Tradeoffs in Measuring Entity Similarity for Pattern
Detection in OWL Ontologies

Eleni Mikroyannidi, Robert Stevens, Luigi lannone

University of Manchester, United Kingdom,
email:{mikroyannidi|stevens|iannone @cs.manchester.ac.uk }

Abstract. Syntactic regularities are repetitive structures in the asserted axioms
of an ontology represented as generalisations, which are axioms with variables.
The Regularity Inspector for Ontologies (RIO) is a framework for detecting such
regularities in ontologies. Established clustering techniques are applied to the
signature of the ontology to detect clusters of similar entities. Clustering depends
on pairwise entity distances, which determine the similarity of two entities. In
this paper we present three variations on similarity definition that affect pairwise
distances and thus the regularities detected. Our analysis explores and compares
methods that capture regularities of different granularity; in particular we analyse
commonalities and differences between the generalisations and clusters that result
from the three variations of similarity and check if they capture dominant patterns
in the ontology in the same way. We perform the analysis using the BioPortal
corpus and we discuss the tradeoffs of each similarity function.

1 Introduction

Ontologies are useful, but complex, logical artifacts whose development and reuse is
a difficult and time consuming task. Embedding knowledge patterns in ontologies is
an approach for facilitating these processes. It can help the systematic development of
the ontology and it is a technique for minimising discrepancies in the axioms. When a
discrepancy occurs in the axioms as a result of a faulty script, it can be addressed by
fixing and rerunning the initial script; otherwise, the ontology engineer has to manually
inspect and fix the faulty axioms by hand, ensuring each and every necessary axiom is
fixed. Thus, regularity in the development cycle of an ontology can help the organisation
and clarity of the composition of the axioms.

In the development of big ontology projects like KUPKBP_-L FMAE], and so on, such
semi-automated approach for populating the ontology through design templates such
as scripts or spreadsheets is a common procedure [[1L6]]. However, ontology engineers
who are later reusing an ontology usually lack the ontology’s original documentation.
For example, in BioPortal the developers will publish only the ontology and perhaps a
link to the online documentation for the ontology, but this is not obligatory. It requires
effort from the user to understand how the domain is described in the axioms of the
ontology. Finding structural commonalities in the axioms is a key task as it can help
understanding how the ontology was constructed.

! http://www.kupkb.org/
2 http://sig.biostr.washington.edu/projects/fm/AboutFM.html

The Regularity Inspector for
Ontologies (RIO) is a framework

E;; \B/lajrs' ‘gzggﬁzzg; x:mg:g motivated by the need for tools
(3) Lorry SubClassOf Vehicle for a more systematic inspection
(4) Bicycle SubClassOf Vehicle sos
(5) Driver EquivalentTo Person and (drives some Vehicle) O.f an (.)mO]Ogy based on th.e 11
(6) VanDriver SubClassOf Driver tial design templates. In particular,
g; Eﬂ:éﬁg;’fgﬁggﬂijé?gacgrer RIO detects repetitive structures in
(9) VanDriver SubClassOf drives some Van the axioms of an ontology called
(10) LorryDriver SubClassOf drives some Lorry . Iy _
(11) BusDriver SubClassOf drives some Bus syntactic reg ulqutles. For. exam
(12) PetOwner EquivalentTo Person and (hasPet some Pet) ple, let us consider the axioms of
(13) CatOwner SubClassOf PetOwner .
(14) DogOwner SubClassOf PetOwner Flgure .
(15) CatOwner SubClassOf hasPet some Cat We can detect various structural
(16) DogOwner SubClassOf hasPet some Dog ses . :
(17) CatLiker EquivalentTo Person and (likes some Cat) commonalities in t.hese axioms
(18) DoglLiker EquivalentTo Person and (likes some Dog) such as that all vehicles are sub-
classes of the Vehicle class and
Fig. 1: Example ontology O. all drivers drive some vehicle. Two
such regularities can be described
as:

g1 = ?Vehicle SubClassOf Vehicle
g2 = ?Driver SubClassOf drives some ?Vehicle

where ?Vehicle ={Car, Bus, Lorry }, ?Driver ={VanDriver, LorryDriver, BusDriver},
are meta-linguistic variable holding the similar entities . g; and g, are generalisations,
which are axioms with at least one variable. These generalisations are an axiom schema
as they are build on the basis of the asserted axioms of the ontology.

To achieve the unsupervised detection of such regularities, RIO uses standard clus-
tering algorithms to detect clusters of entities with similar usage in the axioms of an
ontology. A key task in this procedure is the definition of similarity between entities;
the similarity measure should capture both structural and content similarities between
the axioms that describe similar entities.

RIO can be used for obtaining an intuition of the construction of an ontology with
respect to its underlying patterns [8|] and that can be used for more systematic quality
assurance [10]. In this paper we compare three variations of a replacement function that
capture the similarity between entities with respect to their usage in the asserted axioms
of an ontology.

These replacement functions use heuristics for capturing the most important com-
monalities between axioms and they are plugged in to the methods for the computation
of the similarity distance between entities. With the comparison we want to highlight
similarities and whether these similarities correspond to dominant patterns in the ontol-
ogy. In addition, such an analysis can be helpful for deciding which method or combi-
nation of methods to select depending on the task for which regularities are used.

2 Related Work

Related work on the detection of patterns in ontologies has mainly focused on the su-
pervised detection of regularities rather than unsupervised detection. In [7] a method

for matching axioms with ontology design patterns is described. However, this method
cannot detect patterns with the meaning of knowledge patterns [3]]. In [4] the authors
describe TEIRESIAS, as an assistant in the task of building a large knowledge-based
system. The system used an inference engine and a knowledge base, the whole proce-
dure is guided by the user for the detection of structural similarities. In the same context,
authors in [5] define methods for mining patterns from ontologies with DL-safe rules
in a supervised way. Supervised detection of patterns through SPARQL queries is de-
scribed in [[L1]].

Unification is also a close area to pattern detection, with respect to the definition
of variables which can hold similar entities [2]. Unification was initially motivated for
finding redundancies in axioms. The algorithm for defining variables, called a unifiabil-
ity test, is non-deterministic and undecidable for logics higher than £ L. RIO deals with
the problem of variable definition through clustering.

3 Syntactic Regularity Detection with RIO

Figure 2] shows the workflow for the computation of the syntactic regularities in an
ontology with RIO [9l8].

Asserted —
4 1. Measure 3. Form Generalisation
Axioms of 2. Clustering
Entlty Pairwise generallsatlons Template
an (AHC)
Distances (regularities) (XML form)
ontology

._______________'
' Popularity Structural Property '
replacement replacement replacement
' function function function l
|. "}

Fig. 2: RIO workflow on the detection of syntactic regularities

The main step we examine in this paper is the computation of entity pairwise dis-
tances (step 1 of the workflow in Figure[2) and in particular the comparison of different
replacement functions, which are plugged in the distance similarity measure. The pre-
processing of data is an important step prior to clustering as it defines how similar data
are and eliminates noise and unwanted features.

3.1 Entity Pairwise Similarity Distance

The main challenge in detecting the semantic patterns is to decide which entities to re-
place with variables (e.g. in ?Driver SubClassOf Driver, variable ?Driver holds all

drivers). To achieve that, we perform clustering in the signature of the entailments to
find groups of similar entities that will be represented with variables in the generalisa-
tions.

The similarity between two entities is measured with respect to their usage in the
axioms of an ontology. For example, different types of drivers are expected to be found
in the same cluster, since they are used in the same way in the axioms of an ontology.
For the definition of the similarity distance, we need first to introduce the replacement
function.

Replacement function ¢. Given an ontology O, and a set of axioms S for O, we de-
fine $={ ?class, ?objectProperty, ?dataProperty, ?star } a set of four symbols that
do not appear in the Sig(O). A placeholder replacement is a function ¢ : Sig(O) —
Sig(O) U @ which, when applied to an entity e € Sig(.S), returns: (1) one of e, ?star
or ?class if e is a class name; (2) one of e, ?star or ?0bjectProperty if e is an object
property name; (3) one of e, ?star or ?dataProperty if e is a data property name; (4)
one of e, ?star or ?individual if e is an individual name.

In a nutshell, a replacement function ¢ decides whether or not to replace an entity e
with a symbol.

Distance Given an ontology O, and X' the signature of O, We define the dis-
tance between two entities, (0;,0;) € XxX as d(o;,0;) < W, where
A A; = ¢(Ax(o;), Ax(o;)), where Ax(o;), Az(o;) are the referencing axioms of
0;,0; respectively for which the replacement function ¢ is applied.

Thus, the distance between two entities eq, es is computed as an overlap between
their referencing axioms that have been transformed into more abstract forms (A;, A;)
by the placeholder function ¢. The defined distance is always in the interval [0,1], where
0 means that the two entities are identical and 1 that they have no similarity.

¢ is used to enable comparison between the referencing axioms of e; and e5. Chang-
ing the granularity of the place-holder replacement function produces more or less sen-
sitive distance functions (closer to value 1 or O respective). Different decision criteria
can be used for ¢. These criteria perform different types of abstraction in the referencing
axioms of the entities; thus they capture different types of similarities.

4 Different types of replacement function

Selecting a replacement function ¢ for computing distances is not a straightforward
task. This is due to the replacement function having to transform axioms in a way that
reflects their similar content. Different heuristics can be adopted for reflecting the most
important underlying semantics of the axioms when computing the distance.

In this paper we compare tradeoffs where we delegate the decision of whether to
replace an entity in an axiom to a measure of three different criteria, producing three
different replacement functions. These criteria are (1) type of the entity, (2) popularity
of the entity with respect to the other entities in the same kind of axiom within the
ontology and (3) replacement of entities according to the structural similarities of their
axioms. Based on these criteria this section presents three different types of replacement
function:

1. Property based replacement function

2. Popularity based replacement function
3. Structural based replacement function

For each type of replacement function we give a definition of what is replaced by a
general placeholder and an explanation for selecting a particular heuristics. An exam-
ple is also given from the ontology O in Figure [I]to demonstrate how the replacement
function works when applied to axioms. All these replacement functions are our contri-
bution.

4.1 Property based replacement function

Let O be an ontology and two entities o;, 0; € sig(O) for which we want to compute
d{o;,0;}. For every entity e € sig(O) the property based replacement function ¢ will
replace the following:

- ?starife € {o;,0;}
— e if e is an object property, a data property or an annotation property name;
— ¢%(e) otherwise;

Example For computing the distance d{BusDriver, LorryDriver}, ¢ will replace
the following in the referencing axioms of the entities:

ABusDriver = { ?star SubClassOf ?owiclass,
?star SubClassOf drives some ?owlclass}
ALorryDriver = {?star SubClassOf ?owlclass,
?star SubClassOf drives some ?owlclass}

so d{BusDriver, LorryDriver}=0.

This replacement function considers all properties as important in an axiom, thus
they are not replaced with a general place-holder as the other entities. The intuition be-
hind this is similar to the detection of isomorphic structures; two graphs are isomorphic
when there is an edge-preserving matching of their vertices. Thus, the important part
is the connections between the nodes. Considering that axioms can be represented in a
form of a graph, a similar approach is adopted for the replacement function.

4.2 Popularity based replacement

The popularity based replacement was introduced in [8]. The decision criterion for this
function is that popular entities are important, thus are retained by the replacement
function. When computing a distance between two entities, namely e; and es, for each
axiom « where either occurs, the function replaces e; or e; with ?star and decides
whether to replace the other entities with a place-holder depending on their popularity
across all the axioms that have the same structure as .

A confidence interval [, u] for the mean value of popularity (95% confidence) is
used with unknown variance. Thus, for the computation of the area under the distribu-
tion function (z), we use the values for the T distribution, rather than the normal one in

- sd . sd
theformulasl—M—z-\/N,u—M—i—z N

where with sd we denote the standard deviation and with M the mean computed on
the set of entities (whose size is V) in the ontology. If the popularity of a given entity
is greater than u then the entity is not replaced by a placeholder, otherwise it is.

Example Let us compute the replacements for calculating the distance d(VanDriver,
LorryDriver). We omit the calculations but the confidence interval for the popularity
when applied to the axioms is such that the only entities which will not be replaced are:
Driver and drives, because they are popular, thus:

A'VanDriver = {?star SubClassOf Driver,

?star SubClassOf drives some ?owlIClass}
A’ LorryDriver = {7star SubClassOf Driver,

?star SubClassOf drives some ?owlIClass}

The extensive usage of the object property drives in this particular kind of axiom
is the reason why our place-holder replacement function deems it as important and pre-
serves it in the replacement result. We observe, however, that deciding replacements
based on confidence intervals is strongly dependant on the quality of the sample data.
Driver, for instance, in the example above, is judged popular too. The reason is that all
drivers in the ontology are subclass of Driver. Conversely, the formula correctly spots
that several other entities (Bus, Dog, hasPet, ...) are not relevant when dealing with
axioms presenting a particular structure (e.g. ?o0wlClass SubClassOf ?owlObject-
Property some ?owlClass). We claim that this is preferable w.r.t. making an a priori
decision, maybe based on users’ intuitions, on what should be replaced and when.

4.3 Axiom structure based replacement function

The approach introduced in [10] is based on the search of a split of the entities in
corresponding placeholders regarding their popularity, position and structure of their
referencing axioms. We will demonstrate how this transformation policy works using
our example ontology of Figure[I]

The transformation is done in two steps.

Step 1: The representation of axioms in abstract forms; This is done by replacing
every entity in an axiom with a general variable denoting the type and the position of
the entity. The transformation result for the example ontology is

?class_2 SubClassOf ?class_1 (1)
?class-2 SubClassOf ?objectProperty_-1 some ?class-1 ?2)
?class_3 EquivalentTo ?class_2 and ?objectProperty_1 some ?class_1 3)

Step 2: For each one of the general axioms (I)-(3) we retrieve their instantiations
from the ontology and check if the replacement of a variable with an entity gives a more
accurate separation of axioms in different groups.

The choice of variable replacements depends on the structural commonalities of
the axioms. Our first criterion is that if there are more than two structural differences
between a pair of axioms then the variable should be checked for further replacements.
The idea behind this criterion is that we want to find a variable replacement in the
axioms that will reflect the differences between the entities in the ontology.

The general axiom abstracts the axioms (1)-(4), (6)-(8), (13) and (14) of Fig-
ure [T} Many of these axioms have more than one structural difference such as axioms
(1) and (6) or (8) and (13) etc.). Therefore, further possible replacements are examined.
Every placeholder replacement is represented in a tree. An example tree for the gener-
alisation (HI) is shown in FigureE} The general axiom is the root of the tree. Then, the
branches of the tree show all possible values for each variable of the general axiom. The
leaf nodes of the tree show the instantiations that result from the replacement of the par-
ent node. Replacements that abstract only a single axiom are discarded. Replacements
that separate the values of the other variables into different sets and abstract more than
one axiom are kept. For example, in Figure [3| all further splits of variable ?class_2 are
discarded as they abstract only a single axiom. However, the replacements for ?class_1
are kept as they abstract more than one axiom and separate the values of the two vari-
ables (?class_1, class_2) into different sets. Therefore, classes Vehicle, Driver and
PetOwner in the axioms of the form of (1)) are marked as “relevant” and they are not
replaced by a placeholder. The same procedure is followed for the general axioms (2)
and . The result is that entities PetOwner, hasPet, drives are not replaced. For
example, the distance d(VanDriver,LorryDriver) will be zero.

l ?class_2 SubClassOf ?class_1 l

/

?class_1

?class_1 = 7class_1 = ?class_1 =
Vehicle Driver PetOwner

L 1

BusDriver |[CatOwner | [DogOwner Van VanDriver | | CatOwner
SubClassOf | | SubClassOf | | SubClassOf SubClassOf | |SubClassOf | | SubClassOf
Driver PetOwner PetOwner Vehicle Driver PetOwner

[[[

Bus LorryDriver | | DogOwner
SubClassOf
Vehicle Driver PetOwner

Lorry BusDriver
SubClassOf | | SubClassOf
Vehicle Driver

?class_:
2class_2 = [«7| 7class_2= 7c\ass 2- 7class_2 =| |7class_2 =| [7class_2 =
Bicycle Van Bus Lorry VanDriver | |LorryDriver

Bicycle orry VanDriver
SubClassOf SubClassOi SubCIassOt SubC\assO' SubClassOf
Vehicle Vehicle Vehicle Vehicle Driver

7class_2 =
DogOwner

?class_2 =
CatOwner

?class_2 =
BusDriver

LorryDriver
SubClassOf
Driver

Bicycle
SubClassOf
Vehicle

Fig. 3: Tree showing possible variable replacements for the general axiom

5 Clustering and formulation of generalisations

Step 3 in the workflow is the clustering of the entities based on their computed distances.
In RIO we use hierarchical agglomerative clustering (HAC) with stopping criterion the
maximal distance (d = 1) between all pairs for all clusters. Table [I| shows the clusters
that RIO returns for each replacement function. In the remainder of the paper, depending
on the replacement function we distinguish three variations of clustering named as:
(1) popularity clustering, (2) structural clustering and (3) property clustering. It should
be noted that the only parameter that varies is the type of replacement; the clustering
algorithm does not change.

The final step of the RIO workflow is the formulation of generalisations with respect
to the detected clusters. Table |1| shows the generalisation that RIO returns for each
replacement function.

Popularity Structural Property
Clusters
Vehicle: [Bicycle, Van, Bus, Lorry] cluster_1: [CatLiker, PetOwner, Dog- cluster_1: [Vehicle, Bus, Lorry]
Liker, Driver]
cluster_1: [hasPet, likes, drives] cluster_2: [Pet, Dog, Vehicle, Cat] Driver: [BusDriver, VanDriver, Lorry-
Driver]
Driver: [BusDriver, VanDriver, Lorry- Vehicle: [Bicycle, Van, Bus, Lorry] PetOwner: [CatOwner, DogOwner]
Driver]

cluster_2: [PetOwner, Driver] cluster_3: [hasPet, likes, drives] cluster_2: [CatLiker, DogLiker]
Cluster_3: [Pet, Vehicle] Driver: [BusDriver, VanDriver, Lorry- cluster_3: [Dog, Cat]
Driver]

PetOwner: [CatOwner, DogOwner] PetOwner: [CatOwner, DogOwner]
cluster_4: [CatLiker, DogLiker]
cluster_5: [Dog, Cat]

Generalisations / Instantiations
(g1) ?Driver SubClassOf drives (g1) ?cluster_1 EquivalentTo Person (g1) ?cluster_2 EquivalentTo Person

some ?Vehicle / (9)-(11) and (?cluster_.3 some ?cluster_2) / and (likes some ?cluster_3) / (17),
(5), (12), (17), (18) (18)

(g2) ?Driver SubClassOf Driver /(6)- (g2) ?Vehicle SubClassOf Vehicle / (g2) ?PetOwner SubClassOf

®) (1)-(4) PetOwner / (13), (14)

(g3) ?PetOwner SubClassOf (g3) ?Driver SubClassOf Driver / (6)- (g3) ?PetOwner SubClassOf hasPet

PetOwner / (13),(14)) some ?cluster_3/ (15), (16)

(ga) ?Vehicle SubClassOf Vehicle / (g4) ?PetOwner SubClassOf hasPet (g4) ?cluster_-1 SubClassOf Vehicle /

(D)-(4) some ?cluster 2/ (15), (16) 2),3)

(g5) ?PetOwner SubClassOf hasPet (g5) ?PetOwner SubClassOf (gs) ?Driver SubClassOf Driver / (6)

some ?cluster_5/(15), (16) PetOwner / (13), (14) -(8)

(ge) ?cluster_4 EquivalentTo Person (gs) 7?Driver SubClassOf drives (gs) 7?Driver SubClassOf drives

and (likes some ?cluster.5) / (17), some ?Vehicle / (9)-(11) some ?cluster_1 (10), (11)

(18)

(g7) ?cluster_2 EquivalentTo Person
and (?cluster_.1 some ?cluster_4) /
(5), (12)

Table 1: Cluster and generalisation results of the example ontology for each replacement
function.

Variable naming In Table [I| some clusters have meaningful names (e.g. Vehicle,
Driver) while other clusters have more generic names (e.g. cluster_1, cluster_2). In
RIO a more readable name is selected when the entities in a cluster have a least common
subsumer, which is not the owl:Thing entity (T).

As depicted in Table[I} we have similarities in the results between different cluster-
ing variations. For example, the generalisation ?Driver SubClassOf Driver is common
generalisation between all three types of clustering. On the other hand, in some cases
we lose instantiations of a pattern; e.g. in property clustering we never get that Bicycle

SubClassOf Vehicle.

6 Experimental Results

We want to analyse the differences in detected regularities that emerge when replace-
ment functions are switched. To do this, we used 208 ontologies from BioPortaﬂ down-
loaded in March 2012.

From these, 170 ontologies were processed in approximately 2 hours for all differ-
ent types of clustering. The number of logical axioms for these ontologies varies from

3 http://bioportal .bioontology.org/

ten to ten thousand, with a mean value of 1038 axioms. The number of entities is be-
tween fourteen and five thousands, with a mean value of 767 entities. The remaining 38
ontologies could not be processed withing the 2 hour time limit, thus were dismissed.

Regularity results From the 170 processed BioPortal ontologies, 46 ontologies
(with 9 - 4907 logical axioms, 16 - 4965 entities) were found to have no detectable
regularity (no of clusters = (ﬂ) when the property replacement function was used. From
this set of 46 ontologies, three of them (having 326 - 759 entities, 266-768 axioms) had
zero clusters when the structural clustering was considered as well. On the other hand,
clustering with popularity replacement function detected regularities for all 170 ontolo-
gies. Detailed results of the detected regularities and statistical analysis are available
onlineﬂ Here we will give a summary of the results.

Table [2] shows the total average of some regularity metrics for the 124 processed
ontologies. It should be noted that on Table 2] the Cluster Coverage refers to the num-
ber of entities of a cluster that are covered by a single generalisation. For example, in
Table[I] popularity clustering, g; has cluster coverage 75%, as g1 is not applicable for
Bicycle. The mean instantiations per generalisation metric shows how many axioms
(instantiations) instantiate a single regularity. E.g. in Table[I] g, for popularity cluster-
ing has 3 instantiations. The intuition behind these metrics is that generalisations with
many instantiations are better, because we can inspect in fewer generalisations to un-
derstand the ontology’s composition. High cluster coverage by a singe generalisation is
also desirable; to let us understand how the entities in the cluster are described by a few
generalisations.

Table 2: Total mean values for selected regularity metrics of the BioPortal corpus.

Metrics Popularity Structural Property
Axioms instantiating a regularity (%) 52% 42% 32%

Clusters 106.97 26.33 8.15

Entities per Cluster 5.98 79.21 75.76

Generalisations 272.82 177.98 159.15
Mean Instantiations per Generalisation 4.08 15.09 15.77
Mean Cluster Coverage (%) 52% 37% 36%

We can observe from the results of Table 2] that selecting a different replacement
function will affect the final regularity results. First of all, popularity clustering will
find more axioms from an ontology to instantiate a regularity than the other two types
of clusterinéﬂ This also justifies the cases for which no regularity was detected when
the property or the structural replacement function was selected. Similarly, the prop-
erty clustering will return more clusters with fewer entities per cluster than the other
two methods. The increased number of clusters with popularity clustering has as a con-
sequence the increased number of generalisations (since a variable represents entities
from the corresponding cluster). In addition, we get fewer instantiations per generali-
sation with the popularity clustering than the other two. That means that if one wants

* In the AHC every cluster starts containing only one entity. In these cases none of the clusters
got merged, thus the number of clusters having more than one entity was equal to 0.

5 http://www.cs.man.ac.uk/ mikroyae/2013/owled

6 All the comparisons are done with respect to the other types of clustering.

to inspect an ontology to understand its construction, one has to look at more gen-
eralisations and browse more clusters with popularity clustering than with structural
or property clustering. On the other hand, structural and property function might miss
some of the regularities from the ontology. Also the cluster coverage is lower for struc-
tural and property clustering than for the popularity clustering. Thus, for understanding
the description of entities in a cluster, more generalisations need to be checked with the
structural and property function.

We have formulated some initial hypothesis about how the regularity results are af-
fected when a different replacement function is selected. Some questions that arise then
are: (1) do different clustering variations detect any common clusters? (2) if a dominant
pattern exists in the ontology, will this be detected with all three types of clustering?
(3) Do we get the same high ranked generalisations in terms of their instantiations in-
dependent the replacement function?

Cluster, generalisations and instantiation similarity To answer some of the pre-
vious questions we compare the clusters, generalisations and instantiations we obtain
from each variation of clustering. Therefore, we have three pairs of comparison: (1)
popularity-structural, (2) popularity-property and (3) structural-property. For each pair
we measure their cluster, generalisation and instantiation similarity.

Figure [4] shows the summary for the cluster, generalisation and instantiation simi-
larity for each pair of comparison. The similarity metrics were computed for the 125
BioPortal ontologies for which a type of regularity was detected for all clustering vari-
ations.

The first graph (Figure d[a)) shows that popularity and structural clustering will re-
turn clusters with the highest similarity. Then follows the similarity between structural
and property clustering and finally the popularity and property clustering. The same
conclusion can be drawn for the rest of the similarity measures (Figure Ekb),(c)). How-
ever, we observe that the high cluster similarity of the pair popularity-structural is not
followed by the corresponding generalisation similarity (median is 4% in Figure f(b)).
This happens because, the clusters are initially sorted in descending order according to
their number of entities, and thus their labeling follows that ordering (e.g. Cluster_1,
Cluster_2 etc.). Entities which are found with popularity clustering in cluster_1 and
with structural clustering in Cluster_3 they will have some cluster similarity, but the
corresponding generalisation similarity is affected by the names of variables, thus it will
be low. However, this does not mean that we do not get the same structure of patterns
and this is clearly depicted in the instantiation similarity. For the popularity-structural
clustering the instantiation similarity is more than 70% with a median of 93%. Simi-
larly, for the other types of clustering, the instantiation similarity is more than 60% for
the majority of the processed ontologies. We can conclude that property clustering is the
one that will find the fewest axioms under a regularity as it is depicted in Figure fc).

It needs further investigation when we want to present “dominant regularities” in
an ontology; depending on the replacement function we use, we might get different
high ranking generalisations with respect to the number of instantiations. For example,
a generalisation which is found in the 10 highest ranked generalisations of an ontology
with the structural clustering, it might be found lower in the ordering when a different
type of clustering is considered; because the instantiations were distributed in more than

Cluster Similarity Generalisation Similarity

100%] 100% []
90% 90%
80% 80%
70% a 70%
60% i 60%
50%) 50%

median
40% 40%
Bmax
30% 30%
20% @ 20%
10% =1 =

2 L
0% - =_=

Popularity-Structural Popularity-Property Structural-Property

(a) (b)

Instantiation Similarity

100% T
90%
80%
70%

60%
50%
40%
30%
20%
10%
0% - - =
Popularity-Structural Popularity-Property Structural-Property

©

0% - - -
Popularity-Structural Popularity-Property Structural-Property

Fig. 4: Boxplots showing the comparison of the regularity results of the 125 processed
ontologies for the three different replacement functions.

one generalisations when a different replacement function is selected. The verification
of this hypothesis remains as future work.

7 Conclusions

In this paper we compared three different replacement functions, which are used for the
computation of similarity distance between entities in an ontology. This is a key task
when detecting syntactic patterns in an ontology with the RIO framework. The simi-
larity distance measure is computed on the basis of the asserted axioms that reference
the entities whose distance is computed. The replacement functions we use consider
either the popularity of an entity, the type of an entity or the structural similarities of
the axioms in order to decide which entities in an axiom should be replaced with an
abstract placeholder. This will enable the computation of distance as an overlap of the
transformed axioms. Different replacement functions will provide a different granular-
ity of abstraction over the axioms, leading to more or less sensitive distance measures.
Here we compared three such replacement functions with respect to the clusters and
generalisations (syntactic regularities) we obtain. We argue that such an analysis can be
helpful for deciding which method or combination of methods to select depending on
the task for which regularities are used.

The analysis of this paper showed that almost the same portion of axioms will
be found to instantiate a regularity regardless of the replacement function we choose.
Tradeoffs are, however, made on the granularity of the generalisations that correspond
to dominant patterns. When property-based replacement function was selected, fewer
axioms from the ontology were found to instantiate a regularity with worst performance
of no detectable regularity for 43 ontologies (the other types of clustering returned at
least 4 clusters for the same ontologies). Thus, property clustering is not the best of
the three to choose when we want to mine as many patterns as possible. Considering
that popularity clustering detects more types of regularities with a good cluster cover-
age we can say that it is a good solution for achieving inspection tasks. However, more
rigorous analysis is needed with users to verify such a result. This should include the
parameter of variables names as clusters with meaningful variable names can signifi-
cantly improve the readability of generalisations. The analysis presented in this paper
can be helpful as a preprocess of future user studies for deciding selection of cluster-
ing variations for achieving tasks such as for inspecting an ontology or for performing
quality assurance of an ontology.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of the 19th inter-
national joint conference on Artificial intelligence, IJICAI’ 05, pages 364—-369, San Francisco,
CA, USA, 2005. Morgan Kaufmann Publishers Inc.

2. F. Baader and B. Morawska. Unification in the description logic el\ mathcal {EL}. In
Rewriting techniques and applications, pages 350-364. Springer, 2009.

3. P. Clark. Knowledge patterns. Knowledge Engineering: Practice and Patterns, pages 1-3,
2008.

4. R. Davis. Interactive transfer of expertise: Acquisition of new inference rules. Artificial
Intelligence, 12(2):121 — 157, 1979.

5. J.Jozefowska, A. Lawrynowicz, and T. Lukaszewski. Towards discovery of frequent patterns
in description logics with rules. Rules and Rule Markup Languages for the Semantic Web,
pages 84-97, 2005.

6. S. Jupp, J. Klein, J. Schanstra, R. Stevens, et al. Developing a kidney and urinary pathway
knowledge base. Journal of biomedical semantics, 2(Suppl 2):S7, 2011.

7. M. T. Khan and E. Blomqvist. Ontology design pattern detection-initial method and us-
age scenarios. In SEMAPRO 2010, The Fourth International Conference on Advances in
Semantic Processing, pages 19-24, 2010.

8. E. Mikroyannidi, L. Iannone, R. Stevens, and A. Rector. Inspecting regularities in ontology
design using clustering. The Semantic Web—ISWC 2011, pages 438-453, 2011.

9. E. Mikroyannidi, N. A. A. Manaf, L. Iannone, and R. Stevens. Analysing syntactic regulari-
ties in ontologies. In OWL: Experiences and Directions Workshop, OWLED, 2012.

10. E. Mikroyannidi, R. Stevens, L. Iannone, A. Rector, et al. Analysing Syntactic Regularities
and Irregularities in SNOMED-CT. Journal of biomedical semantics, 3(1):8, 2012.

11. O. Svéb-Zamazal, F. Scharffe, and V. Svétek. Preliminary results of logical ontology pattern
detection using sparql and lexical heuristics. In Proceedings of the Workshop on Ontology
Patterns (WOP-2009). Citeseer, 2009.

	Tradeoffs in Measuring Entity Similarity for Pattern Detection in OWL Ontologies
	Eleni Mikroyannidi, Robert Stevens, Luigi Iannone

