SubClassOf Person and hasHabitat some University ,

α7 : GraduateStudent EquivalentTo Student and hasDegree some {BA,BS},
α8 : Car SubClassOf Vehicle }

The AD of Teetotaller is shown in Figure 1.

a1

a2

a4a3 a5

a6

a7

Fig. 1. The ⊥-AD of the ontology Teetotaller

Here the⊥-atoms in the AD contain the following axioms respectively: a1 = {α1, α2},
a2 = {α3}, a3 = {α4}, a4 = {α5}, a5 = {α6}, a6 = {α7}, and a7 = {α8}.

3 Available implementations

The available implementations for AD methods can be found for two programming
languages: Java and C++.

4 This is a consequence of the properties of locality-based modules called monotonicity, self-
containment, and uniqueness. The interested reader is referred to [2] for more details.

3.1 Java

The implementation for the Atomic Decomposition available in OWLAPITOOLS5 is
focused on one main interface: AtomicDecomposition.

AtomicDecomposition provides the fundamental methods for interacting with
the AD of an ontology. In particular, given an ontology O it can perform the following
tasks:

– Enumerating the atoms of O;
– Providing the set of the dependent atoms, i.e., the atoms that a given atom is depen-

dent on;
– Providing the set of the dependencies, i.e., the atoms that depend on a given atom;
– Providing the set of the tautologies occurring in O.

These methods allow for performing the basic operations needed to explore a de-
composition graph; further operations that a programmer might find useful are:

– Retrieving the atom that includes a specific axiom;
– Retrieving top (i.e., with no dependents) and bottom (i.e., with no dependencies)6

atoms for the AD graph;
– Retrieving the genuine module corresponding to a given atom;
– Verifying whether an atom a is a top or a bottom atom.

Figures 2, 3, and 4 show some examples of Java code that perform the tasks just
listed.

OWLOntology o = getOntology();
AtomicDecomposition ad = new AtomicDecomposerOWLAPITOOLS(o);

Fig. 2. Create an AtomicDecomposition object.

for (Atom atom : ad.getAtoms()) {
for (Atom d : ad.getDependencies(atom)) {

// do something with the dependencies
}
for (Atom d : ad.getDependents(atom)) {

// do something with the dependents
}

}

Fig. 3. Navigate the graph.

5 http://owlapitools.sourceforge.net/
6 The terms “top” and “bottom” here do not refer to the notion x of modules used.

private void bottomUpExploration(Atom a, Set<Atom> processed) {
processed.add(a);
// explore only direct dependencies
for (Atom dep:ad.getDependencies(a, true)) {

if (!processed.contains(dep)) {
bottomUpExploration(dep, processed);

}
// real processing of an atom a goes here

}
}
private void exploreAD() {

Set<Atom> processed = new HashSet<Atom>();
for (Atom top:ad.getTopAtoms()) {

bottomUpExploration(top, processed);
}

}

Fig. 4. Bottom up exploration of the graph.

3.2 C++

The C++ users could use FaCT++ implementation of the Atomic Decomposition algo-
rithms. There are two interfaces for the AD in FaCT++: a low-level one that creates a
graph of the AD, and the high-level one, that only exposes a minimal set of operations
to explore the AD.

High-level interface The high-level interface is in the class ReasoningKernel, file
Kernel/Kernel.h and consists of 4 methods, that allow one to:

– Create the AD of the ontology loaded into the kernel and get its size;
– Get all the axioms in (the module for) an atom with a given ID;
– Get IDs of all atoms that are (direct) dependents of a given one.

The exact interface is shown in Figure 5.

Low-level Interface The low-level interface gives a user the access to a graph structure
representing the AD graph, and allows a user to create the AD graph for a given notion
of locality.

The AD graph is represented by a class AOStructure, that could be found in the
file AtomicDecomposer.h. This class is essentially an array of pointers to atoms,
that in turn are represented by a class TOntologyAtom (file tOntologyAtom.h).
The access to individual atoms is provided either by means of an iterators, AOStructure::
iterator, or by an integral index (operator[]). The dependency structure of a
graph is represented by the TOntologyAtom class.

The interface part of the class TOntologyAtom allows one to:

enum ModuleType = {M BOT, M TOP, M STAR};
class ReasoningKernel {
public:// ...other code

// create new atomic decomposition of the ontology using TYPE
// return number of atoms in the AD

unsigned int getAtomicDecompositionSize
(bool useSemanticLocalityChecker, ModuleType Type);

// get all axioms of the atom with the id ID
const TOntologyAtom::AxiomSet& getAtomAxioms (unsigned int id) const;

// get all axioms of the module of the atom with the id ID
const TOntologyAtom::AxiomSet& getAtomModule (unsigned int id) const;

// get all atoms on which atom with id ID directly depends
const TOntologyAtom::AtomSet& getAtomDependents (unsigned int id) const;

};

Fig. 5. High-level AD interface in class ReasoningKernel.

– get all the axioms in an atom (method getAtomAxioms);
– get all the axioms in an atom’s genuine module (method getModule);
– get the directly dependent atoms (method getDepAtoms);
– get all the dependent atoms (method getAllDepAtoms);

The construction of an AD graph is performed by the class AtomicDecomposer,
file AtomicDecomposer.h. The only constructor takes as a parameter the module
extractor class TModularizer, which will be used to extract the genuine modules
during the AD creation process.

The creation of the AD is done by calling the method getAOS which takes two
parameters in input. The first parameter is the ontology to be decomposed; the second
is the type of module to be extracted. The supported types are ⊥, > and >⊥∗, that are
denoted by the values M BOT, M TOP and M STAR.

All these low-level details are abstracted to the high-level interface by the ReasoningKernel
described above.

4 Conclusion

The Atomic Decomposition of an ontology is a useful means to explore all the basic
modules of an ontology, and it is used for many applications. In this paper we present
the interfaces to create and use the AD of an ontology. One can use Java or C++ pro-
gramming languages to work with ADs, and in case of C++ one can use different levels
of abstractions to work with a representation of the AD.

References

1. Baader, F., Calvanese, Diego andMcGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press (2003)

2. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. J. of Artif. Intell. Research 31(1), 273–318 (2008)

3. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an ontology:
an empirical study. ceur-ws.org, vol. 573 (2010)

4. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an ontology:
Atomic decomposition. In: Proc. of IJCAI-11. pp. 2232–2237 (2011)

5. Tsarkov, D.: Improved algorithms for module extraction and atomic decomposition. vol. 846.
ceur-ws.org (2012)

6. Tsarkov, D., Palmisano, I.: Divide et impera: Metareasoning for large ontologies. ceur-ws.
org, vol. 849 (2012)

