
Proceedings of the 7th International

Workshop on Modular Ontologies
(WoMO) 2013

held at Corunna, Spain, on September 15, 2013
as a satellite event of LPNMR 2013

Workshop chairs and proceedings editors:

Chiara Del Vescovo, University of Manchester, UK
Torsten Hahmann, University of Toronto, Canada
David Pearce, Universidad Politécnica de Madrid, Spain
Dirk Walther, TU Dresden, Germany

Copyright c© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

Preface

Modularity has been and continues to be one of the central research topics in
ontology engineering. The number of ontologies available, as well as their size, is
steadily increasing. There is a large variation in subject matter, level of specifica-
tion and detail, intended purpose and application. Ontologies covering different
domains are often developed in a distributed manner; contributions from differ-
ent sources cover different parts of a single domain. Not only is it difficult to
determine and define interrelations between such distributed ontologies, it is also
challenging to reconcile ontologies which might be consistent on their own but
jointly inconsistent. Further challenges include extracting the relevant parts of
an ontology, re-combining independently developed ontologies in order to form
new ones, determining the modular structure of an ontology for comprehension,
and the use of ontology modules to facilitate incremental reasoning and version
control.

Modularity is envisaged to allow mechanisms for easy and flexible reuse,
combination, generalization, structuring, maintenance, collaboration, design pat-
terns, and comprehension. This is analogous to the role of modularity in software
engineering, where there are well-understood notions of modularity that have led
to generally accepted and widely supported mechanisms for the named tasks. In
contrast, modularity for ontologies is still an active research field with open
questions because existing approaches are heterogeneous and less universally
applicable. For ontology engineering, modularity is central not only to reducing
the complexity of understanding ontologies, but also to maintaining, querying
and reasoning over modules. Distinctions between modules can be drawn on the
basis of structural, semantic, or functional aspects, which can also be applied to
compositions of ontologies or to indicate links between ontologies.

In particular, reuse and sharing of information and resources across ontolo-
gies depend on purpose-specific, logically versatile criteria. Such purposes include
“tight” logical integration of different ontologies (wholly or in part), “loose” as-
sociation and information exchange, the detection of overlapping parts, travers-
ing through different ontologies, alignment of vocabularies, module extraction
possibly respecting privacy concerns and hiding of information, etc. Another
important aspect of modularity in ontologies is the problem of evaluating the
quality of single modules or of the achieved overall modularization of an ontol-
ogy. Again, such evaluations can be based on various (semantic or syntactic)
criteria and employ a variety of statistical/heuristic or logical methods.

Recent research on ontology modularity has produced substantial results and
approaches towards foundations of modularity, techniques of modularization and
modular developments, distributed and incremental reasoning, as well as the use
of modules in different application scenarios, providing a foundation for further
research and development. Since the beginning of the WoMO workshop series,
there has been growing interest in the modularization of ontologies, modular
development of ontologies, and information exchange across different modular
ontologies. In real life, however, integration problems are still mostly tackled

ii

in an ad-hoc manner, with no clear notion of what to expect from the resulting
ontological structure. Those methods are not always efficient, and they often lead
to unintended consequences, even if the individual ontologies to be integrated
are widely tested and understood.

Topics covered by WoMO include, but are not limited to:

What is Modularity?
– Kinds of modules and their properties
– Modules vs. contexts
– Design patterns
– Granularity of representation

Logical/Foundational Studies
– Conservativity and syntactic approximations for modules
– Modular ontology languages
– Reconciling inconsistencies across modules
– Formal structuring of modules
– Heterogeneity

Algorithmic Approaches
– Distributed and incremental reasoning
– Modularization and module extraction
– Sharing, linking, and reuse
– Hiding and privacy
– Evaluation of modularization approaches
– Complexity of reasoning
– Implemented systems

Application Areas
– Modularity in the Semantic Web
– Life Sciences
– Bio-Ontologies
– Natural Language Processing
– Ontologies of space and time
– Ambient intelligence
– Social intelligence
– Collaborative ontology development and ontology versioning

Previous events. The WoMO 2013 workshop follows a series of successful
events that have been an excellent venue for practitioners and researchers to
discuss latest work and current problems. It is intended to consolidate cutting-
edge approaches that tackle the problem of ontological modularity and bring
together researchers from different disciplines who study the problem of modu-
larity in ontologies at a fundamental level, develop design tools for distributed
ontology engineering, and apply modularity in different use cases and applica-
tion scenarios. Previous editions of WoMO are listed below. The links refer to
their homepages and proceedings.

iii

WoMO 2006. The 1st workshop on modular ontologies, co-located with ISWC
2006, Athens, Georgia, USA. Invited speakers were Alex Borgida (Rutgers)
and Frank Wolter (Liverpool). Organizers and program chairs were

http://www.cild.iastate.edu/events/womo.html
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-232

WoMO 2007. The 2nd workshop, co-located with K-CAP 2007, Whistler BC,
Canada. The invited speaker was Ken Barker (Texas at Austin).

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-315

WoRM 2008. The 3rd workshop in the series, co-located with ESWC 2008,
Tenerife, Spain, entitled ‘Ontologies: Reasoning and Modularity’ had a spe-
cial emphasis on reasoning methods.

http://dkm.fbk.eu/worm08
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-348

WoMO 2010. The 4th workshop in the series, co-located with FOIS 2010,
Toronto, Canada. Invited speakers were Simon Colton (London) and Marco
Schorlemmer (Barcelona).

http://www.informatik.uni-bremen.de/%7Eokutz/womo4
http://www.booksonline.iospress.nl/Content/View.aspx?piid=16268

WoMO 2011. The 5th workshop in the series, co-located with ESSLLI 2011,
Ljubljana, Slovenia. Invited speakers were Stefano Borgo (Trento), Stefan
Schulz (Graz) and Michael Zakharyaschev (London).

http://www.informatik.uni-bremen.de/%7Eokutz/womo5
http://www.booksonline.iospress.nl/Content/View.aspx?piid=20369

WoMO 2012. The 6th workshop in the series, co-located with ICBO/FOIS 2012,
Graz, Austria. Invited speakers were Thomas Eiter (Vienna) and Luciano
Serafini (Trento).

http://www.informatik.uni-bremen.de/∼ts/womo2012/
http://ceur-ws.org/Vol-875/

Organizers of the previous editions and editors of the proceedings were Diego
Calvanese (Bozen-Bolzano) – 2008; Bernardo Cuenca Grau (Manchester, Oxford)
– 2007, 2008, 2010; Peter Haase (Karlsruhe) – 2006; Jie Bao (Rensselaer) –
2010; Joana Hois (Bremen) – 2010; Vasant Honovar (Iowa State) – 2006, 2007;
Oliver Kutz (Manchester, Bremen) – 2006, 2010, 2011; Ulrike Sattler (Manch-
ester) – 2008; Anne Schlicht (Mannheim) – 2007; Thomas Schneider (Bremen) –
2011, 2012; Luciano Serafini (Trento) – 2008; Evren Sirin, (Clark & Parsia LLC,
Washington DC) – 2008; York Sure (Karlsruhe) – 2006; Andrei Tamilin (Trento)
– 2006, 2008; Michael Wessel (Hamburg) – 2008; Dirk Walther (Madrid) – 2012;
Frank Wolter (Liverpool) – 2007, 2008

This volume contains the papers presented at the 7th International Workshop
on Modular Ontologies (WoMO 2013) held on September 15, 2013 in Corunna,

iv

Spain as a satellite event of the conference LPNMR 2013. We received 9 sub-
missions. Each submission was reviewed by three program committee members.
The committee decided to accept five papers for long or short presentations. The
program also included two invited talks:

– Till Mossakowski (University of Bremen, Germany)

The Distributed Ontology, Modeling and Specification Language

– George Vouros (University of Piraeus, Greece)

Combining ontologies in settings with multiple agents

Acknowledgments. We would like to thank the PC members and the addi-
tional reviewers for their timely reviewing work, our invited speakers for deliv-
ering keynote presentations at the workshop, and the authors and participants
for contributing to the workshop program. We would also like to thank the or-
ganizers of LPNMR 2013 for hosting the WoMO workshop, the IAOA and SIN-
TELNET for their generous financial support, and the EasyChair developers for
greatly simplifying the work of the program committee.

September 27, 2013
Manchester, Toronto, Madrid
and Dresden

Chiara Del Vescovo
Torsten Hahmann

David Pearce
Dirk Walther

v

Table of Contents

Summaries of Invited Talks

The Distributed Ontology, Modeling and Specification Language 1
Till Mossakowski, Oliver Kutz, Mihai Codescu and Christoph Lange

Combining ontologies in settings with multiple agents 22
George Vouros

Regular Papers

Modularization of Graph-Structured Ontology with Semantic Similarity . . 25
Soudabeh Ghafourian, Mahmoud Naghibzadeh and Amin Rezaeian

Implementation and Evaluation of Forgetting in ALC-Ontologies 37
Patrick Koopmann and Renate A. Schmidt

Module Extraction for Acyclic Ontologies . 49
William Gatens, Boris Konev and Frank Wolter

Fast atomic decomposition using axiom dependency hypergraphs 61
Francisco Mart́ın-Recuerda and Dirk Walther

Short Papers

Towards a Unified Approach to Modular Ontology Development Using
the Aspect-Oriented Paradigm . 73

Ralph Schäfermeier and Adrian Paschke

vi

Program Committee

Kenneth Baclawski Northeastern University, Boston, USA
Eva Blomqvist Linköping University, Sweden
Alex Borgida Rutgers University, Piscataway, USA
Stefano Borgo Laboratory for Applied Ontology, ISTC-CNR,

Trento, Italy
Gerhard Brewka University of Leipzig, Germany
Mike Dean Raytheon BBN Technologies, Ann Arbor, USA
Chiara Del Vescovo The University of Manchester, UK
(co-chair)
Thomas Eiter Technical University of Vienna, Austria
Pawel Garbacz The John Paul II Catholic University of Lublin,

Poland
Dagmar Gromann Vienna University of Economics and Business,

Austria
Michael Gruninger University of Toronto, Canada
Torsten Hahmann (co-chair) University of Toronto, Canada
Robert Hoehndorf University of Cambridge, UK
Dieter Hutter DFKI GmbH, Bremen, Germany
Tomi Janhunen Aalto University, Finland
Pavel Klinov University of Ulm, Germany
Christoph Lange University of Birmingham, UK
Thomas Meyer CSIR Meraka Institute, Pretoria, South Afrika
Leo Obrst MITRE, McLean, VA, USA
David Pearce (co-chair) Universidad Politécnica de Madrid, Spain
Marco Schorlemmer IIIA-CSIC, Barcelona, Spain
Luciano Serafini Fundazione Bruno Kessler, Trento, Italy
Dmitry Tsarkov The University of Manchester, UK
Dirk Walther (co-chair) TU Dresden, Germany

vii

Author Index

C

Codescu, Mihai 1

G

Gatens, William 49
Ghafourian, Soudabeh 25

K

Konev, Boris 49
Koopmann, Patrick 37
Kutz, Oliver 1

L

Lange, Christoph 1

M

Mart́ın-Recuerda, Francisco 61
Mossakowski, Till 1

N

Naghibzadeh, Mahmoud 25

P

Paschke, Adrian 73

R

Rezaeian, Amin 25

S

Schäfermeier, Ralph 73
Schmidt, Renate 37

V

Vouros, George A. 22

W

Walther, Dirk 61
Wolter, Frank 49

viii

The Distributed Ontology, Modelling and
Specification Language – DOL

Till Mossakowski1,2, Oliver Kutz1, Mihai Codescu3, and Christoph Lange4

1 Collaborative Research Centre on Spatial Cognition, University of Bremen
2 DFKI GmbH Bremen

3 University of Erlangen-Nürnberg
4 School of Computer Science, University of Birmingham

Abstract. There is a diversity of ontology languages in use, among
them OWL, RDF, OBO, Common Logic, and F-logic. Related languages
such as UML class diagrams, entity-relationship diagrams and object role
modelling provide bridges from ontology modelling to applications, e.g.
in software engineering and databases.
Another diversity appears at the level of ontology modularity and rela-
tions among ontologies. There is ontology matching and alignment, mod-
ule extraction, interpolation, ontologies linked by bridges, interpretation
and refinement, and combination of ontologies.
The Distributed Ontology, Modelling and Specification Language (DOL)
aims at providing a unified meta language for handling this diversity.
In particular, DOL provides constructs for (1) “as-is” use of ontologies
formulated in a specific ontology language, (2) ontologies formalised in
heterogeneous logics, (3) modular ontologies, and (4) links between on-
tologies. This paper sketches the design of the DOL language. DOL will
be submitted as a proposal within the OntoIOp (Ontology Integration
and Interoperability) standardisation activity of the Object Management
Group (OMG).

1 Introduction

OWL is a popular language for ontologies.5 Yet, the restriction to a decidable de-
scription logic often hinders ontology designers from expressing knowledge that
cannot (or can only in quite complicated ways) be expressed in a description
logic. A practice to deal with this problem is to intersperse OWL ontologies
with first-order axioms, e.g. in the case of bio-ontologies where mereological re-
lations such as parthood are of great importance, though only partly definable
in OWL. However, these remain informal annotations to inform the human de-
signer, rather than first-class citizens of the ontology with formal semantics and
impact on reasoning. One goal of the Distributed Ontology, Modelling and Spec-
ification Language (DOL), discussed in detail in this paper, is therefore to equip
such heterogeneous ontologies with a precise semantics and proof theory.
5 We adopt the completely formal position that an ontology is a formal theory in a
given ontology language, and that an ontology language is any logical language that
some community considers suitable for ontology design.

1

A variety of languages is used for formalising ontologies. Some of these, such
as RDF (mostly used for linked data), OBO and certain6 UML class diagrams, can
be seen more or less as fragments and notational variants of OWL, while others,
such as F-logic and Common Logic (CL), clearly go beyond the expressiveness of
OWL.

We face this diversity not by proposing yet another ontology language that
would subsume all the others, but by accepting this pluralism in ontology lan-
guages and by formulating means (on a sound and formal semantic basis) to
compare and integrate ontologies written in different formalisms. This view is
a bit different from that of unifying languages such as OWL and CL, which are
meant to be “universal” formalisms (for a certain domain/application field), into
which everything else can be mapped and represented. While such “universal”
formalisms are clearly important and helpful for reducing the diversity of for-
malisms, it is still a matter of fact that no single formalism will be the Esperanto
that is used by everybody [23]. It is therefore important to both accept the exist-
ing diversity of formalisms and to provide means of organising their coexistence
in a way that enables formal interoperability among ontologies.
DOL enjoys the following distinctive features:
– modular and distributed ontologies are specially supported,
– ontologies can not only be aligned (as in BioPortal [37] and NeON [14]), but

also combined along alignments,
– logical links between ontologies (interpretation of theories, conservative ex-

tensions etc.) are supported,
– support for a variety of ontology languages (OWL, RDF, Common Logic,

first-order logic; planned: UML, relational database schemas, F-logic, dis-
tributed description logics, and more),

– ontologies can be translated to other ontology languages, and compared with
ontologies in other languages,

– heterogeneous ontologies involving several languages can be built,
– ontology languages and ontology language translations are first-class citizens

and are available on the Web as linked data.
The paper is organised as follows: we first discuss the theoretical foundations of
DOL in Section 2, followed by a sketch of the DOL language itself in Section 3.
Section 4 briefly discusses the DOL-enabled, web-based ontology repository en-
gine Ontohub, and Section 5 concludes.

2 Foundations of the Distributed Ontology, Modelling
and Specification Language (DOL)

The Distributed Ontology, Modelling and Specification Language (DOL)7 aims
at providing a unified framework for (1) “as-is” use of ontologies formulated in
6 Those avoiding qualified associations (amounting to identification constraints), n-ary
relations (for n > 2) and stereotyping.

7 DOL has formerly been standardised within ISO/TC 37/SC 3. The OntoIOp (On-
tology Integration and Interoperability) activity is now being continued at OMG,
see the project page at http://ontoiop.org.

2

a specific ontology language, (2) ontologies formalised in heterogeneous logics,
(3) modular ontologies, and (4) links between ontologies. Historically, the design
of DOL has inherited many ideas and features (1) discussed in the Workshop on
Modular Ontologies series [13, 12, 39, 19, 24, 40], (2) from the Alignment API
[9], and (3) from the CASL (Common Algebraic Specification Language) and
HetCASL (CASL’s heterogeneous extension) languages, standardised in IFIP
WG 1.38 (Foundations of System Specification) [2, 27, 32, 20].

A distributed ontology in DOL consists of modules formalised in basic on-
tology languages, such as OWL (based on description logic) or Common Logic
(based on first-order logic with some second-order features). These modules
are serialised in the existing syntaxes of these languages in order to facilitate
reuse of existing ontologies. DOL adds a meta-level on top, which allows for
expressing heterogeneous ontologies and links between ontologies.9 Such links
include (heterogeneous) imports and alignments, conservative extensions (im-
portant for studying ontology modules), and theory interpretations (important
for reusing proofs). Thus, DOL gives ontology interoperability a formal ground-
ing and makes heterogeneous ontologies and services based on them amenable
to automated verification. The basic syntax and semantics of DOL has been
introduced in [35, 34], and the general theory of heterogeneous specifications
for ontologies in [22]. DOL uses internationalised resource identifiers (IRIs, the
Unicode-aware superset of URIs) for all entities of distributed ontologies to make
them referenceable on the Web.

2.1 Foundations

The large variety of logical languages in use can be captured at an abstract
level using the concept of institutions [10]. This allows us to develop results
independently of the particularities of a logical system and to use the notions
of institution and logical language interchangeably throughout the rest of the
paper. The main idea is to collect the non-logical symbols of the language in sig-
natures and to assign to each signature the set of sentences that can be formed
with its symbols. For each signature, we provide means for extracting the sym-
bols it consists of, together with their kind. Signature morphisms are mappings
between signatures. We do not assume any details except that signature mor-
phisms can be composed and that there are identity morphisms; this amounts to
a category of signatures. Readers unfamiliar with category theory may replace
this with a partial order (signature morphisms are then just inclusions). See [34]
for details of this simplified foundation.

Institutions also provide a model theory, which introduces semantics for the
language and gives a satisfaction relation between the models and the sentences
of a signature. The only restriction imposed is the satisfaction condition, which
captures the idea that truth is invariant under change of notation (and enlarge-
ment of context) along signature morphisms. This relies on two further compo-
nents of institutions: the translation of sentences along signature morphisms, and
8 See http://ifipwg13.informatik.uni-bremen.de
9 The languages that we call “basic” ontology languages here are usually limited to
one logic and do not provide meta-theoretical constructs.

3

the reduction of models against signature morphisms (generalising the notion of
model reduct known from logic).

It is also possible to complement an institution with a proof theory, introduc-
ing a derivability relation between sentences, formalised as an entailment system
[30]. In particular, this can be done for all logics that have so far been in use in
DOL.

Example 1. OWL signatures consist of sets of atomic classes, individuals and
properties. OWL signature morphisms map classes to classes, individuals to in-
dividuals, and properties to properties. For an OWL signature Σ, sentences are
subsumption relations between classes or properties, membership assertions of
individuals in classes and pairs of individuals in properties, complex role inclu-
sions, and some more. Sentence translation along a signature morphism simply
replaces non-logical symbols with their image along the morphism. The kinds of
symbols are class, individual, object property and data property, respectively,
and the set of symbols of a signature is the union of its sets of classes, individuals
and properties. Models are (unsorted) first-order structures that interpret con-
cepts as unary and properties as binary predicates, and individuals as elements
of the universe of the structure, and satisfaction is the standard satisfaction of
description logics. This gives us an institution for OWL.

In this framework, a basic ontology O over an institution I is a pair (Σ,E)
where Σ is a signature and E is a set of Σ-sentences. Given a basic ontology
O, we denote by Sig(O) the signature of the ontology. An ontology morphism
σ : (Σ1, E1) → (Σ2, E2) is a signature morphism σ : Σ1 → Σ2 such that σ(E1)
is a logical consequence of E2.

Several notions of translations between institutions can be introduced. The
most frequently used variant are institution comorphisms [11]. A comorphism
from institution L1 to institution L2 maps L1-signatures to L2-signatures along
a functor Φ and Σ-sentences in L1 to Φ(Σ)-sentences in L2, for each L1-signature
Σ, while Φ(Σ)-models are mapped to Σ-models. Again, a satisfaction condition
has to be fulfilled. For institution morphisms, the directions of the translation
of sentences and models are reversed. See [11] for full details.

Figure 1 shows a conceptual hierarchy of mappings.10 Mappings are split
along the following dichotomies:
– translation versus projection: a translation embeds or encodes a logic into

another one, while a projection is a forgetful operation (e.g. the projec-
tion from first-order logic to propositional logic forgets predicates with arity
greater than zero). Technically, the distinction is that between institution
comorphisms and morphisms.

– plain mapping versus simple theoroidal mapping [11]: while a plain mapping
needs to map signatures to signatures, a simple theoroidal mapping maps
signatures to theories. The latter therefore allows for using “infrastructure
axioms”: e.g. when mapping OWL to Common Logic, it is convenient to rely
on a first-order axiomatisation of a transitivity predicate for properties.

10 This graph, computed within protégé, shows the inferred class hierarchy below the
class Mapping of the LoLa ontology (see Section 2.3 below).

4

Fig. 1. The mapping subset of the LoLa ontology

Mappings can also be classified according to their accuracy; see [33] for de-
tails. Sublogics are the most accurate mappings: they are syntactic subsets. Em-
beddings come close to sublogics, like injective functions come close to subsets. A
mapping can be faithful in the sense that logical consequence (or logical deduc-
tion) is preserved and reflected, that is, inference systems and reasoning engines
for the target logic can be reused for the source logic (along the mapping).
(Weak) exactness is a technical property that guarantees this faithfulness even
in the presences of ontology structuring operations [5].

2.2 A Graph of Logic Translations

Figure 2 is a revised and extended version of the graph of logics and translations
introduced in [33]. New nodes include UML class diagrams, OWL-Full (i.e. OWL
with an RDF semantics instead of description logic semantics), and Common
Logic without second-order features (CL−). We have defined the translations
between most of these logics in earlier publications [35, 33]. The definitions of
the DOL conformance of some central standard ontology languages and trans-
lations among them will be given as annexes to the standard and published in
an open registry, which is also the place where the remaining definitions will be
maintained (cf. Section 2.3).

2.3 A Registry for Ontology Languages and Mappings

Beyond those shown so far, it will be possible to use any (future) language or
mapping (in the sense of Section 2.1) with DOL. We host a registry to which

5

CL

HOL

Prop

SROIQ
(OWL 2 DL)

FOL=

FOLms=

OBOOWL

EL++
(OWL 2 EL)

DL-LiteR
(OWL 2 QL)

DL-RL
(OWL 2 RL)

DDLOWL

ECoOWL

ECoFOL

F-logic

bRDF

RDF

RDFS

OWL-Full

EER

subinstitute

theoroidal subinstitute

simultaneously exact and
model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

red: full second-order logic

OBO 1.4

CASL

UML-CD

CL-

Schema.org

Fig. 2. The current logic translation graph for DOL-conforming languages

the community can contribute descriptions of any languages and mappings11,
as well as logics and serialisations (i.e. concrete syntaxes of languages).12 The
LoLa (“logics and languages”) ontology formalises these notions [25]. LoLa and its
main instance, the registry, form themselves a distributed ontology. The registry
is written in RDF, LoLa in OWL plus some Common Logic axioms.

Fig. 3. Top-level classes in LoLa’s OWL module

Figure 3 shows the top-level classes of LoLa’s OWL module, axiomatising
logics, languages, and mappings. Object-level classes (that is, classes providing
the vocabulary for expressing distributed ontologies) comprise ontologies, their
constituents (namely symbols and sentences), as well as links between ontolo-
gies. Mappings are modelled as shown in Figure 1: by a hierarchy of properties
corresponding to the different types of edges in Figure 2. The full LoLa ontology
is available at http://purl.net/dol/1.0/rdf#.
11 As distributed ontologies refer to languages and mappings by IRIs, third parties may

also set up their own, decentral registry extensions.
12 The OWL 2 DL language is, e.g., exactly as expressive as the logic SROIQ(D) [17],

and it can be serialised in the text-based Manchester syntax or as XML.

6

3 The Language DOL

3.1 Motivation

Many (domain) ontologies are written in DLs such as SROIQ and its profiles.
These logics are characterised by having a rather fine-tuned expressiveness, ex-
hibiting (still) decidable satisfiability problems, whilst being amenable to highly
optimised implementations.

However, expressiveness beyond standard DLs is required for many foun-
dational ontologies (as well as bio-medical ontologies), for instance Dolce13,
BFO14, or GFO15. Moreover, for practical purposes, these foundational ontolo-
gies also come in different versions ranging in expressiveness, typically between
OWL (e.g. Dolce Light, BFO-OWL) and first-order (Dolce, GFO) or even
second-order logic (BFO-Isabelle).

The relation between such different versions, OWL and first-order, may be
recorded in various ways. In some cases it is primarily discussed in the research
literature, see Keet’s mereo-topological ontology [18] for an example, or it is
described in the OWL ontology within a comment, not carrying formal semantics.
Such a comment might only contain an informal explanation of how the OWL
approximation was obtained (Dolce Light is an example), but it might also
describe a fully formal, axiomatised first-order extension of the OWL ontology.

Consider the BFO-OWL object property temporalPartOf. The OWL axioma-
tisation states this to be a transitive subproperty of occurrentPartOf, and the
inverse of hasTemporalPart.16 This property is, however, annotated in a rich way,
containing example usages, a richer first-order axiomatisation of this property
with pointers to the corresponding axioms in the first-order version, as well as
natural language renderings of these axioms. The logical part of this annotation
may be captured in DOL as follows: an OWL ontology first lists the entire OWL
axiomatisation of BFO. In a second step, we import this OWL ontology along
a translation to Common Logic, and subsequently extend the resulting first-
order version of BFO-OWL with the first-order axioms previously only listed as
comments. We obtain a two-level specification of BFO: the original OWL part
(supported by OWL reasoners) and the full first-order part in Common Logic
(amenable to first-order theorem proving and non-conservatively extending the
OWL consequences).

3.2 DOL Syntax and Semantics

The DOL language is not “yet another ontology language”, but a meta language
for expressing relations between ontologies. Therefore, any ontology written in
any conforming ontology language also is a DOL ontology. This has the clear
13 See http://www.loa.istc.cnr.it/DOLCE.html
14 See http://www.ifomis.org/bfo/
15 See http://www.onto-med.de/ontologies/gfo/
16 Parthood, typically understood as an anti-symmetric relation in mereology, is the

canonical example of a relation that cannot be adequately formalised in OWL; a
corresponding comment can be found in many bio-medical ontologies.

7

advantage that users can leave their ontologies as they are when working with
DOL.
DOL provides two main abstract syntax categories:

1. Modular and heterogeneous ontologies. Such an ontology is written in a mod-
ular way, with the help of structuring operations. The semantics of ontologies
is given by a signature and a class of models. In some cases, we can addition-
ally provide a theory-level semantics of ontologies, as a signature and a class
of sentences that, if it exists, agrees with the model-level semantics (that is,
the model class is equal to the class of models satisfying the theory). We
call an ontology flattenable if it has a theory-level semantics and elusive if it
only admits a model-level semantics. This can be decided according to the
outermost structuring operation on ontologies, as follows:
Flattenable ontologies: basic ontologies, extension, union, translation,

interpolate/forget, extract, reference, qualification, combination, bridge.
Among these operations, interpolate/forget and extract can only be ap-
plied to flattenable ontologies.

Elusive ontologies: reduction, minimisation and maximisation.
For detailed definitions of these types of ontologies, see Section 3.3.

2. Distributed ontologies. These consist of of a list of declarations involving
(possibly modular and/or heterogeneous) ontologies. These declarations can
be ontology definitions (assigning a name to an ontology), interpretations
(specifying a logical consequence relationship between ontologies), equiv-
alences of ontologies (specifying that their model classes are in bijective
correspondence), module relations (between ontologies and their modules),
ontology alignments, and qualifications of the language, logic and/or serial-
isation. This will be detailed in Section 3.4.

3.3 Modular and Heterogeneous Ontologies

A (possibly modular and/or heterogeneous) ontology can be one of the following:

(a) a basic ontology O written inline, in a conforming ontology language and
serialisation. The semantics is inherited from the ontology language. O can
also be an ontology fragment, which means that some of the symbols or ax-
ioms may refer to symbols declared outside O (i.e. in an imported ontology).
This is mainly used for extensions and equivalences. Here are two sample
ontologies in OWL (using Manchester syntax) and Common Logic (using
CLIF):
Class: Woman EquivalentTo: Person and Female

ObjectProperty: hasParent

(cl-module PreOrder

(forall (x) (le x x))

(forall (x y z) (if (and (le x y) (le y z)) (le x z))))

8

(b) an ontology qualified with the ontology language that is used to express it
(written language l : O, where l identifies a language). Similarly, qualifica-
tions can also be by logic (written logic l : O), and/or serialisation (written
syntax s : O).17

(c) an IRI reference to an ontology existing on the Web18, possibly abbreviated
using prefixes.19 For example:
%prefix(

co-ode: <http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/>)%

http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/pizza.owl

co-ode:pizza.owl

(d) an extension of an ontology by new symbols and axioms, written O1 then
O2, where O2 is an ontology (fragment) in a conforming ontology language.
The resulting signature is that of O1, augmented with the symbols in O2.
A model of an extension ontology is a model of this signature, that satisfies
the axioms on O2 and is (when appropriately reduced) a model of O1. An
extension can optionally be marked as conservative (%mcons or %ccons after
the “then”). The semantics is that each O1-model must have at least one
expansion to the whole extension O1 then O2 (for %mcons) resp. that each
logical consequence of O1 then O2 is already one of O1 if it is over the
signature of O1 (for %ccons). In case that O2 does not introduce any new
symbols, the keyword %implied can be used instead of %ccons or %mcons;
the extension then merely states intended logical consequences. The keyword
%def stands for definitional extensions. This is similar to %mcons, but the
model expansion must always exist uniquely. The following OWL ontology
is an example for the latter:
Class Person

Class Female

then %def

Class: Woman EquivalentTo: Person and Female

(e) a union of two self-contained ontologies (not fragments), written O1 and O2.
Models of this union are those models that are (perhaps after appropriate
reduction) models of both O1 and O2. For example, the class of commutative
monoids can be expressed as
algebra:Monoid and algebra:Commutative

Forming a union of ontologies is a particularly common operation in the
RDF logic, where it is known as merging graphs [15, section 0.3]; however,
the RDF language provides no explicit syntax for this operation. When mul-
tiple RDF ontologies (“graphs”) contain statements about the same symbol
(“resource”), i.e., syntactically, triples having the same subject, the effect

17 Some of the following listings omit obvious qualifications for readability.
18 Note that not all ontologies can be downloaded by dereferencing their IRIs. Im-

plementing a catalogue mechanism in DOL-aware applications might remedy this
problem.

19 Some of the following listings abbreviate IRIs using prefixes but omit the prefix
bindings for readability.

9

is that in the merged graph the resource will have all properties that have
previously been stated about it separately. Different kinds of properties, e.g.
multilingual labels, geodata, or outgoing links to external graphs, are often
maintained in different RDF graphs, which are then merged; consider the
following excerpt:
{ :UniBremen rdfs:label "Université de Brême"@fr . } and

{ :UniBremen geo:lat "53.108612"^^xsd:float . } and

{ :UniBremen owl:sameAs20

<http://dbpedia.org/page/University_of_Bremen> . }

(f) a translation of an ontology to a different signature (written O with σ,
where σ is a signature morphism) or into some ontology language (written
O with translation ρ, where ρ is an institution comorphism). For example,
we can combine an OWL ontology with a first-order axiom (formulated in
Common Logic) as follows:
ObjectProperty: isProperPartOf

Characteristics: Asymmetric

SubPropertyOf: isPartOf

with translation trans:SROIQtoCL

then

(if (and (isProperPartOf x y) (isProperPartOf y z)) (isProperPartOf x z))

Note that OWL can express transitivity, but not together with asymmetry.
(g) a reduction of an ontology to a smaller signature Σ is written O reveal Σ.

Alternatively, it can be written O hide Σ, where Σ is the set of symbols
to be hidden (i.e. this is equivalent to O reveal Sig(O) \ Σ). The effect
is an existential quantification over all hidden symbols. For example, when
specifying a group in sorted first-order logic, using the CASL language,
sort Elem

ops 0: Elem; __+__: Elem * Elem -> Elem; inv: Elem -> Elem

forall x,y,z . 0 + x = x

. x + (y + z) = (x + y) + z

. x + inv(x) = 0

reveal Elem, 0, __+__

revealing everything except the inverse operation inv results in a specifi-
cation of the class of all monoids that can be extended with an inverse
operation, i.e. the class of all groups with inverse left implicit.
Here is an example of hiding:
ontology Pizza = %% a simplified remake of the Pizza ontology [16]

Individual: TomatoTopping

Individual: MozzarellaTopping DifferentFrom: TomatoTopping

ObjectProperty: hasTopping

Class: VegetarianTopping

EquivalentTo: { TomatoTopping, MozzarellaTopping, ... }

20 While owl:sameAs is borrowed from the vocabulary of OWL, it is commonly used in
the RDF logic to link to resources in external graphs, which should be treated as if
their IRI were the same as the subject’s IRI.

10

Class: VegetarianPizza SubClassOf: some hasTopping VegetarianTopping

...

end

ontology Pizza_hide_VegetarianTopping =

Pizza hide VegetarianTopping

end

A reduction to a less expressive logic is written O hide along µ, where µ
is an institution morphism. This is a common operation in TBox/ABox set-
tings, where an ontology in an expressive language provides the terminology
(TBox) used in assertions (ABox) stated in a logic that is less expressive but
scales to larger data sets; OWL DL (whose logic is SROIQ) vs. RDF is a
typical language combination:
ontology TBoxABox =

Pizza hide along trans:SROIQtoRDF

then language lang:RDF syntax ser:RDF/Turtle : {

:myPizza :hasTopping

[a :TomatoTopping], [a :MozzarellaTopping] .

}

(h) an interpolation of an ontology, either in a subsignature or a sublogic, op-
tionally with respect to a logic L (written O keep in Σ with L, where
Σ is a signature or a logic and L is a logic)21. The effect is that sentences
not expressible in Σ are weakened or removed, but the resulting theory still
has the same L-consequences. The “with L” is optional, it defaults to the
logic of O. Technically, this is a uniform interpolant [41, 29]. In case that
Σ is a sublogic, this is also called approximation [28]. For example, we can
interpolate the first-order DOLCE mereology in OWL:22

DOLCE_Mereology keep in log:OWL

Dually, O forget Σ with L interpolates O with the signature Sig(O)\Σ, i.e.
Σ specifies the symbols that need to be left out. Cf. the notion of forgetting
in [41, 29]. For example,
Pizza forget VegetarianTopping

This has a theory-level semantics, i.e. yields a theory in the reduced signature
(without VegetarianTopping). By contrast Pizza hide VegetarianTopping

has a model-level semantics.
(i) a module extracted from an ontology, written O extract c Σ with m. Here,

Σ is a restriction signature (which needs to be a subsignature of Sig(O)), c
is one of %mcons and %ccons, and m identifies a module extraction method.
The extracted module is a subontology of O with signature larger than (or
equal to) Σ, such that O is a conservative extension of the extracted module.

21 It is also possible to specify a signature and a logic simultaneously: O keep in Σ,L1
with L2

22 Interpolants need not always exist, and even if they do, tools might only be able to
approximate them.

11

Dually, O remove c Σ with m extracts w.r.t. the signature Sig(O) \ Σ.23

For example, using the syntactic locality-* extraction method [38]:

Pizza remove %mcons

VegetarianTopping

with <http://example.org/onto/module/syntactic-locality-*>

Table 1 illustrates some of the connections between (g)–(i). We have three
ways of removing the class VegetarianTopping from the ontology Pizza: (1)
using hiding, we keep the model class of Pizza, but just remove the inter-
pretation of VegetarianTopping from each model. Note that the resulting
ontology has
VegetarianPizza SubClassOf:

Annotations: dol:iri (*)

some hasTopping { TomatoTopping, MozzarellaTopping, ... }

as a logical consequence. This is also a consequence of the corresponding
uniform interpolant
Pizza forget VegetarianTopping

which captures the theory of Pizza hide VegetarianTopping. Note that there
is a subtle difference between (model-theoretic) hiding and (consequence-
theoretic) forgetting: a model satisfying the theory of O hide Σ might itself
not be a model of O hide Σ. In examples involving “with L”, the uniform
interpolant can be weaker than the hiding, because it is only required to have
the same logical consequences in some language L, and a formula like (*)
might not be a formula of L. Finally, an extracted module does not contain
(*), because it only selects a subontology, and Pizza does not contain (*).
Note that while forget/keep and hide/reveal both work w.r.t. smaller sig-
natures and sublogics, remove/extract does not work for sublogics. This
is because remove/extract must always respect the conservative extension
property, which may not be possible when projecting to a sublogic. And if
conservativity cannot be guaranteed, then forget/keep can be used in any
case.

(j) a combination of ontologies, written combine O1, . . . , On L1, . . . , Lm. Here
the Lj are links between ontologies, see below. For disambiguating the sym-
bols in the combined ontology, the individual ontologies can be prefixed with
labels, like n : O, which are scoped to the current distributed ontology. The
simplest example of a combination is a disjoint union (we here translate
OWL ontologies into many-sorted OWL in order to be able to distinguish
between different universes of individuals):
ontology Publications1 =

Class: Publication

Class: Article SubClassOf: Publication

Class: InBook SubClassOf: Publication

23 Note that the resulting module can still contain symbols from Σ, because the result-
ing signature may be enlarged.

12

remove/extract forget/keep hide/reveal
semantic background conservative

extension
uniform
interpolation

model reduct

relation to original subtheory interpretable interpretable
approach theory level theory level model level
type of ontology flattenable flattenable elusive
signature of result ≥ Σ = Σ = Σ

change of logic not possible possible possible
Table 1. Extract – Forget – Hide

Class: Thesis SubClassOf: Publication

...

ontology Publications2 =

Class: Thing

Class: Article SubClassOf: Thing

Class: BookArticle SubClassOf: Thing

Class: Publication SubClassOf: Thing

Class: Thesis SubClassOf: Thing

...

ontology Publications_Combined =

combine

1 : Publications1 with translation trans:OWL2MS-OWL,

2 : Publications2 with translation trans:OWL2MS-OWL

%% implicitly: Article 7→ 1:Article ...

%% Article 7→ 2:Article ...

end

(This example will be continued using bridges below.) If links or alignments
are present, the semantics of a combination is a quotient of a disjoint union
(aligned symbols are identified). Technically, this is a colimit, see [42, 6]. An
example for this is given along with the examples for alignments below.

(k) a minimisation of an ontology imposes a closed-world assumption on part of
the ontology. It forces the non-logical symbols declared in O to be interpreted
in a minimal way. This is written minimize { O }. Symbols declared before
the minimised part are considered to be fixed for the minimisation (that
is, we minimise among all models with the same reduct). Symbols declared
after the minimisation can be varied. This is borrowed from circumscription
[26, 3]. Alternatively, the non-logical symbols to be minimised and to be
varied can be explicitly declared: O minimize Σ1 vars Σ2. For example, in
the following OWL theory, B2 is a block that is not abnormal, because it is
not specified to be abnormal, and hence it is also on the table.
Class: Block

Individual: B1 Types: Block

13

Individual: B2 Types: Block DifferentFrom: B1

then minimize {

Class: Abnormal

Individual: B1 Types: Abnormal }

then

Class: OnTable

Class: BlockNotAbnormal EquivalentTo:

Block and not Abnormal SubClassOf: OnTable

then %implied

Individual: B2 Types: OnTable

Dually to minimisations, there are also maximisations.
(l) an ontology bridge, written O1 bridge with translation t O2, where t is

a logic translation. The semantics is that of O1 with translation t then
O2. Typically, t will translate a language like OWL to some language for
distributed description logic or E-connections [4, 21, 8], and O2 introduces
some axioms involving the relations (introduced by t) between ontologies in
O1. For example,
Publications_Combined

bridge with translation trans:MS-OWL2DDL

%% implicitly added by translation trans:MS-OWL2DDL:

%% binary relation providing the bridge

1:Publication
v−→ 2:Publication

1:PhdThesis
v−→ 2:Thesis

1:InBook
v−→ 2:BookArticle

1:Article
v−→ 2:Article

1:Article
w−→ 2:Article

end

3.4 Distributed Ontologies

Distributed ontologies. These have an optional identifier, declared with dis-
tributed ontology Id, and consist of

(a) ontology definitions, written ontology Id = O. For example,
ontology co-code:Pizza =

Class: VegetarianPizza

Class: VegetableTopping

ObjectProperty: hasTopping

...

end

(b) theory interpretations, written interpretation Id : O1 to O2 = σ, express-
ing that the σ-reduct of each model of O2 is a model of O1. Instead of σ,
an institution comorphism can be referred to. For example, we can express
that the natural numbers are a total order as follows:
interpretation i : TotalOrder to Nat = Elem 7→ Nat

14

Here is a more complex example in Common Logic from the COLORE repos-
itory [7]:
interpretation geometry_of_time %mcons :

%% Interpretation of linearly ordered time intervals...

int:owltime_le

%% ... that begin and end with an instant as lines

%% that are incident with linearly ...

to { ord:linear_ordering and bi:complete_graphical

%% ... ordered points in a special geometry, ...

and int:mappings/owltime_interval_reduction }

= int:ProperInterval 7→ int:Interval end

(c) ontology equivalences, written equivalence Id : O1 ↔ O2 = O3 along
ρ1, ρ2, expressing that O1 and O2 have model classes that are in bijective
correspondence. This is done by providing a (fragment) ontology O3 such
that ρi(Oi) then O3 is a definitional extension [22]. ρ1 and ρ2 are optional
institution comorphisms that default to the identity. For example, Boolean
algebras are equivalent to Boolean rings:
equivalence e : algebra:BooleanAlgebra ↔ algebra:BooleanRing =

∀ x,y

. x ∧ y = x*y

. x ∨ y = x + y + x*y

. ¬x = 1 + x

. x*y = x ∧ y,

. x+y = (x ∨ y) ∧ ¬(x ∧ y).

end

(d) module relations, written module Id c : O1 of O2 for Σ. This expresses
that O1 is a module of O2 with restriction signature Σ and conservativity
c. If c is %mcons, this means that every Σ-reduct of an O1-model can be
expanded to an O2-model. If c is %ccons, this means that every Σ-sentence
ϕ following from O2 already follows from O1. This relation shall hold for any
module O1 extracted from O2 using the extract construct.

(e) alignment definitions, written alignment Id card1 card2 : O1 to O2 =
c1, . . . , cn, where card1 resp. card2 specify constraints on the alignment re-
lation concerning the source resp. target. Each cardi is one of 1, ?, +, *
(‘1’ for injective and total, ‘+’ for total, ‘?’ for injective and ‘*’ for none).
The cj are correspondences of form sym1 rel conf sym2. Here, symi is a
symbol from Oi, rel is one of the built-in relations >, <, =, %, 3, ∈, 7→,
or an identifier of a relation specified externally, and conf is an (optional)
confidence value between 0 and 1. This syntax of alignments follows the
Alignment API [9].24 Alignments have no formal semantics, but they can be
used in combinations. For example,
%prefix(: <http://www.example.org/alignment#>

24 Note that BioPortal’s [37] mappings are correspondences in the sense of the Align-
ment API and hence of DOL. BioPortal only allows users to collect correspondences,
but not to group them into alignments. In a sense, for each pair of ontologies, all
BioPortal users contribute to a big alignment between these.

15

lang: <http://purl.net/dol/languages/>

ser: <http://purl.net/dol/serializations/>

trans: <http://purl.net/dol/translations/>)%

distributed ontology Alignments

language lang:OWL2/DL syntax ser:OWL2/Manchester

alignment Alignment1 : { Class: Woman } to { Class: Person } =

Woman < Person

end

ontology AlignedOntology1 =

combine Alignment1

end

ontology Onto1 =

Class: Person

Class: Woman SubClassOf: Person

Class: Bank

end

ontology Onto2 =

Class: HumanBeing

Class: Woman SubClassOf: HumanBeing

Class: Bank

end

alignment VAlignment : Onto1 to Onto2 =

Person = HumanBeing,

Woman = Woman

end

ontology VAlignedOntology =

combine 1 : Onto1, 2 : Onto2, VAlignment

%% 1:Person is identified with 2:HumanBeing

%% 1:Woman is identified with 2:Woman

%% 1:Bank and 2:Bank are kept distinct

end

ontology VAlignedOntologyRenamed =

VAlignedOntology with 1:Bank 7→ RiverBank, 2:Bank 7→ FinancialBank,

Person_HumanBeing 7→ Person

end

(f) qualifications choosing the ontology language, logic, and/or serialisation.
This is written language Id, logic Id and/or syntax Id, referring to entries
of a registry as explained in Section 2.3, and affects the subsequent definitions
in the distributed ontology.

16

This completes our overview of DOL. The full syntax and semantics of DOL
will be available at wiki.ontohub.org and later submitted to OMG for standard-
isation.

Note that we have not covered the role of annotations in DOL so far. For
structured annotation of ontologies and their parts, e.g. with metadata, or possi-
bly with ontological relations not built into DOL’s syntax, DOL does not provide
its own syntax, but relies on the existing RDF standard. DOL allows for giving
identifiers to all entities of distributed ontologies and basic ontologies25 and thus
enables their annotation. Annotations can be maintained in an RDF ontology
that is a part of the distributed ontology.

4 The Ontology Repository Ontohub

Ontohub (see http://ontohub.org) is a web-based repository engine for ontolo-
gies that are written either in DOL or in some specific ontology language.26

Fig. 4. ontohub.org: overview of logics

Ontohub provides means for
organising ontologies into reposi-
tories. The distributed nature en-
ables communities to share and ex-
change their contributions easily.
The heterogeneous nature makes
it possible to integrate ontologies
written in various ontology lan-
guages. Ontohub supports a wide
range of DOL-conforming ontol-
ogy languages building on DOL
and also supports DOL’s inter-
pretations, equivalences and align-
ments. Users of Ontohub can up-
load, browse, search and annotate
single and distributed ontologies in
various languages via a web front
end. Figure 4 shows an excerpt of
the 25 logics currently available in
Ontohub.

The parsing and inference back
end is the Heterogeneous Tool Set
(Hets [31, 36], available at hets.

dfki.de). Hets supports a large
number of basic ontology languages and logics, as well as the DOL meta language
25 When a basic ontology language has no mechanism for annotating or assigning iden-

tifiers to some ontology entities (as with imports in OWL or sentences in Common
Logic), DOL provides a special comment syntax for injecting identifiers into basic
ontologies written inline. Where identifiers in a basic ontology language are not IRIs,
DOL allows for making them accessible as IRIs.

26 Ontohub’s sources are freely available at https://github.com/ontohub/ontohub.

17

as described in this paper.27 The structural information extracted from DOL on-
tologies by Hets is stored in the Ontohub database and exposed to human users
via a web interface and to machine clients as linked data.28

5 Conclusion and Future Work

The Distributed Ontology, Modelling and Specification Language (DOL) inte-
grates different lines of research that have been reflected in the WoMO commu-
nity (see [13, 12, 39, 19, 24, 40]):

– conservative extensions,
– ontology module extraction,
– ontology alignments,
– combinations of ontologies along alignments,
– distributed description logics,
– E-connections, and
– relations between ontologies written in different languages (e.g. OWL and

FOL).

DOL provides a unified meta language for these (and more) concepts, with a
clean formal semantics. Tool support is provided by the Heterogeneous Tool Set
(Hets) and by ontohub.org. The latter will also be used for the FOIS 2014 ontol-
ogy competition. Since ontologies used in FOIS papers often need expressiveness
beyond OWL, the multi-logic nature of DOL and Ontohub is essential.

A number of open problems and challenges remain:

– What is a suitable abstract meta framework for non-monotonic logics and
rule languages such as RIF and RuleML? Are institutions suitable here? Are
the modularity questions for these languages different from those for OWL?

– What is a useful abstract notion of ontology query (language)? How to handle
answer substitutions in a logic-agnostic way?

– Can the notions of class hierarchy and of satisfiability of a class be generalised
from OWL to other languages?

– Can logical frameworks be used for the specification of ontology languages
and translations?

Acknowledgements

The development of DOL is supported by the German Research Foundation
(DFG), Project I1-[OntoSpace] of the SFB/TR 8 “Spatial Cognition”. Mihai
Codescu was supported by the DFG, project SCHR1118-7-1. Christoph Lange
was supported by EPSRC grant EP/J007498/1. The authors would like to
27 Some (but only few) of DOL’s features are still being implemented at the time of

the writing of this paper.
28 “Linked data” is a set of best practises for publishing structured data on the Web

in a machine-friendly way [1]. DOL and Ontohub conform with linked data.

18

thank the OntoIOp working group for their valuable input, particularly Michael
Grüninger, Maria Keet, Fabian Neuhaus and Peter Yim. We also want to thank
Carsten Lutz and Thomas Schneider for valuable input on interpolation and
module extraction.

References

1. Berners-Lee, T. Design Issues: Linked Data. July 27, 2006. http://www.w3.org/
DesignIssues/LinkedData.html (visited on 2010-01-20).

2. Bidoit, M. and Mosses, P. D. CASL User Manual. LNCS (IFIP Series) 2900.
Freely available at http://www.cofi.info. Springer, 2004.

3. Bonatti, P. A., Lutz, C., and Wolter, F. The Complexity of Circumscription
in DLs. In J. Artif. Intell. Res. (JAIR) 35 (2009), pp. 717–773.

4. Borgida, A. and Serafini, L. Distributed Description Logics: Assimilating In-
formation from Peer Sources. In Journal of Data Semantics 1 (2003), pp. 153–
184.

5. Borzyszkowski, T. Logical systems for structured specifications. In Theoretical
Computer Science 286 (2002), pp. 197–245.

6. Codescu, M. and Mossakowski, T. Heterogeneous colimits. InMoVaH’08 Work-
shop on Modeling, Validation and Heterogeneity. Ed. by F. Boulanger, C. Gaston,
and P.-Y. Schobbens. IEEE press, 2008. http://www.computer.org/portal/web/
csdl/abs/proceedings/icstw/2008/3388/00/3388toc.htm.

7. COLORE. An open repository of first-order ontologies represented in Common
Logic. http://colore.googlecode.com.

8. Cuenca Grau, B., Parsia, B., and Sirin, E. Ontology Integration Using E-con-
nections. In Modular Ontologies—Concepts, Theories and Techniques for Knowl-
edge Modularization. Ed. by H. Stuckenschmidt, C. Parent, and S. Spaccapietra.
Vol. 5445. LNCS. Springer, 2009.

9. David, J., Euzenat, J., Scharffe, F., and dos Santos, C. T. The Alignment
API 4.0. In Semantic Web 2 , 1 (2011), pp. 3–10.

10. Goguen, J. A. and Burstall, R. M. Institutions: Abstract Model Theory for
Specification and Programming. In Journal of the Association for Computing
Machinery 39 (1992). Predecessor in: LNCS 164, 221–256, 1984., pp. 95–146.

11. Goguen, J. and Roşu, G. Institution morphisms. In Formal aspects of computing
13 (2002), pp. 274–307.

12. Grau, B. C., Honavar, V., Schlicht, A., and Wolter, F., eds. Proceed-
ings of the 2nd International Workshop on Modular Ontologies, WoMO 2007,
Whistler, Canada, October 28, 2007. Vol. 315. CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

13. Haase, P., Honavar, V., Kutz, O., Sure, Y., and Tamilin, A., eds. Proceedings
of the 1st International Workshop on Modular Ontologies, WoMO’06, co-located
with the International Semantic Web Conference, ISWC’06 November 5, 2006,
Athens, Georgia, USA. Vol. 232. CEUR Workshop Proceedings. CEUR-WS.org,
2007.

14. The NeOn Ontology Engineering Toolkit. http://www.neon-project.org/. 2008.
http://watson.kmi.open.ac.uk/Downloads%20and%20Publications_files/neon-

toolkit.pdf.
15. Hayes, P. RDF Semantics. W3C Recommendation. WorldWideWeb Consortium

(W3C), Feb. 10, 2004. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

19

16. Horridge, M. Protégé OWL Tutorial. Version v1.3. Mar. 24, 2011. http://owl.
cs.manchester.ac.uk/tutorials/protegeowltutorial/.

17. Horrocks, I., Kutz, O., and Sattler, U. The Even More Irresistible SROIQ.
In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR2006). AAAI Press, June 2006, pp. 57–67.

18. Keet, C. M. and Artale, A. Representing and reasoning over a taxonomy of
part–whole relations. In Applied Ontology 3 , 1 (2008), pp. 91–110.

19. Kutz, O., Hois, J., Bao, J., and Cuenca Grau, B., eds. Modular Ontologies—
Proceedings of the Fourth International Workshop (WoMO 2010). Vol. 210. Fron-
tiers in Artificial Intelligence and Applications. Toronto, Canada: IOS Press, 2010.

20. Kutz, O., Lücke, D., Mossakowski, T., and Normann, I. The OWL in the
CASL—Designing Ontologies Across Logics. In OWL: Experiences and Direc-
tions, 5th International Workshop (OWLED-08). Ed. by C. Dolbear, A. Rutten-
berg, and U. Sattler. co-located with ISWC-08, Karlsruhe, Germany, October
26–27: CEUR-WS, Vol-432, 2008.

21. Kutz, O., Lutz, C., Wolter, F., and Zakharyaschev, M. E-connections of
Abstract Description Systems. In Artificial Intelligence 156 , 1 (2004), pp. 1–73.

22. Kutz, O., Mossakowski, T., and Lücke, D. Carnap, Goguen, and the Hyper-
ontologies: Logical Pluralism and Heterogeneous Structuring in Ontology Design.
In Logica Universalis 4 , 2 (2010). Special issue on ‘Is Logic Universal?’

23. Kutz, O., Lange, C., Mossakowski, T., Keet, C. M., Neuhaus, F., and
Grüninger, M. The Babel of the Semantic Web Tongues – In Search of the
Rosetta Stone of Interoperability. In What will the Semantic Web look like 10
Years from now? Workshop at ISWC. Ed. by F. van Harmelen, J. A. Hendler,
P. Hitzler, K. Janowicz, and D. Vrandečić. 2012. http://stko.geog.ucsb.edu/
sw2022/.

24. Kutz, O. and Schneider, T., eds. Modular Ontologies—Proceedings of the Fifth In-
ternational Workshop (WoMO 2011). Vol. 230. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2011.

25. Lange, C., Mossakowski, T., and Kutz, O. LoLa: A Modular Ontology of
Logics, Languages, and Translations. In. Ed. by T. Schneider and D. Walther.
Vol. 875. CEUR-WS, 2012. http://ceur-ws.org/Vol-875.

26. Lifschitz, V. Circumscription. In Handbook of Logic in Artificial Intelligence
and Logic Programming. Vol. 3. Oxford University Press, 1994, pp. 297–352.

27. Lüttich, K., Masolo, C., and Borgo, S. Development of Modular Ontologies
in CASL. In WoMO. Ed. by P. Haase, V. Honavar, O. Kutz, Y. Sure, and A.
Tamilin. Vol. 232. CEUR Workshop Proceedings. CEUR-WS.org, 2006.

28. Lutz, C., Seylan, I., and Wolter, F. An Automata-Theoretic Approach to
Uniform Interpolation and Approximation in the Description Logic EL. In KR.
Ed. by G. Brewka, T. Eiter, and S. A. McIlraith. AAAI Press, 2012.

29. Lutz, C. and Wolter, F. Foundations for Uniform Interpolation and Forgetting
in Expressive Description Logics. In IJCAI. 2011, pp. 989–995.

30. Meseguer, J. General Logics. In Logic Colloquium ’87. Ed. by H. J. Ebbinghaus.
North Holland, 1989, pp. 275–329.

31. Mossakowski, T. Hets: the Heterogeneous Tool Set. http://hets.dfki.de (vis-
ited on 2012-12-10).

32. Mossakowski, T., Haxthausen, A., Sannella, D., and Tarlecki, A. CASL:
The Common Algebraic Specification Language. In Logics of Formal Specifica-
tion Languages. Ed. by M. H. D. Bjorner. Monographs in Theoretical Computer
Science. Springer-Verlag Heidelberg, 2008. Chap. 3, pp. 241–298. http://dx.doi.
org/10.1007/978-3-540-74107-7_5.

20

33. Mossakowski, T. and Kutz, O. The Onto-Logical Translation Graph. In Mod-
ular Ontologies. Ed. by O. Kutz and T. Schneider. IOS, 2011.

34. Mossakowski, T., Kutz, O., and Lange, C. Semantics of the distributed ontol-
ogy language: Institutes and Institutions. In Recent Trends in Algebraic Develop-
ment Techniques, 21th International Workshop, WADT 2012. Ed. by N. Martí-
Oliet and M. Palomino. Vol. 7841. Lecture Notes in Computer Science. Springer,
2013, pp. 212–230. http://link.springer.com/chapter/10.1007/978-3-642-37635-
1_13.

35. Mossakowski, T., Lange, C., and Kutz, O. Three Semantics for the Core of
the Distributed Ontology Language. In 7th International Conference on Formal
Ontology in Information Systems (FOIS). Ed. by M. Donnelly and G. Guizzardi.
Vol. 239. Frontiers in Artificial Intelligence and Applications. FOIS Best Paper
Award. IOS Press, 2012, pp. 337–352.

36. Mossakowski, T., Maeder, C., and Lüttich, K. The Heterogeneous Tool Set.
In TACAS 2007. Ed. by O. Grumberg and M. Huth. Vol. 4424. Lecture Notes in
Computer Science. Springer-Verlag Heidelberg, 2007, pp. 519–522.

37. Noy, N. F., Shah, N. H., Patricia L. Whetzel, ., Dai, B., Dorf, M., Grif-
fith, N., Jonquet, C., Rubin, D. L., Storey, M.-A., Chute, C. G., and
Musen, M. A. BioPortal: ontologies and integrated data resources at the click of a
mouse. In Nucleic Acids Research 37 (2009). http://bioportal.bioontology.org,
W170–W173.

38. Sattler, U., Schneider, T., and Zakharyaschev, M. Which Kind of Module
Should I Extract? In Proceedings 22nd Int. Workshop on Description Logics (DL).
Vol. 477. CEUR Workshop Proceedings. CEUR-WS.org, 2009.

39. Sattler, U. and Tamilin, A., eds. Workshop on Ontologies: Reasoning and Mod-
ularity (WORM-08). Vol. Vol-348. (ESWC) Tenerife, Spain: CEUR Workshop
Proceedings, 2008. http://ftp.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-348/.

40. Schneider, T. and Walther, D., eds. Proc. of the 6h Int. Workshop on Modular
Ontologies. Vol. 875. CEUR-WS, 2012.

41. Wang, Z., Wang, K., Topor, R. W., and Pan, J. Z. Forgetting for knowledge
bases in DL-Lite. In Ann. Math. Artif. Intell. 58 , 1–2 (2010), pp. 117–151.

42. Zimmermann, A., Krötzsch, M., Euzenat, J., and Hitzler, P. Formalizing
Ontology Alignment and its Operations with Category Theory. In Proc. of FOIS-
06. 2006, pp. 277–288.

21

Combining Ontologies in
Settings with Multiple Agents

George A. Vouros

Department of Digital Systems,
University of Piraeus, Greece

georgev@unipi.gr

Abstract. Combining knowledge and beliefs of autonomous peers in
distributed settings, is a major challenge. In this talk we consider agents
that combine their ontologies and reason jointly with their coupled knowl-
edge using the E-SHIQ representation framework. We motivate the need
for a representation framework that allows agents to combine their knowl-
edge in different ways, maintaining the subjectivity of their own knowl-
edge and beliefs, and to reason collaboratively, constructing a tableau
that is distributed among them. The talk presents the E−SHIQ repre-
sentation framework and the tableau reasoning algorithm. It presents the
implications to the modularization of ontologies for efficient reasoning,
implications to coordinating agents’ subjective beliefs, as well as chal-
lenges for reasoning with ontologies in open and dynamic multi-agent
systems.

1 Combining Ontologies with E − SHIQ
To combine knowledge and beliefs of autonomous agents in open and inher-
ently distributed settings, we need special formalisms that take into account
the complementarity and heterogeneity of knowledge in multiple interconnected
contexts. Agents may have different, subjective beliefs concerning “bridging”
heterogeneity and coupling their knowledge with the knowledge of others. The
subjectivity of beliefs plays an important role in such a setting, as agents may
inherently (i.e. due to restrictions of their task environment) have different views
of the knowledge possessed by others, or they may not agree on the way they
may jointly shape knowledge.

On the other hand, large ontologies need to be dismantled so as to be evolved,
engineered and used effectively during reasoning. The process of taking an ontol-
ogy to possibly interdependent ontology units is called ontology modularization,
and specifically, ontology partitioning. Each such unit, or module, provides a
specific context for performing ontology maintenance, evolution and reasoning
tasks, at scales and complexity that are smaller than that of the initial ontol-
ogy. Therefore, in open and inherently distributed settings (for performing either
ontology maintenance, evolution or reasoning tasks), several such ontology mod-
ules may co-exist in connection with each other. Formally, it is required that
any axiom that is expressed using terms in the signature of a module and it is

22

entailed by the ontology must be entailed by the module, and vise-versa. The
partitioning task requires that the union of all the modules, together with the
set of correspondences/relations between modules, is semantically equivalent to
the original ontology. This later property imposes hard restrictions to the mod-
ularization task: Indeed, to maintain it, a method must do this with respect to
the expressiveness of the language used for specifying correspondences/relations
between modules’ elements, to the local (per ontology module) interpretation
of constructs, and to the restrictions imposed by the setting where modules are
deployed.

The expressivity of knowledge representation frameworks for combining knowl-
edge in multiple contexts, and the efficiency of distributed reasoning processes,
depend on the language(s) used for expressing local knowledge and on the lan-
guage used for connecting different contexts.

While our main goal is to provide a rich representation framework for com-
bining and reasoning with distinct ontology units in open, heterogeneous and
inherently distributed settings, we propose the E−SHIQ representation frame-
work and a distributed tableau algorithm [1] [2].

The representation framework E − SHIQ:

– Supports subjective concept-to-concept correspondences between concepts
in different ontology units.

– In conjunction to subjective concept-to-concept correspondences, E−SHIQ
supports relating individuals in different units via link relations, as well
as via subjective individual correspondence relations. While correspondence
relations represent equalities between individuals, from the subjective point
of view of a specific unit, link relations may relate individuals in different
units via domain-specific relations.

– Supports distributed reasoning by combining local reasoning chunks in a
peer-to-peer fashion. Each reasoning peer with a specific ontology unit holds
a part of a distributed tableau, which corresponds to a distributed model.

– Finally, E − SHIQ inherently supports subsumption propagation between
ontologies, supporting reasoning with concept-to-concept correspondences in
conjunction to link relations between ontologies.

2 Constructing E − SHIQ distributed knowledge bases
via modularization

To distribute knowledge among different agents, we need to partition monolithic
ontologies to possibly interconnected modules. In this part of the talk we describe
efforts towards constructing E − SHIQ distributed knowledge bases by mod-
ularizing ontologies: Our aim is to make ontology units as much self-contained
and independent from others as possible, so as to increase the efficiency of the
reasoning process. We discuss the flexibility offered by E − SHIQ itself, and
different modularization options available (a first attempt towards this problem
has been reported in [3]).

23

3 Challenges towards reasoning with multiple ontologies

Towards reasoning with ontology units in open and dynamic settings with mul-
tiple agents, this talk presents and discusses the following major challenges:

Reaching Agreements to correspondences: Agents in inherently distributed
and open settings can not be assumed to share an agreed ontology of their com-
mon task environment. To interact effectively, these agents need to establish
semantic correspondences between their ontology elements. As already pointed
out, the correspondences computed by two agents may differ due to (a) differ-
ent mapping methods used, to (b) different information one makes available to
the other, or (c) restrictions imposed by their task environment. Although se-
mantic coordination methods have already been proposed for the computation
of subjective correspondences between agents, we need methods for communi-
ties, groups and arbitrarily formed networks of interconnected agents to reach
semantic agreements on subjective ontology elements’ correspondences [4].

Exploitation of ontology units in open and dynamic settings: In open settings
where agents may enter or leave the system at will, we need agents to dynami-
cally combine their knowledge and re-organize themselves, so as to form groups
that can serve specific information needs successfully. There are several issues
that need to be addressed here: Agents (a) must share information about their
potential partners and must learn the capabilities, effectiveness, trustworthiness
etc. of their peers, (b) must locate the potential partners, and (c) must decide
for the ”best” groups to be formed in an ad-hoc manner, towards serving the
specific information needs. Reaching complete and optimal solutions in such a
setting is a hard problem: we discuss the computation of approximate solutions
[5].

Acknowledgements Thanks to Georgios Santipantakis for his contributions
to various parts of this work, especially the one concerning E − SHIQ. The
major part of the research work referenced in this talk is being supported by
the project IRAKLITOS II” of the O.P.E.L.L. 2007 - 2013 of the NSRF (2007 -
2013), co-funded by the European Union and National Resources of Greece.

References

1. Vouros, G.A., Santipantakis, G.M.: Distributed reasoning with eDDL
HQ+SHIQ. In:

Modular Ontologies: Proc. of the 6th International Workshop (WoMo 2012). (July
2012)

2. Santipantakis, G.M., Vouros, G.A.: The e-shiq contextual logic framework. In: AT.
(2012) 300–301

3. Santipantakis, G.M., Vouros, G.A.: Modularizing owl ontologies using eDDL
HQ+SHIQ.

In: ICTAI. (2012) 411–418
4. Vouros, G.A.: Decentralized semantic coordination via belief propagation. In: AA-

MAS. (2013) 1207–1208
5. Karagiannis, P., Vouros, G.A., Stergiou, K., Samaras, N.: Overlay networks for

task allocation and coordination in large-scale networks of cooperative agents. Au-
tonomous Agents and Multi-Agent Systems 24(1) (2012) 26–68

24

Modularization of Graph-Structured Ontology with
Semantic Similarity

Soudabeh Ghafourian, Amin Rezaeian, and Mahmoud Naghibzadeh

Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
so.ghafourian@stu-mail.um.ac.ir
amin.rezaeian@stu-mail.um.ac.ir

naghibzadeh@um.ac.ir

Abstract. Modularization is a key requirement to manage the size and com-
plexity of large ontologies by replacing each one by a set of smaller ontologies.
Two reasons for this requirement are that current ontology languages such as
OWL do not allow partial reuse of ontologies and ontologies are ever growing
to cover more knowledge in a specific domain. Many existing modularization
methods focus on either semantics or structural aspects of ontologies while both
of them are important. In this paper, we consider both semantic and structure by
combining these aspects using random walk algorithms to achieve a balance be-
tween them. We also define weights for different relations to take semantic into
account. The proposed method is designed using two algorithms: a greedy algo-
rithm and a heuristic one to reduce run-time and time-complexity. Our goal is to
produce reusable modules of high quality and support large ontologies. The re-
sults of the experiments show that our algorithms perform well in comparison
with existing golden standard.

Keywords: Ontology Modularization, Partitioning, Ontology Reuse, Semantic
Similarity

1 Introduction

Today, we use ontologies in the context of information processing, semantic web, and
many other contexts [1]. Large ontologies usually contain many terms. These large
ontologies are confronted with challenges in their life cycle such as processing and
maintenance [2].

Modularization is an approach to tackle challenges of large ontologies. An ontolo-
gy module is a small ontology that can have inter-module links with other small on-
tologies [1] and the union of the produced modules is semantically equal to the first
ontology [3].

Ontology modularization is used to achieve different goals such as scalability for
querying data and reasoning on ontologies, scalability for evolution and maintenance,
complexity management, understandability, context-awareness and personalization
and reusability. The goals of ontology modularization can affect the understandabili-
ty, the advantages, and disadvantages of the resulting modules [1].

25

Reusability is one of the important goals of modularization of ontologies that apply
when designing ontologies or when developing new applications based on ontologies.
Current ontology languages such as OWL do not allow importing only parts of an
ontology. This is a problem because if an ontology developer needs to reuse only
parts of an ontology, they must import the whole ontology, which takes more space
[4]. For example, we have home appliances ontology and an ontology developer who
is interested in small home appliances; the developer would like to import the part of
the ontology, which concerns only small home appliances. Therefore, he is not inter-
ested in loading the whole ontology but rather an extracted module of the ontology
[2].

In this paper, we present modularization algorithms that assign weights to the dif-
ferent relations that are used in the formalization of the ontology. The goal of our
modularization is reusability. The proposed modularization algorithms are performed
after the weighing phase of different relations is completed. Until now, some of these
relations such as inverseOf, unionOf, intersectionOf, disjointWith, have not been
considered. Since different kinds of the relations represent different semantic aspects
of the ontology, the weighing is determined according to the importance of these rela-
tions. The proposed algorithms consider both structural and semantic criteria.

Our goal is to produce modules in which concepts are both structurally and seman-
tically closely related; hence, the resulting subontologies can be reused in developing
new applications.

Modularization is done based on an agglomerative hierarchical algorithm on which
we perform some optimization to achieve a better result and use new scoring function.
We also propose another algorithm to reduce time-complexity.

The remainder of the paper is organized as follows: in the next section, we briefly
present some of the related work. In section 3, we define weights for different rela-
tions; describe our modularization algorithms and criteria for modularization. In
Section 4, we evaluate the proposed method and report our results. Finally, Section 5
concludes this paper with future work suggestions.

2 Related work

In this section, we review related work to ontology modularization. Recently, many
different approaches have been proposed for this purpose. There are several catego-
ries for modularization. We categorize modularization based on types of representa-
tion of ontology into two sets: graph-based approaches and logic-based approaches
[2-3]. Our work is based on graph approaches. In logic-based approaches, the mod-
ules are produced based on logical representation of ontologies. The work in [5] ex-
tracts modules from OWL-DL ontology based on user's semantic query. Graph-based
approaches use graph-theoretic algorithms to traverse the hierarchy of ontologies and
some heuristics to get relevant modules [6]. In general, the works [7-10] use agglo-
merative algorithms to modularize ontologies. An agglomerative approach is an itera-
tive bottom up one in which, in each iteration, two modules with the highest similarity
are merged to produce a new module. The work in [7] defines structural and linguistic

26

similarities. The first criterion is based on hierarchy of classes and the other one is
based on similarities between the local descriptions of the classes. They present parti-
tion algorithms that combine criteria as a scoring function. Their goal is ontology
matching. In matching ontologies, one tries to find the most similar ontology amongst
a set of ontologies to the one for which a match is requested. The approach performs
modularization of each two ontologies whose similarity is needed. In the modulariza-
tion, the hierarchical subclassOf relation and a linguistic similarity measure are used.

In [8], A weighted graph is constructed from rdfs:subClassOf and
rdfs:subPropertyOf relationships. owl:equivalentClass or owl:equivalentProperty are
identified in a preprocessing stage. They present a structure-oriented partitioning al-
gorithm and add RDF sentences to construct blocks from the modules. The goal of
this work is ontology matching. This work only considers limited relationships. Rela-
tions such as inverseOf, unionOf, intersectionOf, disjointWith, are not considered.

Paper [11] describes a structure-based ontology partitioning. They construct a di-
rected weighted graph based on structure similarities. Five types of criteria between
concepts, i.e., subclass, domain/range, definition, substring, and distance relation, are
defined. The weighted matrix is constructed according to the number of connections
between nodes; then they use Line Island Method [12] to partition and finally perform
optimization to improve the partitioning.

The work in [13] proposes an ontology partitioning method, which produces over-
lapped modules, i.e., final modules may have common concepts. They use semantic
similarity between concepts, so their generated graph is conceptual. This work con-
siders structure and semantic, but it does not distinguish between different relation-
ships.

In [9], different graph representations for ontologies are developed. There are three
basic representations and two different extensions of these representations. They use
several methods to convert ontologies into graphs, and apply community detection
algorithms to partition the graphs. Their experiments show that the algorithms work
much better when subject, object and predicate are represented as different nodes.
Paper [10] further develops the findings of paper [9], but the main difference is that
they define a weight function for different relations of the ontology as shown in Table
1; this is the first steps in a semantic approach. They apply three community detection
algorithms (a type of an agglomerative algorithm) on different graph representations.

The general topic of papers [7-8] is ontology matching based on structural aspects
of ontologies. However, we are interested in ontology modularization with the goal of
reusability of resulting modules. The works described in [11] and [13] mostly use
structure in order to make a graph representation of an ontology and use classic graph
clustering methods to modularize ontologies, while our method uses a hierarchical
clustering method. We use different graph clustering methods than [9-10], in addition
we consider more relations. These relations are mentioned in section 3.2.

27

3 Proposed Approach

In this section, we first describe how we represent ontologies. Then we present how
we construct the weighted matrix. Next, we normalize the weights of edges, and then
Neighborhood Random-Walk Distance is introduced [15]. Finally, the modularization
algorithms are described.

Our goal is to bring together into one module the most related concepts that have
highest semantic similarities and presumably describe one subdomain. This agrees
with the concept of domain specific ontologies [10]. If a good modularization algo-
rithm such as agglomerative algorithms and a suitable scoring function is used this
goal is reachable.

Agglomerative algorithms [16] are algorithms where the modules with the highest
similarity are iteratively merged. They are bottom-up, this means, initially every node
is considered as an independent module and in the end there is only one module.

3.1 Different Graph Representations of Ontology

Ontology web language1 (OWL) is a semantic web language. It is based on the Re-
source Description Framework2 (RDF). RDF represents information as triples of the
form (Subject, Predicate, and Object).RDF triples can be mapped to a graph where
subject and object are nodes and each predicate is a directed edge from a subject to an
object. It displays a simple mental model for RDF that is frequently used [14].

We also use other graph models; since the predicate of one triple is a subject or an
object in some other triples, we represent every subject, object, and predicate as sepa-
rate nodes [10].

There are various representations of ontologies [10].We represent each one of sub-
jects, objects and predicates as a separate node in which we have two types of edges:
one type of edge is from subject to predicate and another is from predicate to object.
The predicate node contains object or datatype properties. We also consider every
individual as a node.

3.2 Constructing Weighted Matrix

We define a weight function to give weighs to different relationships of the ontology.
This function assigns an integer number to existing relationships as shown in Table 1.
The main reason for weighing relationships is that different relationships have differ-
ent semantics and show different aspects of the ontology. We would like to distin-
guish between these aspects and their importance by their weights. This is not meant
that a relation with a higher weight is more valuable than a relation with a lower
weight, but sometimes it means that a relation with a higher weight has existential
precedence over a relation with a lower weight. Therefore, the weights can be
changed for different applications and/or in different contexts. For example, if sub-

1 OWL - http://www.w3.org/OWL
2 RDF - http://www.w3.org/RDF

28

ClassOf relation exists because it is part of ontology language, then domain and range
relations are meaningful. Therefore, we assign weight 10 to subClassOf and weight 5
(i.e., one half the weight) to domain/range relation. In some other situations, the
weights are assigned based on the wideness or narrowness of their meanings. Exam-
ples are given below.

List of Different Relationships and Weights. The weights represented in Table 1 are
based on previous research and also our assessments of relations which are not stu-
died by previous research. The base of weights is what is mentioned in [10]. For new
relations, the weight assignment logic is explained in the previous subsection.

The equivalent relation denotes that the classes have the same meaning, so the
classes that have equivalent relation are put into one module. Considering the
meaning of the equivalent relation, they are given the highest weight. Furthermore,
the subclass relations give some important information about classes; hence, these
relationships have high semantic contribution to ontology modularization. As
mentioned before, the weight of this relationship is higher than that of domain/range
relationship but not as much as the equivalent relationship has [10].

Table 1. List of relationships and weights

Property Weight Property Weight
equivalentClass 20 [10] unionOf 10

subClassOf 10 [10] intersectionOf 10
subPropertyOf 10 [10] disjointWith 0-10

domain 5 [10] complementOf 10
range 5 [10] inverseOf 20

comment 0.2 [10] FunctionalProperty 5
seeAlso 0.2 [10] InverseFunctionalProperty 5

isDefinedBy 0.2 [10] Other relations 1
label 0.2 [10]

The union and intersection relations are the same as subclass relations because if

for example class A is the union of C, B and D then each class C, B and D is a sub-
ClassOf A.

If disjoint relation exists between highest-level concepts, the weight is considered
to be zero because they are really disjoint, however if it occurs in lowest-level con-
cepts, the weight is considered 10. If it occurs somewhere in between, the weight is
assigned accordingly.

When two concepts have a complement relationship, it means they are strongly
connected. We consider that at first, they have a subclass relationship (their super
class is the universal set) and then they have a complement relationship.

We put the inverseOf relations in the modules of the property that is related to, so
its weight should be high.

For object property, when the properties have an inverse functional attribute, it
means this property implies unique value and on the other hand, domain and range

29

edges represent subdomains of ontologies. We add the restrictions such as cardinality
after modularization because they contain literal values.

Unifying the Weight of Edges. If there is more than one relationship between two
nodes, we add up the weights of all the existing relationships between the nodes.
Thus, all weights are taken into consideration in our modularization algorithms.

3.3 Normalization

In this phase, the weights of the edges in the graph are normalized to be between zero
and one. Thus, the weight of the edge outgoing from a node v is divided by the sum of
the weights of outgoing edges from node v. This is needed for input matrix of random
walk in which every element must be between zero and one.

 ௜ܹ,௩
௡௢௥௠௔௟ = ୛೔,ೡ

∑ (ܸ)ݏ݁݃݀݁_ݐݑ݋∋݆ݒ,݆ܹ
 (1)

Where ௜ܹ,௩ is the weight of the edge outgoing from a node v that is normalizing
and the denominator is the sum of the weights of outgoing edges from node v.

3.4 Neighborhood RandomWalk Distance

We use the neighborhood random walk method [15] to measure vertex closeness. A
random walk is a mathematical representation of the path one may navigate through
multiple random steps.

 ݀൫ݒ௜ , ௝൯ݒ = ∑ ܲ(ܶ)ܿ(1 − ܿ)௅௘௡௚௧௛(்)
்:௩೔→௩ೕ (2)

Where ܲ is transition probability matrix, ݐ݃݊݁ܮℎ(ܶ) is length of random walk
where ݐ݃݊݁ܮℎ(ܶ) ≤ ݈, l is the length that a random walk can go, ܿ is restart probabili-
ty where ܿ ∈ (0,1), ݀൫ݒ௜ , .௝ݒ ௜ toݒ ௝൯ is the neighborhood random walk distance fromݒ
It measures vertex closeness and ܶ is a path from ݒ௜ to ݒ௝ whose length is ݐ݃݊݁ܮℎ(ܶ)
with transition probability ܲ(ܶ).

We perform matrix multiplication on a transition probability matrix of the ontology
graph to use the neighborhood random walk model [15].

 ܴ௟ = ∑ ܿ(1 − ܿ)ఊܲఊ௟
ఊୀ଴ (3)

In this equation, ܴ is the neighborhood random walk distance matrix. Intuitively
every element at row i, column j in R, captures the probability of navigating from
node i to j with at most l steps in graph. l is the length that a random walk can go and
it comes from the previous formula, and ߛ is the random walk step. The neighborhood
random walk distance matrix is constructed in the following steps:

1. Assigning weights to different relationships
2. Normalization of weight of step 1
3. Constructing transition probability and neighborhood random walk distance matrix

30

3.5 Modularization Algorithm

The proposed modularization algorithm in this section is an agglomerative algorithm.
The main difference between our algorithm and other similar algorithms in [7-8] and
[9-10] is that we use a new scoring function that calculates both intra-and inter-
connectivity. We apply scoring function for every concept node in our algorithm in
order to improve the efficiency. It means that the distance between the node and every
other node is measured. Another difference is that we consider more relations than
other approaches. We use an agglomerative algorithm, such that in each iteration, we
select two modules that have the highest positive impact on the score of modulariza-
tion. Then those modules are merged. From the scoring function perspective, the
scores of other modules may not change. This way the required computation for com-
puting modularization score is not high. The process is shown in Algorithm 1.

The advantages of agglomerative algorithms are that we don’t have to know the
size and the number of modules and the result of these algorithms depend on the cho-
sen similarity criterion [16].The input to our algorithm is the neighborhood random
walk distance matrix.
Our criterion function is the silhouette coefficient [17] (݅)ݏ where −1 ≤ (݅)ݏ ≤ 1. If
 is close to one it means that the node will be appropriately grouped. The average (݅)ݏ
 of a module is a measure that shows how appropriately the nodes have been (݅)ݏ
grouped into modules.

(݅)ݏ = ௔(௜)ି௕(௜)
௠௔௫{௔(௜),௕(௜)}

 (4)

Where ݅ is node, ܽ(݅) is the average similarity of ݅ to all other nodes within the
same module, ܾ(݅) is the highest average similarity of ݅ to nodes of other modules,
and ݏ(݅) should be computed for each node ݅. For the module ܿ, ݏ௖ which is the aver-
age of all s(i) for all nodes i in module c, is defined as follows:

௖ݏ = ∑ ௦(௜)೔∈೎
௡೎

 (5)

In this equation ݊௖ is the number of nodes in module c. To score the modulariza-
tion ܥ, we define the scoring function as follows:

(ܥ)݁ݎ݋ܿݏ = (6) (௖ݏ)௖∈஼݁݃ܽݎ݁ݒܽ

Equation (6) is used to compute efficiency of the modularization. It comes from the
average of scores of each module. Each module’s score is computed by the average of
scores of its nodes. As the score of every node is calculated using both intra- and in-
ter-module connections, the resulting efficiency of modularization is effected by both
intra- and inter-module connections of all nodes in graph.

Algorithm 1. Modularization (adjacencyMatrix)
 //C represents whole modularization
 C = put every node in a separate module
 for K=N down to 2 // K shows number of modules

31

// for all the pairs of nodes that could be merged
 maxS= -2
 for i=1 to K-1
 for j=i+1 to K
 c=Union(i,j);//merge modules i and j into module C
 C=C⋃{c}\{i,j};
 S=Score(C); //according to equation (6)
 //if this new score is better, save it
 if S>maxS
 maxS = S;
 modularization=C;
 end if
 end for
 end for
 bestModularization=modularization;
end for

Heuristic Algorithm. We propose the heuristic algorithm to support large ontologies
and reduce time-complexity. It is shown in Algorithm 2. The input of this algorithm is
incidence matrix that is constructed from adjacency matrix R that is calculated using
equation (3). Each row of incidence matrix represents an edge, which consists of first
node, second node and weight. It is useful for large data sets. This matrix is ordered
descending by weight column.

The time-complexity of this method is ܱ(݊ଶ) where n is the number of concepts in
the ontology, whereas the complexity of Algorithm 1 is O(n3.complexityscoring).

Algorithm 2. Modularization (adjacencyMatrix)
//C represents whole modularization
 C = put every node in a separate module
 for i=1 to N // N shows size of Adjacency Matrix
 for j=1 to N

incidenceMatrix =constructIncidenceMatrix (adjacen-
cyMatrix);

 end for
 end for
incidenceMatrix = Sort(incidenceMatrix);

 for i=1 to K // K shows length of adjacency matrix
 if Numberofmodules ==1
 break;
 end if
 //module(i,1) is the module for start node of edge(i)
 //module(i,2) is the module for end node of edge(i)
 c=Union(module(i,1),module(i,2));

//if size of merged modules are more than ߳ which is
//number of concepts/3, don’t combine modules.

32

 if |c|>߳
 continue;
 else
 C=C⋃{c}\{module(i,1),module(i,2)};
 end if

//Checks the score of modularization if it is fixed
//do not merged and terminate the algorithm.

 sc=Score(C);
 if (sc_old=sc)
 break;
 end if
 sc_old=sc;
 end for

4 Experimental Results

We have implemented the proposed modularization algorithms in Matlab and use
Java to process the ontologies. We use F-measure [10] to evaluate our methods. F-
measure is a value between zero and one and higher values show better performance.
This metric compares produced modules to reference modules that are already availa-
ble for tested ontologies. F-measure is computed for pairs of modules in which one
module is selected from reference modularization and another is one from the gener-
ated modules. Finally, the average F-measures of all modules is computed as the F-
measure of whole modularization.

ܨ − ݁ݎݑݏܽ݁݉ = ଶ∗௣௥௘௖௜௦௜௢௡∗௥௘௖௔௟௟
௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟

 (7)

Where precision is the number of common concepts between two modules, divide
by number of concepts in generated module. On the other hand, recall is calculated by
dividing number of common concepts by number of reference concepts.

4.1 Dataset

We use FOAF3, AAIR4, BIO5 and SWCO6 ontologies as introduced in [10] and
compared our results to concept grouping of these ontologies that are provided in their
websites, and in [10]. Table 2 shows the details of these ontologies. The following
provides a brief description of them:

 Friend of a Friend (FOAF) Ontology: FOAF is an ontology that describe persons,
their activities and other personal information.

3 http://xmlns.com/foaf/spec/20100101.html
4 http://xmlns.notu.be/aair
5 http://vocab.org/bio/0.1/.html
6 http://data.semanticweb.org/ns/swc/ontology

33

 Biographical Information Ontology (BIO): BIO is an ontology to represent bio-
graphical information about people, both living and dead.

 Semantic Web Conference Ontology (SWCO): The SWCO defines concepts about
academic conferences.

 Atom Activity Streams Vocabulary ontology (AAIR): This ontology is a vocabu-
lary for describing social networking sites activities.

Table 2. Details of ontologies

Ontology Number of modules
as stated in the

reference

Number of classes Number of property

FOAF 5 13 61
BIO 5 42 33
SWCO 5 29 16
AAIR 4 41 26

In [10], they apply three algorithms: Fast Greedy Community (FGC), Walk Com-
munity (WTC) and Spin Glass Community (SGC). Because FGC and WTC are ag-
glomerative algorithms, we compare our algorithms with them. As there are several
ways introduced in [10] to represent an ontology as a graph, we choose a type of their
representation of ontology in that every subject, object and predicate is represented as
a separate node.

Our results are shown in Table 3. Column 1 and 2 show F-measure of our algo-
rithms and column 4 and 5 show [10] algorithms the F-measure. The F-measure result
is multiplied by 100 as it is done in [10].

Table 3. F-measure comparison of different Algorithms on different ontologies

Ontology Alg 1 Alg 2 FGC [10] WTC [10]

FOAF 40 30 32 34
BIO 43 33 83 79
SWCO 47 38 28 31
AAIR 50 41 51 51

Analysis of Result. The distribution of classes and properties within their concept
grouping affect F-measure. For example for the FOAF ontology, one group just con-
tains properties but we consider both classes and properties to modularize. In concept
grouping of AAIR and SWCO, the distribution between classes and property is ba-
lanced and subclass relation is defined as the main concept. The groups of the BIO
ontology contain one group for classes and four groups for properties, so our score is
low. When the concept grouping contains the groups that have classes and property,

34

our score is good because the main objective of ontology modularization is that the
modules describe subdomains.

A Simple Case Study. We also use a small ontology given in [8], which consists of
six classes, and one property. In [8], they produce three modules, i.e. modules {Refer-
ence, Inproceedings, Book, Monograph}, {Author, Person}, and {hasAuthor}. How-
ever in our work, we produce two modules {Reference, Inproceedings, Book, Mono-
graph}, and {has Author, Author, Person}. The reason for these modularizations is
that while the work in [8] only considers subClassOf relations, we have considered
domain/range and subClassOf relations. The modularization presented by [8] is as-
sumed as reference, and the calculation of F-measure is shown in Table 4. F-measures
comparing modules 1 and 2 are consequently 1.0 and 0.5, which are computed using
equation (7). As we have only two modules, the F-measure for third module becomes
zero. The average of these three gives 0.5 as the F-measure for whole modularization.

Table 4. Experimental result on sample dataset

 Module1 Module2 Module3

Precision 1.0 0.3 0
Recall 1 1 0
F-measure 1.0 0.5 0

5 Conclusion

We have proposed modularization algorithms based on semantic and structure of
ontology. Semantic is considered based on assigning weight to different relationships.
Furthermore, we have considered more relationships than other approaches that con-
sider only hierarchical relation of classes. Considering more relationships from an
ontology leads to making more edges in graph representation of that ontology. Thus,
one can make a better decision on whether two nodes are similar.

We used neighborhood random walk distance matrix to combine semantic and
structural aspects of an ontology. Each element of this matrix is calculated consider-
ing weights of almost all elements of the transition probability matrix, thus weights
used in proposed method are more precise than methods, which only use weight ma-
trix.

We have introduced a new scoring function to merge modules. The objectives of
this function are to maximize the intra-module similarity and to minimize inter-
module similarity. The scoring function shows how appropriately nodes have been
grouped in their modules according to its objectives.

As a result, we have produced meaningful modules as we consider more relations
than similar methods, and process these relations such that each edge weight has an
impact on every module selection.

35

In future work, we plan to evaluate our experiments with other evaluation methods
and other datasets to determine the efficiency of our algorithms. Furthermore, we
would like to further investigate the weight of edges to improve our approach.

References

1. Parent, C., Spaccapietra, S.: An Overview of Modularity. In: Stuckenschmidt, H., Parent, C.,
Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 5-23. Springer, Heidel-
berg(2009)

2. Özacar, T., Öztürk, O., Ünalır, M.O.: ANEMONE: An Environment for Modular Ontology
Development. Data & Knowledge Engineering. 70, 504-526 (2011)

3. Doran, P., Tamma, V., Payne, T.R., Palmisano, I.: An Entropy Inspired Measure for
Evaluating Ontology Modularization. In: 5thInternationalConference on Knowledge Capture
(KCAP'09), pp. 73-80. ACM, New York (2009)

4. Pathak, J., Johnson, T., Chute, C.: Survey of Modular Ontology Techniques and their
Applications in the Biomedical Domain. Integrated Computer-Aided Engineering. 16,
225-242 (2009)

5. Zhangl, L., Liul, K., Qinl, X., Tangl, SH.: Extracting Module from OWL-DL Ontology. In:
2011International Conference on System Science, pp. 176-179.IEEE Press (2011)

6. Abadi, M.J.S, Zamanifar, K.: Producing Complete Modules in Ontology Partitioning. 2011
International Conference on Semantic Technology and Information Retrieval, pp. 137-143.
IEEE Press (2011)

7. Hu, W., Zhao, Y., Qu, Y.: Partition-Based Block Matching of Large Class Hierarchies. In:
Mizoguchi, R., Shi, Zh., Giunchiglia, F. (eds.) The Semantic Web – ASWC 2006. LNCS,
vol. 4185, pp. 72–83. Springer, Heidelberg (2006)

8. Hu, W., Qu, Y., Cheng, G.: Matching Large Ontologies: A divide-and-conquer approach.
Data & Knowledge Engineering, 67, pp. 140–160 (2008)

9. Coskun, G., Rothe, M., Teymourian, K., Paschke, A.: Applying Community Detection Al-
gorithms on Ontologies for Identifying Concept Groups. In: Proceeding of the 5th Interna-
tional Workshop on Modular Ontologies (WoMO 2011), pp. 12-24. IOS Press (2011)

10. Coskun, G., Rothe, M., Paschke, A.: Ontology Content "At a Glance". In: 7th International
Conference on Formal Ontology in Information Systems (FOIS 2012), pp. 147-159. IOS
Press (2012)

11. Stuckenschmidt, H., Schlicht, A.: Structure-Based Partitioning of Large Ontologies. In:
Stuckenschmidt, H., Parent, Ch., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol.
5445, pp. 187-210. Springer, Heidelberg (2009)

12. Batagelj, V.: Analysis of large networks - islands. In: Dagstuhl seminar 03361: Algorithmic
Aspects of Large and Complex Networks (2003)

13. Etminani, K., Rezaeian-Delui, A., Naghibzadeh, M.: Overlapped ontology partitioning
based on semantic similarity measures. In: 2010 5th International Symposium on Telecom-
munications (IST), pp. 1013–1018. IEEE (2010)

14. Resource Description Framework (RDF), http://www.w3.org/RDF/
15. Cheng, H., Zhou, Y., Xu, Yu, J.: Clustering Large Attributed Graphs: A Balance between

Structural and Attribute Similarities. ACM Transactions on Knowledge Discovery from Da-
ta. 5, 1-33 (2011)

16. Fortunato, S.: Community detection in graphs. Physics Reports. 486, 75-174 (2010)
17. Rousseeuw, P.: Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster

Analysis. Journal of Computational and Applied Mathematics. 20, 53–65 (1987)

36

Implementation and Evaluation of Forgetting In
ALC-Ontologies

Patrick Koopmann and Renate A. Schmidt

The University of Manchester, UK
{koopmanp, schmidt}@cs.man.ac.uk

Abstract. We implement and evaluate a recently introduced method to
compute uniform interpolants for ontologies specified in the description
logic ALC. The aim of uniform interpolation is to reformulate an ontol-
ogy such that it only uses a specified set of symbols, while preserving
consequences that involve these symbols. Uniform interpolation is use-
ful to applications in ontology engineering and modular ontologies. It is
known that uniform interpolants of ontologies in ALC cannot always be
presented in a finite way, and that their size can in the worst case be
triple exponential in the size of the original ontology. These properties
leave the question on how practical computing uniform interpolants is.
The aim of this paper is to approach this question by implementing our
recently presented method that always computes a finite representation
of the uniform interpolant – either by using fixpoint logics or by extend-
ing the signature – and by undertaking an experimental evaluation of
the method on a larger set of real-life ontologies.

1 Introduction

Ontologies represent information about concepts and relations (roles) using de-
scription logics, fragments of first-order logic, to allow reasoning systems to de-
rive implicit information automatically. The signature of an ontology is the set
of symbols used by the ontology. In forgetting, the aim is to remove concept
or role symbols from an ontology in such a way that all logical consequences
over the remaining symbols are preserved. The result of forgetting is a uniform
interpolant, the original ontology restricted to a smaller signature, such that all
consequences over that signature are preserved.

Uniform interpolation and forgetting have several potential applications that
are interesting in the context of ontology engineering and modular ontologies.
For example, an ontology to be published contains confidential parts that should
not be accessible by the public. A solution to this problem is predicate hiding [4],
which can be performed by forgetting the confidential concepts from the ontol-
ogy. A related application is ontology obfuscation [7]. Here again, the aim is to
share an ontology for re-use by other parties without giving away all of its infor-
mation. Obfuscation is a technique known in the context of software engineering
which transforms a program into a functionally equivalent progam that is dif-
ficult by human users to read and understand, to prevent reverse engineering.

37

Often, ontologies contain terms whose main function is to give structure and
make the ontology accessible. By forgetting these terms, one can create an on-
tology whose structure is destroyed and which is not accessible by human users,
while it can still be used for deriving logical entailments over the remaining
concepts.

Other applications aim at analysing ontologies or ontology changes. One such
application is exhibiting hidden relations. Often relations between different con-
cepts are not stated explicitly but are only deducible with the help of reasoners.
To get a better understanding how certain concepts relate to each other, one can
compute the uniform interpolant over a signature of interest. Uniform interpo-
lation can also be used to compute the logical difference between two versions
of an ontology. Extending or modifying an ontology can lead to unintended re-
sults. Checking whether consequences over a specified signature are preserved
in a new version can be performed by computing its uniform interpolant and
testing whether it is entailed by the original ontology.

Despite these applications, there has not been much work yet to develop
practical algorithms for uniform interpolation on real-life ontologies in expressive
description logics. A reason for this might be that the known theoretical proper-
ties of uniform interpolation cast doubt on whether such practical methods even
exist: it is known that for ontologies expressed in ALC, uniform interpolants
are not always expressible in a finite way, if ALC is also used to represent the
uniform interpolant. Also, in the worst case, the size of the uniform interpolant
can be triple exponential in the size of the original ontology [8]. These prop-
erties already hold for general ontologies expressed in EL [10,9]. The method
presented in [7] is a first approach towards practical uniform interpolation for
ALC-ontologies, but it only ensures termination if the uniform interpolant is
approximated by a given bound.

In [6], we present a method for uniform interpolation on ALC-ontologies that
always computes finite representations of uniform interpolants with the help of
fixpoint operators. The target language ALCµ, which is ALC enriched with fix-
point operators, has the same complexity properties on the common reasoning
tasks as ALC [2], but is currently not supported by most description logic reason-
ers. Fixpoint operators are also not supported by OWL, the standard language
for representing web ontologies. The method presented in [6] gives a solution
to this by simulating fixpoints using ‘helper concept symbols’ in the forgetting
result. This way, the uniform interpolant is approximated signature-wise us-
ing a finite representation, and still preserves all consequences over the desired
signature. If helper concept symbols are used in the result, the approximated
interpolant is not entailed by the original ontology anymore, which limits the
application of our method for computing the logical difference between ontolo-
gies. Our experimental results suggest however that this only happens for specific
combinations of ontologies and signatures. For the other mentioned applications,
these helper-concepts do not pose a major problem.

In order to approach the question as to whether the method is also practical
for the mentioned applications, we present an experimental evaluation of the

38

method on real life ontologies. The results suggests that, while for some ontolo-
gies uniform interpolants are still hard to compute, there are a lot real-world
cases for which the method can be used.

2 Preliminaries

Let Nc, Nr be two disjoint sets of concept symbols and role symbols. Concepts
in ALC are of the following form:

⊥ | > | A | ¬C | C tD | C uD | ∃r.C | ∀r.C,

where A ∈ Nc, r ∈ Nr and C and D are arbitrary concepts. >, C uD and ∀r.C
are defined as abbreviations: > stands for ¬⊥, C uD for ¬(¬C t¬D) and ∀r.C
for ¬∃r.¬C.

A TBox is a set of axioms of the forms C v D and C ≡ D, where C and D
are concepts. C ≡ D is a short-hand for the two axioms C v D and D v C.
Since we are only dealing with the TBox part of an ontology, we will use the
terms ‘ontology’ and ‘TBox’ interchangeably.

We write C[A] to denote a concept that contains a concept symbol A, and
denote the result of replacing A by a different expression E by C[E]. For a
TBox T , T [A7→C] denotes the result of replacing every A in T by C.

The semantics of ALC is defined as follows. An interpretation is a pair
I = 〈∆I , ·I〉, where the domain ∆I is a nonempty set and the interpretation
function ·I assigns to each concept symbol A ∈ Nc a subset of ∆I and to each
role symbol r ∈ Nr a subset of ∆I×∆I . The interpretation function is extended
to concepts as follows:

⊥I := ∅ (¬C)I := ∆I \ CI (C tD)I := CI ∪DI

(∃r.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}.

C v D is true in an interpretation I iff CI ⊆ DI . I is model of a TBox T if
all axioms in T are true in I. A TBox T is satisfiable if there exists a model
for T , otherwise it is unsatisfiable. T |= C v D holds iff in every model of T we
have CI ⊆ DI .

In order to define ALCµ, we extend the language with a set Nv of con-
cept variables. ALCµ extends ALC with concepts of the form µX.C and νX.C,
where X ∈ Nv, and C is a concept in which X occurs as a concept symbol only
positively (under an even number of negations). µX.C is the least fixpoint of C
on X, νX.C the greatest fixpoint.

A concept variable X is bound if it occurs in the scope C of a fixpoint
expression µX.C or νX.C. Otherwise it is free. A concept is closed if it does not
contain any free variables. Axioms in ALCµ are of the form C v D and C ≡ D,
where C and D are closed concepts.

Following [3], we define the semantics of fixpoint expressions. Let V be an
assignment function that maps concept variables to subsets of ∆I . V[X 7→W]
denotes V modified by setting V(X) = W . CI,V is the interpretation of C

39

taking into account this assignment, and when V is defined for all variables
in C, CI,V = CI . The semantics of fixpoint concepts is defined as follows:

(µX.C)I,V :=
⋂
{W ⊆ ∆I | CI,V[X 7→W] ⊆W}

(νX.C)I,V :=
⋃
{W ⊆ ∆I |W ⊆ CI,V[X 7→W]}.

A signature Σ is a subset of Ns ∪ Nr. sig(E) denotes the concept and role
symbols occurring in E, where E ranges over concept descriptions, axioms and
TBoxes. Given two TBoxes T1, T2 and a signature Σ, we say T1 and T2 are
Σ-inseparable, in symbols T1 ≡Σ T2, iff for every concept inclusion α with
sig(α) ⊆ Σ, T1 |= α implies T2 |= α and vice versa. Given a TBox T and a
signature Σ, T ′ is a uniform interpolant of T if sig(T ′) ⊆ Σ and T ≡Σ T ′(Note
that in contrast to conservative extensions and deductive modules no syntactical
constraints are given[12]). From this definition follows that uniform interpolants
for a given TBox and signature are unique modulo logical equivalence. For a given
TBox and signature, we will therefore speak of the uniform interpolant and de-
note it by T Σ . Given a TBox T and a concept symbol A, the result of forgetting
A in T , denoted by T −A, is the uniform interpolant T Σ , where Σ = sig(T)\{A}.
Since T −A entails exactly the same consequences as T that are not using A, it
is easy to verify that (T −A)−B ≡ (T −B)−A. In other words forgetting a set of
concept symbols one after the other always yields an equivalent TBox, regardless
of the order in which symbols are processed.

3 The Method

In the following we give a brief overview of our method for computing uniform
interpolants. For a more detailed description see [6]. We reduce computing of
uniform interpolants to the problem of forgetting single concept symbols. In
order to compute the uniform interpolant for a generic signature Σ, we forget
the symbols which are not in Σ one after the other.

Given a TBox T , the clausal form of T , denoted by clauses(T), is a TBox T ′
with T ≡sig(T) T ′, such that every axiom is of the form > v L0 t ...tLn, where
every Li is of the form A,¬A, ∃r.D or ∀r.D, with A ∈ Nc, r ∈ Nr and D ∈ ND.
ND ⊆ Nc \ sig(T) is a set of designated concept symbols called definer symbols.
Any TBox can be transformed into its clausal form using standard structural
transformation and conjunctive normal form transformation techniques. We will
refer to axioms of a clausal form TBox as clauses and just write L0 t ... t Ln
omitting the leading > v. We also assume that clauses are represented as sets
(that is, no disjunct occurs twice in a clause and the order of the disjuncts does
not matter).

Our method to compute T −A consists of five phases:

1. Set N=clauses(T).
2. Saturate N using the rules in Figure 1.
3. Filter out unnecessary clauses and group clauses of the form ¬DtCi, where
D ∈ ND, into concept inclusions D v d

Ci.

40

Resolution:
C1 tB C2 t ¬B

C1 t C2

where B is the symbol A we want to forget or a definer symbol and provided
C1 t C2 does not contain more than one negative definer literal.

Role Propagation:
C1 t ∀r.D1 C2 t Qr.D2

C1 t C2 t Qr.D3

where Q ∈ {∃, ∀} and D3 is a (possibly new) definer symbol representing D1 uD2

and provided C1 t C2 does not contain more than one negative definer literal.

Fig. 1. Rules for forgetting concept symbol A

Non-cyclic definer elimination:

T ∪ {D v C}
T [D 7→C]

provided D 6∈ sig(C)

Definer purification:

T
T [D 7→>]

provided D occurs only positively in T

Cyclic definer elimination:

T ∪ {D v C[D]}
T [D 7→νX.C[X]]

provided D ∈ sig(C[D])

Fig. 2. Rules for eliminating definer concept symbols

4. Apply the rules in Figure 2 exhaustively to eliminate introduced symbols.
5. Apply simplifications and represent clauses as proper concept inclusions.

The rules in Figure 1 derive all consequences based on the selected concept
symbol A we want to eliminate, rendering clauses containing A superfluous for
the uniform interpolant. The role propagation rule is special since it may in-
volve the introduction of new definer symbols. Because we want to preserve the
clausal form in Phase 2, in order to represent a concept conjunction D1uD2, we
introduce a new definer symbol D3 and add two clauses ¬D3tD1 and ¬D3tD2

to the current clause set. In order to restrict the introduction of new definer
symbols, we keep track of each introduced definer symbol and reuse them as
much as possible. By doing this wisely it is possible to restrict the number of
introduced definer symbols to maximally 2|ND|.

It can be shown that if a set of clauses is saturated using the rules in Figure 1,
all clauses containing the selected concept symbol A and all clauses containing

41

positive definer symbols that do not occur under a role restriction can be re-
moved, and the resulting set is still Σ-inseparable with the original TBox [6].
The new definer symbols that are introduced in Phase 1 and 2 are eliminated in
Phase 4 using the rules in Figure 2. These rules are motivated by Ackermann’s
Lemma and its generalised form, first published in [1] and [11], respectively.

If the desired target language is ALC, the cyclic definer elimination rule
cannot be applied, since it introduces fixpoint operators. In this case the cyclic
definers remain in the result, which means the resulting TBox is not a uniform
interpolant. It does, however, not contain A and preserves all consequences not
containing A. The remaining cyclic definers can be seen as ‘helper concept sym-
bols’ that help keep the result finite without using fixpoint operators. The result
of applying only non-cyclic definer elimination and definer purification can be
viewed as signature-wise approximation of the uniform interpolant. It should be
noted though that the existence of cyclic definers in the returned result does not
necessarily imply that there is no finite representation of the uniform interpolant
in ALC.

In [6] is it proven that our method always terminates and computes the
uniform interpolant in ALCµ, or a signature-wise approximation.

4 Implementation

We implemented our forgetting method in Scala1 using the OWL API.2 Since
fixpoint operators are not supported by most standards and reasoners, for prac-
tical applications it is of interest to compute only results that are expressible
in ALC. For this reason, our method does not eliminate definer symbols where
this would lead to a fixpoint operator in the result. In order to make the method
practical, we implemented several optimisations.

Restricting the Role Propagation Rule. Though in its presented form
the calculus works correctly, in order to make the method practical, it is necces-
sary to apply further restrictions on the role propagation rule. The main role of
the role propagation rule is to derive new clauses between which resolution on
the symbol we want to forget is applicable. In order to avoid the unnecessary
introduction of new clauses and definer symbols, we check beforehand whether
applying role propagation contributes to any further resolution rule applications.
If not, we omit its application.

Redundancy Elimination. From the proofs in [6] one can see that stan-
dard redundancy elimination techniques like tautology and subsumption deletion
are compatible with our method. We also take into account subsumptions be-
tween introduced definer symbols: Note that ¬D1 tD2 implies D1 v D2. With
every newly introduced definer symbol we build up a subsumption hierarchy
for definer symbols, which enables us to check for subsumption between literals
of the forms ∃r.D1 and ∀r.D2. On the basis of this extended subsumption no-
tion, we implement eager subsumption deletion and condensation as in classical

1 http://www.scala-lang.org
2 http://owlapi.sourceforge.net

42

resolution-based theorem provers. The correctness of these simplifications can
be proven by adaptions of the proofs for the original method in [6].

Structural Transformation. Since the resolution rule and the role prop-
agation rule only apply to a restricted subset of literals in the clause set, the
number of clauses can be significantly reduced by using further structural trans-
formations. For a clause C, let CA denote the literals on which our rules apply,

and CA the remaining literals. We replace each set of clauses {C0, ..., Cn}, such
that CAi = CAj for all i, j < n, by a single clause X t CA0 , where X is a new

concept symbol, and store the information that X ≡ CA0 u ... u CAn . As soon as
a clause is added to the result set, we undo this transformation and apply eager
subsumption deletion on the current result set. This optimisation is influenced
by the uniform interpolation method presented in [7].

Simplifications. The simplifications performed in Phase 5 are the follow-
ing. Following an arbitrary ordering defined on concept symbols, we select the
maximal literal of the form ¬A, if existent, and transform the clause into an
axiom of the form A v C. We then group all concept inclusion axioms that
have the same concept A on the right hand side into a single concept inclusion.
We apply several replacement rules to remove tautological or unsatisfiable sub-
expressions. We also detect tautological fixpoint-expressions. For any fixpoint
expression νX.C[X], if C[>] is a tautology, > is the greatest fixpoint of C[X],
and we can replace νX.C[X] by>. Tautological and unsatisfiable sub-expressions
are detected using sound but incomplete syntactic criteria. Since the number of
introduced definer symbols can be exponential in the number of role restrictions
of the input ontology, it is also wise to minimise their occurrences. This is accom-
plished in Phase 5 by transforming disjunctions of the form ∃r.C0 t ... t ∃r.Cn
into single existential role restrictions ∃r.(C0 t ... t Cn) and conjunctions of the
form ∀r.C0 u ... u ∀r.Cn into single universal role restrictions ∀r.(C0 u ... u Cn).

Module extraction. To restrict the number of symbols we have to forget,
we first extract the syntactic locality based >⊥∗-module [12] for the selected
signature. This module is a subset of the original ontology that preserves all
consequences over the signature, but may still contain thousands of additional
symbols.

Purification. Before applying our method, we compute the negation nor-
mal form TNNF of the input ontology T . If a concept symbol A occurs only
positively in TNNF , then T −A = T [A 7→>]. If A occurs only negatively in TNNF ,
then T −A = T [A7→⊥]. We call this transformation purification of A. The sound-
ness of purification follows from the fact that in these cases the resolution rule
would never be applied, what effectively means we only remove clauses con-
taining A. Purification of A leads to an equivalent result as removing clauses
containing A, but can be performed much faster. When computing uniform
interpolants for our experimental evaluation, we observed that in some cases
already thousands of concept symbols could be eliminated using purification.

43

5 Experimental Evaluation

In order to evaluate how our implementation behaves on real-life ontologies,
we selected a set of ontologies from the NCBO BioPortal ontology repository.3

The ontologies of this corpus are known to be diverse in complexity, size and
structure [5]. From this corpus we selected all ontologies for which it is pos-
sible to download uncorrupted files of ontologies that could be parsed using
the OWL API. We further noticed that on some ontologies, extracting >⊥∗-
modules using the OWL API caused a runtime exception. Ontologies for which
this was the case were excluded from our corpus as well.

Since our method is designed for ALC-ontologies, we restricted the ontolo-
gies to their ALC-fragments in the following way. Axioms that can be rewritten
into ALC axioms in a unified way (equivalent concepts, disjoint concepts, dis-
joint union axioms, property range axioms and property domain axioms) were
rewritten, the remaining axioms that are not in ALC were removed from the
TBox. We further removed all ontologies where the ALC-fragment of the TBox
contained less than 5 concept symbols or consisted only of axioms of the form
A v B and A ≡ B, where A and B are concept symbols. This way, we extracted
a corpus of 207 ontologies for our experiments.

In these ontologies, on average 5.75% of the TBox axioms had to be re-
moved in order to generate an ALC-TBox, while 54 ontologies were completely
expressible in ALC.

The ontologies of the resulting corpus contain between 2 and 187,514 con-
cept symbols (on average 5,728). The average number of axioms per ontology
is 21,821.20 and the average axiom size is 4.61. The size of an axiom is defined
recursively as follows: size(A) = 1, where A is a concept symbol, size(¬C) =
size(C) + 1, size(∃r.C) = size(∀r.C) = size(C) + 2, size(C tD) = size(C uD) =
size(C) + size(D) + 1, and size(C v D) = size(C ≡ D) = size(C) + size(D) + 1.

The experiments were run on an Intel Core i5-2400 CPU with four cores
running at 3.10 GHz and 8 GB of RAM. Since our implementation does not
make use of multi-threading, we ran several experiments in parallel in order to
make full use of the multiple processors.

Depending on the application, it might either be interesting to forget a small
set of concept symbols from the ontology (predicate hiding, ontology obfusca-
tion, logical difference), or to restrict the ontology to a small signature (exhibit
hidden relations, sharing restricted parts of an ontology). We first considered
how our method performed on forgetting small sets of concept symbols. For this
we selected random subsets of 5, 10, 50 and 150 concept symbols, 10 subsets in
each case, from the signature of each ontology, for which we applied our method.
Since the average number of concept symbols per ontology is 5,728, in most cases
this represented a small subset of the overall signature. If, however, the signa-
ture of an ontology contained less than the selected number of concept symbols,
we omitted the corresponding experiments. This was the case for 4, 21 and 60
ontologies for the signature sizes 10, 50 and 150, respectively.

3 http://bioportal.bioontology.org

44

Ontologies |sig(T) \Σ| Timeouts Definers Left
Average Nr. Average Size Average
of Axioms of Axioms Duration

All

5 0.3% 1.6% 18,772.61 12.81 1.1 sec.
10 1.0% 2.2% 19,233.38 9.21 1.1 sec.
50 1.1% 11.3% 20,577.60 23.14 6.0 sec.
150 3.6% 17.5% 24,627.58 60.29 18.5 sec.

NCI
50 0% 0% 138,216.99 5.37 23.5 sec.
100 2% 0% 138,170.44 6.22 117.9 sec.
150 3% 0% 138,127.78 6.26 121.5 sec.

Table 1. Results for forgetting small sets of concept symbols.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 10 100 1000

N
u
m

b
e
r

o
f

E
x
p
e
ri

m
e
n
ta

l
R

u
n
s

Time (sec.)

Fig. 3. Cumulative distribution of the duration of each forgetting experimental run.

We used a timeout of 1,000 seconds for each experimental run. In order
to evaluate how our method performed on larger ontologies, we applied the
same procedure on the ALC-fragment of Version 13.05d of the National Cancer
Institute Thesaurus (NCI), which was part of our corpus. The ALC-fragment of
this ontology, represented only using the operators presented in the Preliminaries
Section, has 138,260 axioms of average size 5. Here, we set a higher timeout of
an hour, as well as higher numbers of concept symbols, and performed 100 runs
for each number.

Table 1 summarises the results of these experiments. It shows the percentage
of experimental runs that could not be completed within the given time limit,
the percentage of successful runs in which cyclic definer symbols remained in the
results, the average number of axioms in the resulting ontology, the average size
of the axioms in the result and the average duration per experimental run.

45

Ontologies |Σ \Nr| Timeouts Definers Left
Average Nr. Average Size Average
of Axioms of Axioms Duration

All

5 3.5% 17.1% 3.70 627.13 5.4 sec.
10 4.6% 20.1% 7.98 623.88 7.7 sec.
50 8.8% 22.7% 54.84 180.48 11.8 sec.
150 12.7% 23.1% 336.83 216.09 31.8 sec.

NCI
50 0% 15% 141.66 3,115.43 594.5 sec.
100 4% 12% 335.28 1,876.51 927.0 sec.
150 7% 15% 568.69 1,751.58 1,389.2 sec.

Table 2. Results for computing uniform interpolants over small signatures.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

U
n
if
o
rm

 I
n
te

rp
o
la

n
t

S
iz

e

Input Size

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06

U
n
if
o
rm

 I
n
te

rp
o
la

n
t

S
iz

e

Input Size

Fig. 4. Sizes of extracted modules and corresponding uniform interpolants.

The size of the ontologies remained mostly unchanged, which was due to the
fact that a major part of the ontology was not touched by the method if the
concept symbols were only used in a small subset.

With an increasing number of forgotten concept symbols the number of cases
in which definer symbols are left in the result rose slightly, but in 93% of the
cases the result could be represented finitely without definer symbols. In 99%
of the cases our method was able to compute the forgetting result in the set
time limit. The average duration suggests that a much smaller timeout could
already have led to similar results. Figure 3 shows the cumulative distribution
of the durations of each experimental run. It shows that nearly 6,000 out of
7,426 experimental runs could be performed within less than one second, which
suggests that for most cases, forgetting small sets of concepts is actually a cheap
operation.

Next we wanted to evaluate how good our method performed on restricting
the signature of an ontology to a small set of concept symbols. Since computing
uniform interpolants for small signatures is much more computationally expen-
sive as forgetting small sets of concept symbols, we performed the experiments
only on a subset of the original corpus, for which we randomly selected 170 on-
tologies, and performed 5 experimental runs for each ontology and sample size.
The results are summarised in Table 2.

The effect of uniform interpolation was more apparent in these cases. In
20.1% of the cases, the computed uniform interpolant would have used fixpoint

46

operators. Even if only 5 concept symbols were used in the result, the average
axiom size was 627. In case of the NCI ontology, the average size of an axiom
was even higher. The main reason for this is that much more information about
the role structure of the ontology and disjointnesses between concepts had to be
represented in fewer axioms.

Figure 4 plots the sizes of input ontologies and the sizes of the extracted mod-
ules against the sizes of the signature-wise approximated uniform interpolants.
Interestingly, in most cases the computed uniform interpolant was of similar size
or smaller than the corresponding module. In 90.0% of the cases, the result-
ing ontology was smaller than the input ontology, and in 75.9% of the cases,
it was smaller than the corresponding >⊥∗-module. In the most extreme case
the uniform interpolant was however 559 times bigger than the corresponding
>⊥∗-module.

The performance on our method strongly depended on how distributed the
concept symbols to be forgotten are in the ontology, and how many additional
symbols remained in the module. The biggest effect on computation time and
output size was caused if the concept symbols to be forgotten occurred in high
numbers nested under role restrictions, since the role propagation rule had to
be applied more often in these cases. This lead to a high number of clauses and
seemed to be the main cause for timeouts.

The corpora used for the experiments, as well as the implementation, can be
found under http://www.cs.man.ac.uk/~koopmanp/womo_experiments.

6 Conclusion

We implemented and evaluated a recently presented method to compute uni-
form interpolants of ALC-ontologies. Uniform interpolation has a lot of potential
applications in ontology engineering and modular ontologies. It is known that
uniform interpolants of ALC-ontologies cannot always be represented in a finite
way in ALC, and their size is in the worst case triple exponential in the size of
the input ontology. We evaluated an implementation of uniform interpolation to
investigate how these theoretical properties affect uniform interpolation of ALC-
fragments of real-life ontologies. Our method computes uniform interpolants for
ALCµ, which is ALC extended with fixpoint operators, to enable the finite rep-
resentation of uniform interpolants in all cases. Since fixpoint operators are not
supported by most standards and reasoners, our implementation uses helper con-
cept symbols in the result, which means the computed ontologies approximate
the uniform interpolant signature-wise. Our experiments showed however, that
in a majority of cases this was not needed, since the uniform interpolant could
be represented without fixpoint operators. Our experiments suggest that, even
though the worst case complexity of the size of uniform interpolants is triple
exponential, in reality, the situation where the interpolant is exponential rarely
occurs. In fact, in most cases uniform interpolants could be computed in a few
seconds, and were even smaller than the input ontologies. These results suggest

47

that, even though computing uniform interpolation for complex ontologies can
be expensive, there are a lot of applications where it is practical.

In contrast to the earlier approaches on uniform interpolation ofALC-ontologies
presented [13,8], our method proceeds in a focused way in the sense that only
derivations on the currently selected symbol to be forgotten are computed. This
enables our method to perform efficiently on larger ontologies, but a trade-off
is that our method will not always compute an interpolant in ALC without
fixpoint operators if it exists. To illustrate the problem, consider the TBox
T = {A v ∃r.A t B,B v ∃r.B}. When forgetting B, our method computes
the TBox T −B = {A v ∃r.A t νX.∃r.X}, since it only considers derivations on
B. The fixpoint expression in this ontology is however redundant, since A v ∃r.A
already entails all consequences of the form A v ∃rn.>. Note that while in this
example the redundancy is quite obvious, in general it will be more hidden. In
future it would be desirable to find an efficient way to deal with these kind of
situations.

References

1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathemati-
schen Logik. Mathematische Annalen 110(1), 390–413 (1935)

2. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, Studies
in Logic and Practical Reasoning, vol. 3, pp. 721–756. Elsevier (2007)

3. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In: Proc. IJCAI ’99. pp.
84–89. Morgan Kaufmann (1999)

4. Grau, B.C., Motik, B.: Reasoning over ontologies with hidden content: The import-
by-query approach. J. of Artificial Intelligence Research 45, 197–255 (2012)

5. Horridge, M., Parsia, B., Sattler, U.: The state of bio-medical ontologies. Bio-
Ontologies 2011 (2011)

6. Koopmann, P., Schmidt, R.A.: Uniform Interpolation of ALC-Ontologies Using
Fixpoints. In: Proc. FroCoS’13. Springer (2013), to appear.

7. Ludwig, M., Konev, B.: Towards Practical Uniform Interpolation and Forget-
ting for ALC TBoxes. http://lat.inf.tu-dresden.de/research/papers/2013/LuKo-
DL-2013.pdf

8. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Proc. IJCAI ’11. pp. 989–995. AAAI Press (2011)

9. Nikitina, N.: Forgetting in General EL Terminologies. Proc. DL ’11, CEUR-WS.org
(2011)

10. Nikitina, N., Rudolph, S.: ExpExpExplosion: Uniform interpolation in general EL
terminologies. In: Proc. ECAI’12. pp. 618–623. IOS Press (2012)

11. Nonnengart, A., Sza las, A.: A fixpoint approach to second-order quantifier elimi-
nation with applications to correspondence theory. In: Logic at Work, pp. 307–328.
Springer (1999)

12. Sattler, U., Schneider, T., Zakharyaschev, M.: Which Kind of Module Should I
Extract? In: Proc. DL’09. CEUR-WS.org (2009)

13. Wang, Z., Wang, K., Topor, R., Zhang, X.: Tableau-based forgetting in ALC on-
tologies. In: Proc. ECAI ’10. pp. 47–52. IOS Press (2010)

48

Module Extraction for Acyclic Ontologies

William Gatens, Boris Konev, and Frank Wolter

The University of Liverpool, UK

Abstract. We present an implementation (AMEX) of a module extraction algo-
rithm for acyclic description logic ontologies. The implementation uses a QBF
solver (sKizzo) to check whether one ontology is a conservative extension of
another ontology relativised to interpretations of cardinality one. We evaluate
AMEX by applying it to NCI (the National Cancer Institute Thesaurus) and by
comparing the extracted AMEX-modules with locality-based modules. We also
present experiments for a hybrid approach in which AMEX and locality-based
module extraction are applied iteratively to NCI.

1 Introduction

Module extraction is the task of computing, given an ontology and a signature Σ of
interest, a subset (called module) of the ontology such that for certain applications that
use the signature Σ only, the original ontology can be equivalently replaced by the
module [14]. In most applications of module extraction it is desirable to compute a
small (and, if possible, even minimal) module. In logic-based approaches to module
extraction, the most robust and popular way to define modules is via model-theoretic
Σ-inseparability, where two ontologies are called Σ-inseparable iff the Σ-reducts of
their models coincide. Then, a Σ-module of an ontology is defined as a Σ-inseparable
subset of the ontology [10, 7, 3, 8]. It is often helpful and necessary to refine this notion
of Σ-module by considering self-contained Σ-modules (modules that are inseparable
from the ontology not only w.r.t. Σ but also w.r.t. their own signature) and depleting
modules (modules such that the remaining axioms in the ontology say nothing about Σ
and the signature of the module, that is, these remaining axioms are inseparable from
the empty ontology w.r.t. Σ and the signature of the module). Note that every depleting
module is a self-contained module is a module. In all three cases it is often not possi-
ble to compute Σ-modules: by results in [8, 11], for acyclic ALC-TBoxes and general
EL-TBoxes it is undecidable whether a given subset of a TBox is a (self-contained,
depleting) Σ-module. The “maximal” description logics (DLs) for which efficient al-
gorithms computing minimal self-contained and depletingΣ-modules have been devel-
oped are acyclic EL [8] and DL-Lite [9, 10, 6].1 For this reason, for module extraction
for ontologies given in expressive DLs or other expressive ontology languages one has
to employ approximation algorithms: instead of computing a minimal (self-contained,
depleting) Σ-module, one computes some (self-contained, depleting) Σ-module and

1 For typical DL-Lite dialects, model-theoreticΣ-inseparability is decidable. Experimental eval-
uations of module extraction algorithms are, however, available only for language dependent
notions of inseparability.

49

the main research problem is to minimise the size of the module (or, equivalently, to
approximate minimal modules). Currently, the most popular and successful approxima-
tion algorithm is based on locality and computes so-called >⊥∗-modules [4]. The size
of >⊥∗-modules and the performance of algorithms extracting >⊥∗-modules has been
analysed systematically and in great detail [4]. However, since no alternative logically
sound and implemented module extraction algorithms are available for expressive DLs,
it remained open how large and significant the difference between >⊥∗-modules and
minimal modules is and in how far it is possible to improve upon the approximation
obtained by >⊥∗-modules.2

The contribution of this paper is as follows.

1. We extend the module extraction algorithm introduced in [8] from acyclic ALCI-
TBoxes to acyclicALCQI-TBoxes with repeated concept inclusions and present a
number of optimisations of the algorithm given in [8]. We note that our extraction
algorithm is polynomial time except that it uses a QBF-solver as an oracle.

2. We describe our implementation, called AMEX, of this module extraction algo-
rithm. AMEX is available from http://www.csc.liv.ac.uk/~wgatens/
software/amex.html.

3. We evaluate its efficiency in experiments with NCI and compare the size of the
computed AMEX-modules with the size of >⊥∗-modules.

4. We introduce a hybrid approach to module extraction in which >⊥∗-module ex-
traction and AMEX-module extraction are applied iteratively. Unlike AMEX on
its own, this hybrid approach is applicable to arbitrary description logic TBoxes.
We demonstrate that on some inputs both AMEX and the hybrid approach lead to
significant reductions in the size of modules.

2 Preliminaries

We use standard notation from logic and description logic (DL), details can be found in
[1]. In a DL, concepts are constructed from countably infinite sets NC of concept names
and NR of role names using the concept constructors defined by the DL. For example,
ALCQI-concepts are built according to the rule

C ::= A | > | ¬C | ≥ n r.C | ≥ n r−.C | C uD,
where A ∈ NC, n is a natural number, and r ∈ NR. As usual, we use the following
abbreviations: ⊥ denotes ¬>, ∃r.C denotes ≥ 1 r.C, ∀r.C denotes ¬∃ r.¬C, C t D
denotes ¬(¬C u ¬D), ≤ n r.C denotes ¬(≥ (n + 1) r.C), and (= n r.C) for ((≥
n r.C) u (≤ n r.C)).

A general TBox T is a finite set of axioms, where an axiom can be either a concept
inclusion (CI) C v D or a concept equality (CE) C ≡ D, where C andD are concepts.
A general TBox T is acyclic if all its axioms are of the form A v C or A ≡ C, where

2 An implementation of semantic locality-based ∆∅∗-modules and a comparison between >⊥∗
and ∆∅∗-modules have been presented in [4]; however, the authors found no significant dif-
ference between the two approaches. A promising approach to refine >⊥∗-module extraction
has recently been presented in [12], but an implemented system is not yet publicly available.

50

A ∈ NC, no concept name occurs more than once on the left-hand side andA 6≺+
T A, for

any A ∈ NC, where ≺+
T is the transitive closure of the relation ≺T ⊆ NC × (NC ∪ NR)

defined by setting A ≺T X iff there exists an axiom of the form A v C or A ≡ C in
T with X ∈ sig(C).

The semantics of DLs is given by interpretations I = (∆I , ·I), where the domain
∆I is a non-empty set and ·I is an interpretation function that maps each A ∈ NC to a
subsetAI of∆I and each r ∈ NR to a binary relation rI ⊆ ∆I×∆I . The function ·I is
inductively expanded to complex concepts C in the standard way [1]. An interpretation
I satisfies a CI C v D (written I |= C v D) if CI ⊆ DI , it satisfies a CE C ≡ D
(written I |= C ≡ D) if CI = DI . I is a model of T if it satisfies all axioms in T .

3 Module Extraction

In this section we define depleting modules and give an algorithm computing depleting
modules of acyclic ALCQI-TBoxes using a QBF solver. To cover the NCI Thesaurus,
we also extend our extraction algorithm to TBoxes that are acyclic except that they
contain repeated concept inclusions. The results presented in this section are extensions
of the results presented in [8] for acyclic ALCI-TBoxes to acyclic ALCQI-TBoxes
with repeated concept inclusions.

A signature Σ is a finite subset of NC ∪ NR. The signature sig(C) (sig(α), sig(T))
of a concept C (axiom α, TBox T , resp.) is the set of concept and role names that occur
in C (α, T , resp.). If a sig(C) ⊆ Σ we call C a Σ-concept. The Σ-reduct I|Σ of an
interpretation I is obtained from I by setting ∆I|Σ = ∆I , and XI|Σ = XI for all
X ∈ Σ, and XI|Σ = ∅ for all X 6∈ Σ. Let T1 and T2 be TBoxes and Σ a signature.
Then T1 and T2 are Σ-inseparable, in symbols T1 ≡Σ T2, if

{I|Σ | I |= T1} = {I|Σ | I |= T2}.

It is proved in [8] that TBoxes T1 and T2 are Σ-inseparable if, and only if, T1 |= ϕ
iff T2 |= ϕ holds for any second-order sentence ϕ using symbols for Σ only. Thus,
Σ-inseparable TBoxes cannot be distinguished by their second-order consequences for-
mulated in Σ. We use Σ-inseparability to define modules.

Definition 1. Let M ⊆ T be TBoxes and Σ a signature. Then M is a depleting Σ-
module of T if T \M ≡Σ∪sig(M) ∅.
Every depleting moduleM of T is inseparable from the T for its signature [8], that is, if
M is a depleting Σ-module of T then T ≡Σ∪sig(M) M, and, in particular, T ≡Σ M.
Thus, a TBox and its depleting Σ-module can be equivalently replaced by each other
in applications which concern Σ only. Unfortunately, checking if a subsetM of T is a
depletingΣ-module of T for some given signatureΣ is undecidable already for general
TBoxes formulated in EL and for acyclic ALC-TBoxes [8, 11].

We therefore consider syntactic restrictions that ensure that depleting modules be-
come decidable. We say that an acyclic TBox T has a direct Σ-dependency, for some
signature Σ, if there exists {A,X} ⊆ Σ with A ≺+

T X; otherwise we say that T
has no direct Σ-dependencies. Although one can construct TBoxes T and depleting
Σ-modulesM of T such that T \M contains direct Σ ∪ sig(M)-dependencies (see

51

[8]), for typical depleting Σ-modules M, the set T \ M should not contain direct
Σ∪sig(M)-dependencies because such dependencies indicate a semantic link between
two distinct symbols inΣ∪sig(M). The main advantage of making the assumption that
T \M has no direct Σ ∪ sig(M)-dependencies is that it becomes decidable whether
T \M ≡Σ∪sig(M) ∅ [8]. The following lemma directly implies this decidability result.
For an acyclic TBox T and a signature Σ let

LhsΣ(T) = {A ./ C ∈ T | A ∈ Σ or ∃X ∈ Σ (X ≺+
T A)}.

The following is proved in [8] for acyclicALCI-TBoxes. The generalization toALCQI
is straightforward and omitted.

Lemma 1. Let T be an acyclic ALCQI-TBox. If T \M has no direct Σ ∪ sig(M)-
dependencies then the following conditions are equivalent for everyW ⊆ T \M:

(a) W ≡Σ∪sig(M) ∅;
(b) for every I with |∆I | = 1 there exists a model J of LhsΣ∪sig(M)(W) such that
I|Σ∪sig(M) = J |Σ∪sig(M).

Since the condition (b) of Lemma 1 refers to interpretations with a singleton domain, it
can be checked by reduction to validity of a quantified Boolean formula: take a proposi-
tional variable pA for each nameA ∈ Σ∪sig(M) and a (distinct) propositional variable
qX for each symbol X ∈ sig(T)\ (Σ ∪ sig(M)). Translate concepts D in the signature
sig(T) into propositional formulas D† by setting

A† = pA for all A ∈ Σ ∪ sig(M)
A† = qA for all A ∈ sig(T) \ (Σ ∪ sig(M))

(D1 uD2)
† = D†1 ∧D†2

(¬D)† = ¬D†
(≥ 1 r.D)† = (≥ 1 r−.D)† = qr ∧D† for all r ∈ sig(T)
(≥ n r.D)† = (≥ n r−.D)† = ⊥ for all n > 1 and r ∈ sig(T)

Now let
T † =

∧

CvD∈T \M
C† → D† ∧

∧

C≡D∈T \M
C† ↔ D†

and let p denote the sequence of variables pA, A ∈ Σ ∪ sig(M), and q denote the
sequence of variables qX ,X ∈ sig(T)\(Σ∪sig(M)). One can show that condition (b)
of Lemma 1 holds if, and only if, the QBF ϕT := ∀p∃qT † is valid. Thus, for TBoxes
with no direct Σ ∪ sig(M)-dependencies the separability check can be implemented
using a QBF solver.

Lemma 1 can be used directly for a naïve module extraction algorithm which goes
through all subsets of T to identify a smallest possible M such that T \ M has no
direct Σ ∪ sig(M)-dependencies and T \M ≡Σ∪sig(M) ∅. Instead, we consider a re-
fined goal-oriented approched based on the notion of a separability causing axiom. Let
M⊆ T and a signatureΣ be such that T \M has no directΣ∪sig(M)-dependencies.
We call an axiom A ./ C ∈ T \M, where ./∈ {v,≡}, separability causing if there
exists aW ⊆ T \M such that

A ./ C ∈ W; (W \ {A ./ C}) ≡Σ∪sig(M) ∅; W 6≡Σ∪sig(M) ∅.

52

Input: Acyclic ALCQI TBox T , Signature Σ
Apply Rules 1 and 2 exhaustively, preferring Rule 1.
Output: (Minimal) ModuleM s.t T \M ≡Σ∪sig(M) ∅ and T \M has no direct

Σ ∪ sig(M) dependencies.

(R1) If an axiom A ./ C ∈ T \M is such that A ∈ Σ ∪ sig(M))
and A ≺+

T \M X , for some X ∈ (Σ ∪ sig(M)), then setM :=M∪ {A ./ C}
(R2) If an axiom A ./ C ∈ T \M is a separability causing axiom then set
M :=M∪ {A ./ C}

Fig. 1. Module extraction in ALCQI

Input: TBox T , subsetM∈ T and signature Σ such that
T \M contains no direct Σ ∪ sig(M)-dependencies and T \M 6≡Σ∪sig(M) ∅
Output: Separability causing axiom α

1 W = lastAdded = topHalf (LhsΣ∪sig(M)(T \M))
2 lastRemoved = bottomHalf (LhsΣ∪sig(M)(T \M))
3 while lastAdded 6= ∅ do
4 ifW ≡Σ∪sig(M) ∅ then
5 lastAdded = topHalf (lastRemoved)
6 W =W ∪ lastAdded
7 lastRemoved = lastRemoved \ lastAdded
8 else
9 lastRemoved = bottomHalf (lastAdded)

10 W =W \ lastRemoved
11 lastAdded = lastAdded \ lastRemoved

12 return the last axiom ofW

Fig. 2. Finding separability causing axiom

Clearly, if T \M 6≡Σ∪sig(M) ∅ then T \M contains a separability causing axiom.
The algorithm computing a depleting Σ-module of acyclicALCQI-TBoxes is now

given in Figure 1. In the algorithm, the extraction of depleting Σ-modules is broken
into the rules R1 and R2. The rule R1 checks for direct Σ∪ sig(M)-dependencies. The
rule R2 implements an inseparability check. Notice that R2 only applies when R1 is not
applicable, that is only if T \M contains no direct Σ ∪ sig(M)-dependencies. Notice
that applications of the R1 rule can lead to axioms unnecessarily being included into the
module; but such is the price we pay for regaining the decidability of the inseparability
check.

To reduce the number of calls to the QBF solver, rule R2 is implemented as binary
search. We first consider T \M itself asW . If T \M ≡Σ∪sig(M) ∅ then T \M contains
no separability causing axioms. Otherwise, we consider W to be equal to the top half
of T \M (we treat T \M as an ordered set). We then check ifW ≡Σ∪sig(M) ∅ and,
if this is the case, we growW from the bottom and if not, we half it again as shown in

53

Figure 2. In the worst case we perform log2(|T \M|) inseparability checks to locate a
separability causing axiom.

To summarise, the module extraction algorithm in Figure 1 runs in polynomial time
with each call to the QBF solver being treated as a constant time oracle call. Note that
QBF solvers have been used before in module extraction [9, 10], but the task solved by
the solver here is completely different from its task in [9, 10].

It should be clear that if neither R1 nor R2 is applicable then T \M ≡Σ∪sig(M) ∅
and so the output of the algorithm in Figure 1 is a depleting Σ-module. By a straight-
forward generalisation of the results of [8] to ALCQI one can actually show that the
module computed in Figure 1 is uniquely determined:

Theorem 1. Given an acyclic ALCQI TBox T and signature Σ the algorithm in Fig-
ure 1 computes the unique minimal depleting Σ-module s.t. T \M contains no direct
Σ ∪ sig(M)-dependencies.

Note that the minimality condition in the theorem means that for any M′ ⊆ T such
that T \ M′ has no direct Σ ∪ sig(M′)-dependencies and T \ M′ ≡Σ∪sig(M′) ∅
we have M ⊆ M′. It is, however, still possible that there exists a M′′ ⊆ T with
T \M′′ ≡Σ∪sig(M′′) ∅,M 6⊆M′′ and such that T \M′′ has some directΣ∪sig(M′′)-
dependencies.

Example 1. We apply the algorithm in Figure 1 to the following acyclic TBox T in-
spired by the NCI Thesaurus (we have simplified some axioms and abbreviated ‘kidney’
with K, ‘ureter’ with U and ‘tract’ with T)

Renal Pelvis and U v ∃partOf.K and U (1)
K and U Neoplasm ≡ U T Neoplasm u (∀hasSite.K and U) (2)

Malignt U T Neoplasm ≡ U T Neoplasm u (∀hasAbnCell.Malignt Cell) (3)
Benign U T Neoplasm ≡ U T Neoplasm u (∀excludesAbnCell.Malignt Cell) (4)

and Σ = {Malignt U T Neoplasm, K and U Neoplasm, Renal Pelvis and U}. It can
be seen that R1 is not applicable. To see why LhsΣ(T) 6≡Σ ∅ consider an interpretation
I with ∆I = {d} such that Renal Pelvis and UI = Malignt U T NeoplasmI = {d}
and K and U NeoplasmI = ∅. It can be readily checked for any J with J |Σ = I|Σ
that J 6|= T . This check can be delegated to a QBF solver as explained above.

The algorithm in Figure 2 splits LhsΣ(T) into two parts, lastAdded = {(1), (2)}
and lastRemoved = {(3)}. For W = lastAdded it can be checked that W ≡Σ ∅.
Then the algorithm grows W with (the upper part of) lastRemoved. The same argu-
ment as above shows that for W = {(1), (2), (3)} we have W 6≡Σ ∅ and so the
algorithm identifies (3) as a separability causing axiom. After applying the rule R2,
Σ ∪ sig(M) = {Malignt U T Neoplasm, K and U Neoplasm, Renal Pelvis and U,
U T Neoplasm,hasAbnCell} and then the rule R1 adds axioms (1) and (2) toM.

It can be seen that neither R1 nor R2 applies to T \M = {(4)} and the computation
concludes withM = {(1), (2), (3)}. Notice that although {(4)} ≡Σ∪sig(M) ∅, axiom
(4) is neither ∆- nor ∅-local for Σ ∪ sig(M) and so the >⊥∗-module of T w.r.t. Σ
coincides with T (see below and [3] for definitions).

It is often the case (e.g., for the NCI Thesaurus) that a real-world ontology satisfies all
conditions for acyclic TBoxes with the exception that it contains multiple concept in-
clusions of the form A v C1, . . . , A v Cn. We call such TBoxes acyclic with repeated

54

concept inclusions. Clearly, one can convert such a TBox into an equivalent acyclic
TBox by replacing all repeated concept inclusions of the form A v C1,. . . , A v Cn
withA v C1u. . .uCn. However, such an explicit conversion is an unattractive solution
for module extraction because if such an axiom is added to a Σ-module the signature
of the module now contains every symbol in the definition of every repeated name in-
creasing the size of the resulting module considerably. The approach we take to handle
acyclic TBoxes with repeated concept inclusions is to introduce fresh concept names
for different repeated occurrences of a concept name in the left-hand side of concept
inclusions, extract modules from the resulting acyclic TBox and then substitute away
the added names as follows.

Theorem 2. Let T be an acyclic TBox with repeated concept inclusions and Σ a
signature. Let T ′ consist of all A ./ C ∈ T which are not repeated in T and all
A′1 v C1, . . . , A

′
n v Cn, A v A′1 u . . . u A′n, where A v C1,. . . , A v Cn are all

concept inclusions in T with A on the left hand side, n > 1, and A′1, . . . , A
′
n are fresh

concept names.
LetM′ be a depletingΣ-module of T ′ and letM be obtained fromM′ by dropping

the added axioms of the form A v A′1 u . . .uA′n and by replacing every occurrence of
the introduced symbols A′1, . . . , A

′
n with A. ThenM is a depleting Σ-module of T .

4 Experiments and Evaluation

We implemented the algorithm presented in Figure 1 and the refinement for acyclic
TBoxes with repeated concept inclusions in the AMEX system which is written in Java
aided by the OWL-API library [5] for ontology manipulation. The inseparability check
was implemented using the reduction to the validity of Quantified Boolean Formulae
(QBF) and uses the QBF solver sKizzo [2].

To evaluate the efficiency of AMEX and the size of the modules computed by AMEX
we compare it to >⊥∗ locality-based module extraction [3, 13] as implemented in the
OWL-API library version 3.2.4.1806 (called STAR-modules for ease of pronunciation).

To evaluate the performance of both approaches we consider random and axiom
signatures. To generate a random signature size n given a TBox T we take the set of all
concepts in T , i.e. sig(T) ∩ NC and select at random n symbols from this set. For each
concept signature size we also include a percentage of role names randomly selected
from sig(T), varying between 0% which equates to just using a concept signature to
100% which would be equal toΣ∪(sig(T)∩NR). For experiments on axiom signatures,
for a given numberm, we select at randomm axioms from T and then extract a module
for each of the signatures of selected axioms.

In our experiments we used the NCI Thesaurus version 08.09d taken from the Bio-
portal [15] repository. This version of NCI contains 116 515 logical axioms among
which 87 934 are concept inclusions of the form A v C and 10 366 are concept equa-
tions of the form A ≡ C. In what follows, NCI?(v) denotes the TBox consisting of all
such inclusions, NCI?(≡) denotes the TBox consisting of all such equations, and NCI?

denotes the union of both. All three TBoxes are acyclic (with repeated concept inclu-
sions), so AMEX can be applied to them. NCI? together with the rest of the ontology

55

Role% 0% 25% 50% 75% 100%

|Σ| St
ar

A
M

E
X

%
D

iff

St
ar

A
M

E
X

%
D

iff

St
ar

A
M

E
X

%
D

iff

St
ar

A
M

E
X

%
D

iff

St
ar

A
M

E
X

%
D

iff

NCI?

100 3835.7 676.6 467% 3848.6 943.7 308% 3891.7 984.0 295% 3929.4 1014.7 287% 3929.8 1016.5 287%
250 5310.2 1725.9 208% 5365.6 1795.2 199% 5463.1 1871.5 192% 5506.3 1919.3 187% 5505.4 1918.0 187%
500 6985.9 2735.9 155% 7109.6 2844.9 150% 7165.5 2930.3 145% 7252.8 3002.1 142% 7245.9 2990.1 142%
750 8223.3 3572.7 130% 8355.2 3698.8 126% 8464.4 3806.1 122% 8538.5 3878.7 120% 8526.1 3872.0 120%

1000 9276.7 4333.6 114% 9397.2 4458.4 111% 9492.8 4573.9 108% 9564.9 4627.1 107% 9565.3 4642.7 106%
NCI? (v)

100 55.47 65.04 -15% 232.76 281.90 -17% 286.13 318.81 -10% 312.59 333.65 -6% 339.83 351.70 -3%
250 328.28 390.81 -16% 559.56 657.37 -15% 651.05 718.62 -9% 712.87 759.06 -6% 765.30 796.47 -4%
500 852.89 1007.34 -15% 1046.44 1190.43 -12% 1193.75 1301.77 -8% 1278.48 1355.05 -6% 1378.30 1435.99 -4%
750 1325.96 1541.33 -14% 1517.68 1692.20 -10% 1675.37 1808.43 -7% 1802.61 1905.29 -5% 1921.13 1993.60 -4%

1000 1786.342 2039.67 -12% 1973.82 2174.04 -9% 2157.33 2314.21 -7% 2299.00 2416.32 -5% 2440.76 2527.34 -3%
NCI? (≡)

100 2784.33 316.31 780% 2792.99 319.73 774% 2785.51 318.49 775% 2770.32 318.61 770% 2779.03 318.43 773%
250 3982.18 622.74 539% 3988.51 626.22 537% 3984.76 624.03 539% 3989.88 624.62 539% 3982.62 625.91 536%
500 4975.97 1001.20 397% 4988.08 1003.83 397% 4984.67 1002.06 397% 4983.22 1004.13 396% 4988.71 1004.00 397%
750 5529.94 1309.98 322% 5540.59 1315.34 321% 5533.68 1309.22 323% 5532.04 1310.77 322% 5531.00 1311.72 322%

1000 5899.871 1577.42 274% 5897.36 1576.94 274% 5891.82 1576.71 274% 5894.13 1574.57 274% 5900.37 1578.06 274%

Fig. 3. Random signature comparison

(18 215 axioms) is called NCI and contains, in addition, role inclusions, domain and
range restrictions, disjointness axioms, data properties, and 17 763 ABox assertions.

The majority of NCI? (all but 4 588 axioms) are EL-inclusions. The non-EL inclu-
sions contain 7 806 occurrences of value restrictions. The signature of NCI? contains
68 862 concept and 88 role names.

Experiments with NCI∗ and its Fragments The results given in Figure 3 show the
average sizes (over 1 000 random signatures for each signature size and role percentage
combination) of the modules computed by the two approaches for random signatures.
It can be seen that

– in NCI?(≡), AMEX-modules are significantly smaller than STAR-modules (be-
tween 270% and 780%);

– in NCI?(v), STAR-modules are, on average, slightly smaller than AMEX modules;
– in NCI?, AMEX-modules are still significantly smaller than STAR-modules, but

less so than in NCI?(≡).

The huge difference between modules in NCI?(v) and NCI?(≡) can be explained
as follows: it is shown in [8] that for acyclic EL-TBoxes without concept equations,
AMEX-modules and STAR-modules coincide. This is not the case for acyclicALCQI-
TBoxes (there can be axioms in STAR-modules that are not AMEX-modules and vice
versa), but since the vast majority of axioms in NCI?(v) are EL-inclusions one should
not expect any significant difference between the two types of modules. Thus, it is
exactly those acyclic TBoxes that contain many concept equations for which AMEX-
modules are significantly smaller than STAR-modules (see Example 1 for an illustra-
tion).

56

0−
20

0

20
0−

40
0

40
0−

60
0

60
0−

80
0

80
0−

10
00

10
00

−
12

00

12
00

−
14

00

14
00

−
16

00

16
00

−
18

00

18
00

−
20

00

20
00

−
22

00

22
00

−
24

00

24
00

−
26

00

26
00

−
28

00

28
00

−
30

00

30
00

−
32

00

32
00

−
34

00

F
re

qu
en

cy

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

Module size (#Axioms)

STAR
AMEX

0−
10

0

10
0−

20
0

20
0−

30
0

30
0−

40
0

40
0−

50
0

50
0−

60
0

60
0−

70
0

70
0−

80
0

80
0−

90
0

90
0−

10
00

10
00

−
11

00

11
00

−
12

00

12
00

−
13

00

13
00

−
14

00

14
00

−
15

00

15
00

−
16

00

16
00

−
17

00

F
re

qu
en

cy

0

1000

2000

3000

4000

5000

6000

7000

Module size (#Axioms)

STAR
AMEX

Fig. 4. Frequency of module sizes for NCI? (left) and NCI?(≡) (right).

Figure 4 summarises our experimental results for modules extracted for axiom sig-
natures. The figure shows the frequency of AMEX and STAR-modules of a given size
within NCI? and NCI?(≡) for the cases when the modules differ – which is in 13% and
68% of cases, respectively. For NCI?(≡) in the cases in which we find a difference the
STAR module is always larger than the corresponding AMEX module with an average
difference of 865.6 axioms. For NCI? in a few (87 cases) the STAR modules are smaller
than the corresponding AMEX ones by an average difference of 6.9 axioms whereas in
the rest of the cases the STAR modules are much larger with an average difference of
1427 axioms. We do not show the results for NCI?(v) since, as explained above for the
experiments with random signatures, there is essentially no difference between AMEX
and STAR-modules.

These experiments were carried out on a PC with an Intel i5 CPU @ 3.30GHz with
2GB of Java heap space available to the program. For NCI? the average time taken per
extraction was just under 3s and the maximum time taken was 15s. Interestingly, in
almost all experiments the QBF solver was called just once. Thus, in most cases the
modules were computed purely syntactically and the QBF solver simply provided an
assurance that the extracted axioms indeed constituted a depleting module. Only in 3%
of all experiments the QBF solver identified separability causing axioms. The maximal
number of separability causing axioms recorded in any single extraction was 4 and the
maximal number of QBF solver calls themselves was 73.

Experiments with full NCI Although AMEX-modules are significantly smaller than
STAR-modules for acyclic TBoxes containing many concept equations, the applica-
tions of AMEX alone are very limited since most ontologies contain additional ax-
ioms such as disjointness axioms, role inclusions, and domain and range restrictions.
To tackle this problem we first observe that, in principle, AMEX can be applied to any
general TBoxes: given such a TBox T , one can split T into two parts T1 and T2, where
T1 is an acyclic ALCQI-TBox (and as large as possible) and T2 := T \ T1. Then
for any signature Σ it follows from the robustness properties [7] of the inseparability
relation ≡Σ that if M is a depleting Σ ∪ sig(T2)-module of T1 (note that M can be

57

computed by AMEX), thenM∪T2 is a depletingΣ-module of T as well. Such a direct
application of AMEX to general TBoxes is unlikely to compute small modules when
T2 is large. However, our first experimental results suggest that this approach is ben-
eficial when iterated with STAR-module extraction. The following result provides the
theoretical underpinning for our experiments.

Theorem 3. LetM ⊆ M′ ⊆ T be TBoxes and Σ a signature such thatM′ is a de-
pleting Σ-module of T andM is a depleting Σ-module ofM′. ThenM is a depleting
Σ-module of T .

Since both AMEX and STAR compute depleting Σ-modules, given a signature Σ and
ontology T one can extract an AMEX module from the STAR module (and vice versa)
and have the guarantee the resulting module is still a depleting Σ-module of T . In this
way, one can repeatedly extract from the output of one extraction approach again a
module using the other approach until the sequence of modules becomes stable.

The following experiments are based on a naïve implementation of this hybrid ap-
proach and extract modules from the full version of NCI. Again we consider random
concept signatures with varying amount of role names. The experiments shown in Fig-
ure 5 are based on 200 signatures for each concept signature size/role percentage com-
bination and compare the average size of modules extracted using the hybrid approach
and using STAR extraction only.

Role% 0% 25% 50% 75% 100%

|Σ| St
ar

It
er

at
ed

%
D

iff

St
ar

It
er

at
ed

%
D

iff

St
ar

It
er

at
ed

%
D

iff

St
ar

It
er

at
ed

%
D

iff

St
ar

It
er

at
ed

%
D

iff

100 5385.7 1949.5 176% 9569.8 6177.7 55% 13733.8 10339.0 33% 19486.4 16089.1 21% 23196.6 19810.2 17%
250 7298.6 3268.7 123% 11959.8 7963.9 50% 16072.1 12069.6 33% 20974.9 16978.8 24% 25141.0 21134.7 19%
500 9445.0 4827.6 96% 13165.1 8533.4 54% 16406.7 11767.0 39% 23046.8 18418.3 25% 27331.2 22691.9 20%
750 11070.2 6058.6 74% 15268.3 10235.9 49% 19696.2 14683.3 34% 23705.7 18689.6 27% 28917.3 23903.4 21%

1000 12370.7 7108.5 74% 16434.7 11174.0 47% 21978.6 16737.6 31% 25529.0 20286.5 26% 30218.5 24965.4 21%

Fig. 5. Iterative module extraction from NCI

For all signatures we found a reduction in the size of the module when iterated with
the STAR module on its own being between 17% and 176% larger than the hybrid
module.

In Figure 6, we show the results of our experiments for axioms signatures. They are
based on 20 000 randomly selected axioms from the full NCI Thesaurus. 13% of such
signatures showed a difference from the STAR module. The frequency of module sizes
for the cases when the modules differ is given in Figure 6. The average difference in
size, for the cases when there is a difference, is 295.2 axioms.

All individual extractions using the hybrid approach saw exactly 2 alternations of
the STAR module extraction whereas the AMEX extraction varied between 1 and 2
times. The cases in which the AMEX extraction alternated just once happened much
more often as the signature sizes grew and the difference between the respective module
sizes became smaller. The additional time taken to extract the hybrid module compared
to the STAR extraction alone was at most only 2.2 seconds.

58

1−
20

0

20
0−

40
0

40
0−

60
0

60
0−

80
0

80
0−

10
00

27
00

−
29

00

29
00

−
31

00

31
00

−
33

00

33
00

−
36

00

36
00

−
39

00

39
00

−
42

00

42
00

−
44

00

F
re

qu
en

cy

0

200

400

600

800

1000

1200

1400

1600

Module size (#Axioms)

STAR size
Iterated Size

Fig. 6. Frequency of module sizes

5 Conclusion

We have presented a new system, AMEX, for depleting module extraction from acyclic
ALCQI-TBoxes. Using the NCI Thesaurus, we have compared the size of AMEX-
modules with the size of >⊥∗-modules computed by the OWL-API library implemen-
tation (referred as STAR-modules) and we have presented a hybrid approach in which
STAR and AMEX-module extraction are used iteratively. The results show that for
TBoxes with many axioms of the form A ≡ C, AMEX-modules can be significantly
smaller than STAR-modules and that an iterative approach can lead to significantly
smaller modules than ‘pure’ STAR-modules. In contrast to [4], where a large number
of ontologies are used to compare STAR-modules and MEX-modules we consider NCI
only. The reason is that the majority of ontologies considered in [4] contain no (or only
a very small set) of axioms of the form A ≡ C that form an acyclic subset of the ontol-
ogy. For such ontologies it follows both from theoretical results in [8] and experimental
results in [4] that there is no significant difference between AMEX and STAR-modules.
Instead, we focus on a high quality ontology with a reasonable number of concept equa-
tions and where theory predicts that minimal depleting modules can be much smaller
than STAR-modules. Many research questions remain to be explored. In particular, to
apply AMEX to a larger class of ontologies in an iterative approach, one has to gener-
alise the notion of acyclic TBoxes in such a way that the underpinning methodology of
AMEX can still be generalised.

References

1. F. Baader, D. Calvanes, D. McGuiness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge University Press,
Cambridge, UK, 2003.

59

2. M. Benedetti. sKizzo: a QBF decision procedure based on propositional skolemization and
symbolic reasoning. Technical Report 04-11-03, ITC-irst, 2004.

3. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies: theory
and practice. Journal of Artificial Intelligence Research (JAIR), 31:273–318, 2008.

4. C. Del Vescovo, P. Klinov, B. Parsia, U. Sattler, T. Schneider, and D. Tsarkov. Empirical
study of logic-based modules: Cheap is cheerful. Technical report, University of Manchester,
2013.

5. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL ontologies. Semantic
Web, 2(1):11–21, 2011.

6. B. Konev, R. Kontchakov, M. Ludwig, T. Schneider, F. Wolter, and M. Zakharyaschev. Con-
junctive query inseparability of OWL 2 QL TBoxes. In Proceedings of the 25th Conference
on Artificial Intelligence, AAAI 2011, pages 221–226, Menlo Park, CA, USA, 2011. AAAI
Press.

7. B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal properties of modularisation. In Mod-
ular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization, vol-
ume 5445 of Lecture Notes in Computer Science, pages 25–66. Springer, Berlin, Heidelberg,
2009.

8. B. Konev, C. Lutz, D. Walther, and F. Wolter. Model-theoretic inseparability and modularity
of description logic ontologies. Artificial Intelligence, 203:66–103, 2013.

9. R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter, and M. Za-
kharyaschev. Minimal module extraction from DL-Lite ontologies using QBF solvers. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009,
pages 836–841, Menlo Park, CA, USA, 2009. AAAI Press.

10. R. Kontchakov, F. Wolter, and M. Zakharyaschev. Logic-based ontology comparison and
module extraction, with an application to DL-Lite. Artificial Intelligence, 174(15):1093–
1141, 2010.

11. C. Lutz and F. Wolter. Deciding inseparability and conservative extensions in the description
logic EL. Journal of Symbolic Computing, 45(2):194–228, 2010.

12. R. Nortjé, K. Britz, and T. Meyer. Module-theoretic properties of reachability modules for
sriq. In Proceedings of the 26th international workshop on description logic, DL 2013,
CEUR Workshop Proceedings. CEUR-WS.org, 2013.

13. U. Sattler, T. Schneider, and M. Zakharyaschev. Which kind of module should I extract? In
Proceedings of the 22nd International Workshop on Description Logics, DL 2009, volume
477 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

14. H. Stuckenschmidt, C. Parent, and S. Spaccapietra, editors. Modular Ontologies: Concepts,
Theories and Techniques for Knowledge Modularization, volume 5445 of Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, 2009.

15. P. L. Whetzel, N. F. Noy, N. H. Shah, P. R. Alexander, C. Nyulas, T. Tudorache, and M. A.
Musen. Bioportal: enhanced functionality via new web services from the national center for
biomedical ontology to access and use ontologies in software applications. Nucleic Acids
Research, 39(Web-Server-Issue):541–545, 2011.

60

Towards fast Atomic Decomposition using
Axiom Dependency Hypergraphs?

Francisco Mart́ın-Recuerda1 and Dirk Walther2

1 Universidad Politécnica de Madrid, Spain
fmartinrecuerda@fi.upm.es

2 TU Dresden, Germany
Center for Advancing Electronics Dresden

dirk.walther@tu-dresden.de

Abstract. Atomic decomposition of ontologies has been suggested as
a tool to understand the modular structure of ontologies. It consists
of a polynomial size representation of potentially exponentially many
modules of an ontology. Tractable algorithms for computing the atomic
decomposition for locality-based modules have been introduced, albeit
leaving room for improvement in terms of running time. In this paper,
we consider ontologies formulated in OWL-EL. We introduce a notion of
an axiom dependency hypergraph for an ontology, which represents how
axioms are included in locality-based modules. We use a standard al-
gorithm from graph theory to compute strongly connected components
of the axiom dependency hypergraph and show that such components
correspond to atoms of the ontology. An empirical evaluation of the al-
gorithm on large fragments of biomedical ontologies confirms a significant
improvement in running time.

1 Introduction

The atomic decomposition of an ontology provides a compact representation of
all possible modules that can be extracted from a given ontology. It represents
a significant contribution to a better understanding of the internal structure of
the ontology.

In this paper, we introduce a novel representation model of OWL-EL on-
tologies based on directed hypergraphs that explicitly represent information for
syntactic locality and atomic decomposition. We call this model Axiom Depen-
dency Hypergraphs (ADHs). A directed hypergraph is a generalisation of a di-
rected graph in which edges (in this case hyperedges) can connect two nonempty
disjoint sets of nodes (or vertices). The nodes in such hypergraphs represent the
axioms of an ontology, and hyperedges indicate subset relations between terms

? We thank the reviewers of the workshop WoMO 2013 for their comments. The first
author acknowledges the support of the EU project SEALS (FP7-ICT-238975), and
the second author the support of the German Research Foundation (DFG) within
the Cluster of Excellence ‘Center for Advancing Electronics Dresden’.

61

in axioms. By using standard hyperpath search algorithms it is possible to effi-
ciently extract locality-based modules (in linear time) and to compute the atomic
decomposition of the ontology.

The use of hypergraph-based models for locality-based module extraction is
not new [8] and it has been recently further extended [6]. However, this is the first
time that it has been applied for improving existent algorithms for atomic decom-
position of OWL ontologies. We compare a prototypical implementation of our
hypergraph model against the fastest implementation of atomic decomposition
that we are aware of [10]. Our experiments confirm a significant improvement in
running time for (certain fragments of) biomedical ontologies.

The paper is organised as follows. In Section 2, we review the main notions
on syntactic ⊥-locality, atomic decomposition, and hypergraphs. In Section 3,
we introduce axiom dependency hypergraphs and discuss their size, and evaluate
the performance of atomic decomposition based on these graphs in Section 4.
We conclude this paper in a final section.

2 Preliminaries

In this paper, we consider ontologies formulated in the description logic EL,
which allows for conjunction and existential restrictions. Large parts of, e.g.,
biomedical ontologies are expressed in EL. For notions on description logics, we
refer to [3] and for EL to [2]. Moreover, we consider locality-based modules. The
notion of locality refers to axioms, i.e., axioms are either local or non-local, and
it depends on a signature. A module of an ontology consists of the non-local
axioms wrt. a signature. There are two flavours the locality notion comes in:
semantic and syntactic locality. Intuitively, an axiom is semantically local wrt. a
signature Σ if it does not say anything about the terms in Σ.1 Checking whether
an axiom is semantically local can be computationally expensive as it requires
reasoning.2 The notion of syntactic locality was introduced to allow for efficient
computation. Checking for syntactic locality involves checking that an axiom is
of a certain form, no reasoning is needed. On the downside, syntactic locality is
merely an approximation of semantic locality: all syntactically local axioms are
also semantically local, but not vice versa. Modules based on syntactic locality
can be larger as they contain the modules based on semantic locality and possibly
more axioms. We refer to [5] for a more extensive introduction to locality-based
modularity.

The notion of ⊥-locality depends on whether or not a given signature covers
all symbols occurring on the LHS of a general concept inclusion, or occurring on
the LHS or RHS of a general concept equation. The following proposition makes
that precise.3

1 For sets of axioms with this property the term ‘safety’ is used in the literature [5].
2 Reasoning with OWL2 is 2-NExpTime-complete in the worst case, but also reasoning

with a tractable logic such as EL can be seen as too difficult in some cases, depending
on the size of the input and the application requirements.

3 The notion of reachability-based modules uses a similar property; see Def. 37 in [8].

62

Proposition 1. Let α be an EL-axiom. Let Σ be a signature. Then:

(i) if α = (C v D), then α is not syntactic ⊥-local wrt. Σ iff sig(LHS(α)) ⊆ Σ;
(ii) if α = (C ≡ D), then α is not syntactic ⊥-local wrt. Σ iff sig(LHS(α)) ⊆ Σ

or sig(RHS(α)) ⊆ Σ. a

The following example illustrates the notion of ⊥-locality of axioms.

Example 1. Let α and β be the axioms:4

α := A1 u ∃r1.(A2 u ∃r2.A3) v ∃r3.A4

β := A1 ≡ A2 u ∃r1.A3

Axiom α is syntactic ⊥-local wrt. Σ if any of the symbols occurring in LHS(α)
is not contained in Σ, i.e., if α satisfies any of the following conditions:

– Ai /∈ Σ, for some i ∈ {1, 2, 3}; or
– r1 /∈ Σ or r2 /∈ Σ.

Axiom β is syntactic ⊥-local wrt. Σ if there are two symbols, one occurring in
LHS(β) and one in RHS(β), that are not contained in Σ, i.e., if β satisfies any
of the following conditions:

– A1 /∈ Σ and Ai /∈ Σ, for some i ∈ {2, 3}; or
– A1 /∈ Σ and r1 /∈ Σ. �

2.1 Extracting modules based on locality

This is the module extraction algorithm from [5], where x stands for any of the
semantic and syntactic locality notions, i.e. x ∈ {∅, ∆,⊥,>}. The algorithm runs
in time quadratic in the size of the ontology and signature.

function ModxO(Σ) returns x-local module of O wrt. Σ
1: m := 0
2: Mm := ∅
3: do
4: m := m+ 1
5: Mm := {α ∈ O | α is not x-local wrt. Σ ∪ sig(Mm−1)}
6: until Mm =Mm−1

7: return Mm

The algorithm takes an ontology O and a signature Σ as input and returns
a subset M of O. The computed set M consists of axioms that are not x-
local wrt. Σ ∪ sig(M), or equivalently, O \M consists of axioms that are local
wrt. Σ ∪ sig(M). The algorithm produces a finite sequence M0, . . . ,Mn, n ≥
0, of subsets of the ontology O, where Mn is the ⊥-local module of O wrt.

4 These axioms are of the forms that occur frequently in the biomedical ontology
Full-Galen.

63

Σ∪ sig(Mn) with Σ being the initial signature. This sequence induces a relation
on O representing the successive inclusion of the axioms into the module. Later
we will represent this relation as hyperedges in an axiom dependency hypergraph.
This is illustrated in the following example.

Example 2. The signature increases round-by-round due to axioms that are
added to the module (line 5). In fact, the RHSs of the axioms introduce new sym-
bols to the signature. Let αi = Ai v Ai+1, for i ∈ {1, ..., n}. Let O = {α1, ..., αn}
and Σ = {A1}. We run the algorithm on the input O and Σ. In the first
round of the do-until loop (lines 3-6), the axiom α1 is the only axiom in O
that is not ⊥-local wrt. Σ ∪ sig(M0) (line 5), where M0 = ∅ (line 2). So α1

is added to M1. In the second round, ⊥-locality is checked for the extended
signature Σ ∪ sig(M1) = {A1, A2}. Axioms α1 and α2 are now non-⊥ local
wrt. Σ ∪ sig(M1) and both are added to M2. The algorithm proceeds this
way until all axioms of O are added to Mn. As no more axioms are added
the algorithm exits the do-until loop (line 6) and returns Mn+1 = O as the
⊥-local module of O wrt. Σ (line 7). The following picture shows the module
extraction process as a graph Gmod⊥(O,Σ) = (V,E), where V = {α1, ..., αn} and
E = {(αi, Ai+1, αi+1) | i ∈ {1, ..., n− 1}}, and the sequence M0, ...,Mn,Mn+1

produced by the module extraction algorithm. Additionally we indicate with a
tilted arrow labelled with A1 to node α1 that the concept name A1 is provided
by the initial signature. In this case, α1 is the first axiom to be included by the
module extraction algorithm.

�
��
α1

@@R
A1

-A2 �
��
α2

-A3 �
��
α3

-A4 ... -An �
��
αnM0 M1 M2 M3 Mn =Mn+1 �

2.2 Atomic decomposition

Atoms represent sets of highly related axioms in the sense that they always
co-occur in modules. A set a of axioms from an ontology O is an atom of O
if for every module M of O, it holds that a ⊆ M or a ∩M = ∅. We denote
with AtomsO the set of all atoms of O. The atoms of an ontology partition the
set of its axioms (i.e., each axiom occurs in exactly one atom). A dependency
relation between pairs of atoms can be established: an atom a2 depends on an
atom a1 in an ontology O (written a1 <O a2) if a2 occurs in every module
of O containing a1. For a given ontology, the pair 〈AtomsO,<O〉 consisting of
the set of atoms together with the dependency relation between them is called
Atomic Decomposition.5 It provides a compact representation of all modules of an
ontology as every module is composed of the axioms of certain atoms. Therefore,
the atomic decomposition contributes to a better understanding of the internal
structure of ontologies with possible implications in ontology engineering and
reasoner design. The representation of the modules in terms of atoms and their

5 Here we use atomic decomposition for ⊥-local modules denoted as 〈Atoms⊥O,<⊥O〉.

64

interdependencies is of linear size and it can be computed in polynomial time,
whereas there are exponentially many possible modules of an ontology. However,
not all modules of an ontology can be computed from its atomic decomposition.
The atomic decomposition was first introduced in [11].

2.3 Directed hypergraphs

A directed hypergraph [4] is a tuple H = (V, E), where V is a non-empty set
of nodes (vertices), and E is a set of hyperedges (hyperarcs). A hyperedge e is
also defined as a pair (T (e), H(e)), where T (e) and H(e) are nonempty disjoint
subsets of V. H(e) (T (e)) is known as the head (tail) and represents a set of
nodes where the hyperedge ends (starts). For each node v ∈ H(e) (v ∈ T (e)), e
is an incoming (outgoing) hyperedge to v. A hyperpath from node v1 to node vn
is a sequence of the form P (v1, vn) = v1e1v2e2 · · · en−1vn such that vi ∈ T (ei)
and vi+1 ∈ H(ei) for every i ∈ {1, ..., n− 1}. In addition, if node vn ∈ T (e1), the
hyperpath P (v1, vn) is a hypercycle.

A node v2 is B-connected6 (or forward reachable7) from v1 if (i) v2 = v1 (v2
is B-connected from itself), or (ii) there is a hyperedge e such that v2 ∈ H(e)
and all the elements of T (e) are B-connected from v1. A B-hyperpath from node
v1 to node v2 in a hypergraph H is a minimal (in terms of hyperedges and nodes)
subhypergraph of H such that v2 is B-connected to v1.

In a directed hypergraph H, two nodes v1 and v2 are strongly B-connected
if v2 is B-connected to v1 and vice versa. In other words, both nodes, v1 and
v2, are mutually reachable. A strongly B-connected component (SCC) is a set of
nodes from H which are all are mutually reachable [1].8 Note that two nodes
that are mutually reachable in a hypergraph belong to the same hypercycle.

In the case of directed graph, it is possible to calculate all the strongly con-
nected components in linear time [9, 7]. Unfortunately, none of these linear time
algorithms can be easily adapted to directed hypergraphs due to the more com-
plicated notion of reachability in hypergraphs [1]. For instance, while in a di-
rected graph the last node of a path can be reached from any other node in the
path, this may not be the case in a hyperpath [1].

3 Axiom dependency hypergraphs

Axiom dependency hypergraphs are a representation model for ontologies based
on directed hypergraphs that explicitly represent information for locality and
atomic decomposition. The nodes in such graphs represent the axioms of an
ontology, and hyperedges indicate subset relationships between terms in axioms

6 There is a similar notion called F-connectivity [4].
7 We walk on a hypergraph from the tails to the heads of the hyperedges. If all nodes

in the tail of a hyperedge have been reached it is possible to reach all the nodes of
the head of the hyperedge.

8 Notice that an SCC can be a singleton set as the reachability relation is reflexive,
i.e., any axiom is mutually reachable from itself.

65

(cf. Proposition 1). By using standard hyperpath search algorithms it is possible
to efficiently extract locality based modules (in linear time) and to compute the
atomic decomposition of the ontology.

The ⊥-locality signatures ⊥-sig(α) of an axiom α is the set of signatures

⊥-sig(α) =

{
{sig(LHS(α))} if α is of the form C v D;

{sig(LHS(α)), sig(RHS(α))} if α is of the form C ≡ D.

Intuitively, ⊥-sig(·) is a function assigning to an axiom α the signatures ⊥-sig(α)
that are relevant for deciding the ⊥-locality status of α. More precisely, we have
that α is not ⊥-local wrt. S, for every S ∈ ⊥-sig(α).

Axiom dependency hypergraphs for EL-ontologies are defined as follows.

Definition 1 (Axiom dependency hypergraph for ⊥-locality). Let O be
an EL-ontology. The ⊥-locality axiom dependency hypergraph (ADH) H⊥O for
O is defined as H⊥O = (V, E), where

– V = O; and
– e = (T (e), H(e)) ∈ E iff the following holds:

(i) H(e) = {β}, for some β ∈ V, and
(ii) T (e) ⊆ V \ {β} such that |T (e)| is minimal with the property S ⊆

sig(T (e)), for some S ∈ ⊥-sig(β).
a

Note that the axiom dependency hypergraph for an EL-ontology is defined for
the notion of ⊥-locality.9 The nodes are the axioms of the ontology, and the
hyperedges are associating axioms α1, . . . , αn with a single axiom β such that
one of the ⊥-locality signatures of β is contained in the signature of the axioms
αi. The minimality condition states that each of the axioms αi is required and
none of them is superfluous for covering some of the ⊥-locality signatures of β.10

Example 3. Let O = {α1, ..., α5}, where

α1 := A v B α3 := E v A u C uD α5 := X v A
α2 := B u C uD v E α4 := A v X

The ADH H⊥O contains the hyperedges e1 = ({α1, α3}, {α2}), e2 = ({α1}, {α4}),
e3 = ({α2}, {α3}), e4 = ({α3}, {α1}), e5 = ({α3}, {α4}), e6 = ({α4}, {α1}),
e7 = ({α4}, {α5}), e8 = ({α5}, {α1}) and e9 = ({α5}, {α4}); see Example 4 for a
visualisation of the graph. Now obtain O′ by replacing α2 with α′2 := BuCuD ≡
E. Then the ADH H⊥O′ contains one additional edge e10 = ({α3}, {α2}). �

B-connectivity (forward reachability) in axiom dependency hypergraphs can
be used to specify ⊥-local modules in the corresponding ontology. Denote with
Mod⊥O(α) the ⊥-local module of ontology O wrt. the signature of axiom α.

9 Axiom dependency hypergraphs for the notion of >-locality can be defined in a
similar way.

10 Note that the minimality condition in Def. 1 is to avoid superfluous hyperedges, but
it is not required in terms of correctness.

66

Proposition 2. Let O be an EL-ontology and α an EL-axiom. Then: Mod⊥O(α) =
{β | α is B-connected to β in H⊥O}. a
Reachability-based modules have been defined in other hypergraph respresenta-
tions of ontologies in [8]. This proposition can be shown similarly.

The set of atoms for an EL-ontology O corresponds to the set of strongly con-
nected components in the axiom dependency hypergraph for O. Let SCCs(H⊥O)
be the set of strongly connected components of the hypergraph H⊥O.

Proposition 3. Let O be an EL-ontology. Then: Atoms⊥O = SCCs(H⊥O). a
The proposition can readily be seen as follows. As a corollary of Proposi-

tion 2, mutually reachable axioms are contained in the same modules, which
is equivalent to the axioms forming an atom of the ontology. The nodes in a
strongly connected component are all mutually reachable. Thus, both notions
are equivalent.

The dependencies between atoms for an EL-ontology O (as given by the re-
lation <⊥O) correspond to a certain binary relation over the set of strongly con-
nected components of H⊥O, which is defined as follows. For S1, S2 ∈ SCCs(H⊥O),
we say that S2 depends on S1 (written S1 →⊥O S2) if there is an hyperedge

e = (T (e), H(e)) in H⊥O such that T (e) ⊆ S1 and H(e) ⊆ S2. Let →⊥O
∗

be the
reflexive, transitive closure of →⊥O.

Proposition 4. Let O be an EL-ontology. Let a1, a2 ∈ Atoms⊥O and S1, S2 ∈
SCCs(H⊥O) such that a1 = S1 and a2 = S2. Then: a1 <⊥O a2 iff S1→⊥O

∗
S2. a

Example 4. Consider again the ontology O and its axiom dependency hyper-
graph H⊥O from Example 3. We obtain the following ⊥-local modules for the
axioms:

Mod⊥O(α1) = {α1, α4, α5} Mod⊥O(α4) = {α1, α4, α5}
Mod⊥O(α2) = {α1, α2, α3, α4, α5} Mod⊥O(α5) = {α1, α4, α5}
Mod⊥O(α3) = {α1, α2, α3, α4, α5}

The resulting atoms in AtomsO are a1 = {α2, α3} and a2 = {α1, α4, α5}, where
a1 < a2, i.e., a2 depends on a1. The ADHH⊥O and the atoms of O can be depicted
as follows:

��
��
α2 ��

��
α1 ��

��
α5

��
��
α3 ��

��
α4

�
�
�

�
�?

-

6
?

�

HH
HH

HH
HHY
HHHHHHHHj��

��
��
��*

a1 a2

Consider the strongly connected components of H⊥O. Axiom α1 is B-connected
with the axioms α4 and α5, α4 is B-connected with α1 and α5, and α5 is B-
connected with α1 and α4. Axiom α2 is B-connected with α3 and vice versa.

67

Axioms α2, α3 are each B-connected with α1, α4 and α5, but not vice versa.
Hence, {α1, α2, α4} and {α2, α3} are the strongly connected components of H⊥O.
Moreover, we say that the former component depends on the latter as any two
axioms contained in them are unilaterally and not mutually B-connected. Note
that the atoms a1 and a2 of O and their dependency coincide with the strongly
connected components of H⊥O . �

For ontologies consisting of axioms of the form A v C, where A is a concept
name, the locality dependencies between axioms can be represented in directed
graphs (i.e., hypergraphs in which the tail of any hyperedge contains only one
axiom). For such ontologies O, the definition of the axiom dependency hyper-
graph H⊥O = (V, E) can be simplified (cf. Def. 1). The condition for a hyperedge
e = ({α}, {β}), for α, β ∈ V, to be contained in E is now:

e = ({α}, {β}) ∈ E iff sig(LHS(β)) ⊆ sig(α)

The advantage of this representation is that we can directly use a standard
linear time algorithm for calculating strongly connected components of directed
graphs [9, 7]. We notice the majority of axioms in biomedical ontologies (that
we have considered in the evaluation part of this paper) are axioms of the form
A v C. For general ontologies, we can apply a three-phase approach similar to
the one suggested in [1] for hypergraphs: first, we compute the strongly connected
components for axioms of the form A v C using a linear-time algorithm; second,
we collapse the strongly connected components into single nodes; and, finally, we
compute the strongly connected components of the revised axiom dependency
hypergraph using the notion of mutual reachability (which can be computed in
at most quadratic time [1]).

3.1 Size of axiom dependency hypergraphs (worst-case)

We observe that axiom dependency hypergraphs may be of exponential size.

Proposition 5. There exists ontologies O such that the axiom dependency hy-
pergraph HO contains exponentially many hyperedges in the number of axioms
of O. a
We show the proposition with the following example.

Example 5. Let n, k be two natural numbers with n > 0 and k > 0. Ontology
On,k is defined as:

On,k = {α := X1u. . .uXn v Y } ∪ {αij := Aij v Xi | i ∈ {1, ..., n}, j ∈ {1, ..., k}}

Axiom α is the only axiom in On,k with a complex LHS, which in turn is a
conjunction of n many concept names X1, ..., Xn. The axioms αij state that each

concept name Xi subsumes k many concept names Ai1, ..., A
i
k. The corresponding

axiom dependency graph HOn,k
is the the tuple HOn,k

= (V, E), where V = On,k
and

E = {({β1, ..., βn}, {α}) | βi ∈ {αi1, ..., αik}, i ∈ {1, ..., n}}.

68

It can readily be seen that HOn,k
contains kn many hyperedges, where n, k are

each bound by the number of axioms in On,k. �

The axiom dependency hypergraph serves as a tool to determine the atoms
of an ontology via calculating the strongly connected components of the graph.
Example 5 illustrates a problem with the size of the axiom dependency hyper-
graphs as defined in Def. 1. We note, however, that no hyperedge in HOn,k

is
needed for the purpose of determining the atoms for On,k. For every axiom β in

On,k, the ⊥-local module Mod⊥O(β) is a singleton set consisting of β itself. Conse-
quently, the atoms of On,k are singleton sets as well as are the strongly connected
components of HOn,k

. Note that we obtain the same strongly connected compo-
nents after removing every hyperedge from HOn,k

. This observation suggests a
possible solution to avoid the exponential blow-up problem. The idea is to build
the hypergraph using only the “necessary” hyperedges that are required for the
computation of the strongly connected components which in turn correspond to
atoms. We hypothesize that the hyperedges needed are the ones that preserve
the mutual reachability relation between the axioms of the ontology. This means
that no more incoming hyperedges are needed per axiom than the total number
of axioms in the ontology. We leave a formal treatment of this idea for future
work.

3.2 Size of axiom dependency hypergraphs for real ontologies

Primitive concept inclusions, i.e. axioms of the form A v C, where A is a concept
name and C a possibly complex concept, are of prime importance for biomedical
ontologies. For instance, the majority of axioms in the biomedical ontologies
from the Bioportal in the following table are primitive concept inclusions.11

Ontology Signature #axioms percentage #axioms #role
size A v C of all axioms C ≡ D axioms

in ontology

CPO (12/2011) 136 090 306 111 80.61% 73 461 96
FMA-lite 75 168 119 558 99.99% 0 3
Full-Galen (v1.1) 24 088 25 563 67.81% 9 968 2 165
GO v1.1 (1986) 34 220 61 990 99.99% 0 5
NCBI (v1.2) 847 796 847 755 100% 0 0
RH-MeSH (08/2012) 286 382 403 210 100% 0 0
Snomed CT (2010a) 291 207 227 698 78.18% 63 446 12

Most ontologies contain other axioms as well such as concept equations and role
axioms.12 The table shows the percentage of axioms of the form A v C to all
axioms in each ontology. The ontologies NCBI and RH-Mesh are taxonomies (no
logical operators); they consist entirely of axioms of the form A v B, where A,B
are concept names.

11 http://bioportal.bioontology.org
12 Other axiom types are not shown here, e.g., disjointness axioms in CPO.

69

Ontology Signat. ADH
A v C-fragment size #nodes #edges #SCCs

CPO (12/2011) 136 027 306 111 1 474 962 131 482
FMA-lite 75 141 119 558 1 021 863 54 649
Full-Galen (v1.1) 16 412 25 563 179 770 12 502
GO v1.1 (1986) 34 175 61 990 255 215 34 167
NCBI (v1.2) 847 760 847 755 1 695 474 847 755
RH-MeSH (08/2012) 286 380 403 210 1 435 631 286 263
Snomed CT (2010a) 240 021 227 698 556 474 227 698

The difference between the number of SCCs and the number of nodes in the
axiom dependency hypergraph can be seen as a measure of cyclicity of the graph.

The following example illustrates the limitations of axiom dependency graphs.
Axioms of the form C v D or C ≡ D (i.e. axioms whose ⊥-locality signatures
contains more than one symbol) can cause many hyperedges to be included in
the axiom dependency hypergraph.

Example 6. Consider this concept equation α from the ontology Full-Galen:

Incontinence ≡ Transport
u ∃ actsOn.BodySubstance
u ∃ hasIntentionality.(Intentionality u ∃ hasAbsoluteState.involuntary)
u ∃ hasUniqueAssociatedDisplacement.(Displacement

u ∃ isDisplacementTo.GRAILExteriorOfBody)

The axiom dependency hypergraph H⊥Full-Galen contains up to 9.2 × 1012 many
hyperedges of the form e = (T (e), {α}), where T (e) is a set of axioms containing
the 12 signature symbols from ⊥-sig(α).13 �

As indicated in Section 3.1, the number of hyperedges may be reduced while
preserving the strongly connected components. The idea is that no more incom-
ing hyperedges are needed per axiom as there are axioms in the ontology. In the
case of Full-Galen, we have an upper bound of 37 696 many incoming hyperedges
per axiom. In particular, for axiom α from Example 6 we estimate up to 21 095
many hyperedges to preserve the mutual reachability relation involving α.

4 Evaluation

We have implemented a Java program that takes an EL-ontology O (with axioms
of the form A v C) as an input and builds the corresponding axiom dependency
hypergraph H⊥O. Then it computes the set SCCs(H⊥O) of strongly connected com-
ponents ofH⊥O and the dependencies between these components. We compare the
running times of atomic decomposition using FaCT++ with the times needed
by the hypergraph-based approach. The following table lists the results.14

13 The number of hyperedges is merely an estimated upper bound (as it does not take
into account the minimality condition in Def. 1).

14 All experiments were performed on an Intel Xeon E5-2640 2.50 GHz with Java
version 1.7.0 40 (command line parameters -Xss1G -Xms4G -Xmx8G). We used
FaCT++, 64bit, Version 1.6.2 (19 February 2013) and the OWL API version 3.4.4.

70

Ontology fragment time time hypergraph-based approach speedup
with axioms of the FaCT++ load build comp. comp. total
form A v C ont. ADH SCC deps.

CPO (12/2011) 1 262.69 s 9.99 s 0.85 s 0.59 s 0.52 s 11.94 s 105.8
FMA-lite 19 991.92 s 9.50 s 0.49 s 6.43 s 0.20 s 16.62 s 1 202.9
Full-Galen (v1.1) 115.77 s 2.87 s 0.09 s 0.20 s 0.05 s 3.21 s 36.1
GO v1.1 (1986) 44.33 s 3.42 s 0.15 s 0.16 s 0.09 s 3.82 s 11.6
NCBI (v1.2) 49 227.86 s 73.72 s 1.42 s 0.87 s 1.19 s 77.22 s 637.5
RH-MeSH (08/2012) 6 921.62 s 15.24 s 1.31 s 0.63 s 0.66 s 17.84 s 388.0
Snomed CT (2010a) 4 538.65 s 14.47 s 0.48 s 0.31 s 0.32 s 15.58 s 291.3

The times for FaCT++ are the total times needed (2nd column), which in-
cludes loading the ontology, initialising the reasoner and computing the atoms
(but not saving the atoms). For the hypergraph-based approach, we have listed
the times needed for the OWL-API to load the ontology and to do some initial-
isation (3rd column), to build the axiom dependency hypergraph (4th column),
to compute the strongly connected components of the graph (5th column), to
compute the dependencies between the strongly connected components (6th col-
umn) and the total time needed (6th column). The last column shows for each
ontology the speedup achieved for atomic decomposition using the hypergraph-
based approach compared to FaCT++. On FMA-lite an over 1 000-fold speedup
was realised.

FaCT++ improves upon the original algorithm for atomic decomposition [11]
as described in [10]. However, the algorithm implemented in FaCT++ runs in
time almost cubic (in particular, the computation of the transitive closure in
Line 7 of Algorithm 4 in [10]). In contrast, the approach based on axiom de-
pendency hypergraphs runs in time linear for the considered fragment of the
ontologies.

5 Conclusion

We have suggested a hypergraph-based method for efficient atomic decompo-
sition of EL-ontologies consisting of primitive concept inclusions. We have in-
troduced the notion of an axiom dependency hypergraph, in which, different
to other hypergraph representations of ontologies, axioms are nodes that are
connected in a way mimicking how axioms are included in a module by the
locality-based module extraction algorithm.

Modularisation and atomic decomposition has been suggested as a means to
understand the internal structure of ontologies. Axiom dependency hypergraphs
are an explicit representation of these notions. A module can be extracted from
the hypergraph by collecting the nodes reachable from the nodes that are deter-
mined by the input signature. Moreover, it is possible to directly apply standard
off-the-shelf graph algorithms for computing the atoms of certain EL-ontologies
in linear time. For the atomic decomposition of FMA-lite, a staggering 1 000-fold
speedup could be achieved compared to the reasoner FaCT++.

71

The disadvantage of the axiom dependency hypergraphs, as introduced in
this paper, is their exponential size in the worst case for general concept inclu-
sions. We have indicated that the blow-up in size can be avoided by omitting
hyperedges while still preserving the mutual reachability relation between ax-
ioms. In this way, no more than quadratically many hyperedges are required for
determining the atoms.

For future work, the idea of avoiding the exponential blow-up of the ax-
iom dependency hypergraphs for general EL-ontologies needs to be formalised,
implemented and evaluated. It would also be interesting to extend the current
approach to other locality notions such as >- and ⊥>∗-locality and to richer
languages such as SROIQ.

References

1. X. Allamigeon. Strongly connected components of directed hypergraphs. CoRR,
abs/1112.1444, 2011.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI-05.
Morgan-Kaufmann Publishers, 2005.

3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, 2007.

4. G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and
applications. Discrete Applied Mathematics, 42(23):177–201, 1993.

5. B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies:
theory and practice. JAIR, 31:273–318, 2008.

6. R. Nortje, A. Britz, and T. Meyer. A normal form for hypergraph-based module
extraction for SROIQ. In Proc. of AOW 2012, volume 969 of CEUR Workshop
Proceedings, pages 40–51. CEUR-WS.org, 2012.

7. M. Sharir. A strong connectivity algorithm and its applications to data flow anal-
ysis. Computers & Mathematics with Applications, 7(1):67–72, 1981.

8. B. Suntisrivaraporn. Polynomial time reasoning support for design and mainte-
nance of large-scale biomedical ontologies. PhD thesis, TU Dresden, Germany,
2009.

9. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

10. D. Tsarkov. Improved algorithms for module extraction and atomic decomposition.
In Proc. of DL’12, volume 846 of CEUR Workshop Proceedings. CEUR-WS.org,
2012.

11. C. D. Vescovo, B. Parsia, U. Sattler, and T. Schneider. The modular structure of
an ontology: Atomic decomposition. In Proc. of IJCAI’11, pages 2232–2237, 2011.

72

Towards a Unified Approach to Modular
Ontology Development Using the

Aspect-Oriented Paradigm

Ralph Schäfermeier and Adrian Paschke

Freie Universität Berlin,
Königin-Luise-Str. 24-26, 14195 Berlin, Germany

{schaef,paschke}@inf.fu-berlin.de

http://www.corporate-semantic-web.de/

Abstract. In this paper, we describe our ongoing work on the applica-
tion of the Aspect-Oriented Programming paradigm to the problem of
ontology modularization driven by overlapping modularization require-
ments. We examine commonalities between ontology modules and soft-
ware aspects and propose an approach to applying the latter to the
problem of a priori construction of modular ontologies and a posteriori
ontology modularization.

Keywords: ontology modularization, aspect-oriented development, cross-
cutting concerns

1 Introduction

The majority of existing modularization approaches are specialized solutions,
relying on semantic (cf., for example, [1–5]) or structural relatedness (e.g., [6–
8]) and are only parametrizable to a limited degree. Parameters often reflect
the internal operational mode of the modularization algorithm rather than re-
quirements concerning the expected outcome of the modularization process from
a user’s point of view. Moreover, requirements may be related to different di-
mensions of the problem space. They can comprise functional requirements, i.e.,
requirements directly related to the problem domain or the task an ontology or
ontology module is supposed to fulfill, and non-functional requirements, such as
provenance information, multilingualism, or tractability of reasoning tasks.

The aspect-oriented programming paradigm allows for the separation of mul-
tidimensional requirements into dedicated software code modules (aspects), lead-
ing to better code modularity and therefore reusability. Using AOP, modules can
be recombined (interwoven) either extensionally, by explicitly marking the points
in the code where the execution flow should be diverted to a different module,
or intensionally, by specifying a set of properties such code points are expected
to have in common.

In this paper, we examine commonalities between ontology modules and soft-
ware aspects and describe our ongoing work towards the application of the above
mentioned principles of the AOP paradigm to ontologies. We argue that the lat-
ter enables (a) straightforward development of modular ontologies from scratch,
and (b) flexible a-posteriori modularization, driven by user requirements.

73

2 The Aspect-Oriented Paradigm Applied to Ontologies

Aspect-oriented software programming (AOP) languages provide syntactic means
for the separation of so called cross-cutting concerns in software code into ded-
icated modules. As defined by the ISO/IEC/IEEE standard 42010 of software
architecture1, “concerns are those interests which pertain to the systems develop-
ment, its operation or any other aspects that are critical or otherwise important
to one or more stakeholders”. Cross-cutting concerns are concerns which emerge
from requirements on different levels, concern the entire or a significant part
of the system and are thus scattered across the system, diminishing code lo-
cality and hindering system evolution and reusability [9]. See Figure 1 for an
explanatory example of cross-cutting concerns.

Mulitilingualism

Provenance

Tractable
reasoning

Car

Engine

Stakeholder 1:
Engineering

Stakeholder 2:
Sales

Customer

Frame

Wheels

Tax

Units
sold

Fig. 1: Cross-cutting concerns by the ex-
ample of a car ontology. Different stake-
holders are interested in different aspects
of the core concept (car). The different in-
terests (concerns) reflect requirements for-
mulated by each of the stakeholders. At
the same time, stakeholder-independent re-
quirements cross-cut the ontology. Each of
theses requirements has a different dimen-
sion.

Req. 1: Car
components Req. 2:

Tractable
reasoning

Fig. 2: Selection of an ontology module
that satisfies two cross-cutting require-
ments: It should only contain concepts
of the subdomain “car components” of
the car domain (“Engineering” aspect,
dotted), and it should only contain con-
structs that allow for tractable reasoning
(“Tractability” aspect, dashed). The re-
sulting module (grey) only contains those
constructs that are concerned by both as-
pects.

In AOP terminology, the encapsulation of a single concern in a dedicated
module is referred to as aspect. An aspect consists of two components: the actual
implementation of the functionality, referred to as advice, and information about
all points in the application’s control flow at which the advice should be executed,
referred to as join points. In this manner, we use the notion of aspects in order
to relate ontological constructs to different requirements (see Figure 2).

Listing 1.1 shows an example of a concern “authentication” that cross-cuts
with the actual business logic of a bank application and leads to tangled code.
Listing 1.2 shows how the authentication concern is encapsulated in an aspect
“Authentication”. The authentication handling code has been centralized in the
advice of the aspect.

1 http://www.iso-architecture.org/42010/

74

Listing 1.1: Example of the cross-
cutting concern “authentication” af-
fecting different parts of the code.

withdraw (Account a , f loat amount) {
AuthService as = getAuthService () ;

i f (! as . authent i cated (a . user))

as . au thent i ca t e (a . user) ;

a . balance −= amount ;

}
depos i t (Account a , f loat amount) {

AuthService as = getAuthService () ;

i f (! as . authent i cated (a . user))

as . au thent i ca t e (a . user) ;

a . balance +=amount ;

}

Listing 1.2: The concern “authentica-
tion” is encapsulated in an aspect “Au-
thentication”.

public Aspect Authent icat ion () {
AuthService as = getAuthService () ;

i f (! as . authent i cated (a . user))

as . au thent i ca t e (a . user) ;

}
@aspect Authent icat ion

withdraw (Account a , f loat amount) {
a . balance −= amount ;

}
@aspect Authent icat ion

depos i t (Account a , f loat amount) {
a . balance +=amount ;

}

Note that this example demonstrates the explicit (extensional) variant of join
points, in the form of tags assigned to each part of the code where an aspect
is applicable. In order to achieve complete detangling of cross-cutting concerns,
AOP introduces two principles: quantification and obliviousness.

2.1 Quantification

AOP allows for an intensional definition of join points by using quantified state-
ments in the form

∀m(p1, . . . , pn) ∈M : s(m(p1, . . . , pn))→ (m(p1, . . . , pn)→ a(p1, . . . , pn)),

where M is the set of all methods defined within the software product, s
a predicate specifying the join point properties, m(p1, . . . , pn) ∈ M a method
adhering to the signature m(p1, . . . , pn), and a(p1, . . . , pn) the execution of the
advice with all the parameters of each method, respectively [10]. The set of all
join points defined by s is called a pointcut.

In the case of the authentication example, an instantiation of this formula
would be:

∀m(p1, . . . , pn) ∈M : sig(m(p1, . . . , pn)) = m(Account acc, float amount)

→ (m(acc, amount)→ Authentication(acc, amount)).

In order to select ontology axioms in the same fashion, a means of quantifi-
cation over such axioms is necessary.

∀ax(p1, . . . pn) ∈ O : s(ax(p1, . . . pn))→ (ax(p1, . . . pn)→ a(ax(p1, . . . pn))),

with O being an ontology, ax(p1, . . . pn) axioms (in the form of n-ary predi-
cates the domain of which is the union of the vocabulary of the ontology language

75

in question and the vocabulary of the problem domain, such as class, property
and individual names), and a(ax(p1, . . . pn)) a function that applies the aspect to
ax(p1, . . . pn), whereupon we define the application of an aspect to an axiom as
the inclusion of that particular axiom in the module represented by the aspect.
In this manner, the aspect “tractability” from the example scenario could be
implemented by building a query that selects all axioms which are compatible
with the OWL-EL profile.

Car ≡ ≡ hasWheel
min 4 Wheel

≥

Stakeholder
Engineer rdf:type

hasAspect

Aspect

Fig. 3: Extensional join point definition using an OWL annotation.

As mentioned in section 1, join points can also be specified extensionally,
for example, by manually annotating axioms which cover a particular aspect
with a dedicated OWL Annotation (see Figure 3). This is of particular use for
a priori modular ontology development if used, e. g., by an ontology editor with
switchable contexts, each context representing an aspect. A user could then
extensionally define an aspect-oriented ontology module by switching aspects.

2.2 Obliviousness and Harmlessness

The fact that in aspect-oriented software systems control flow is handed over
from the main module to the aspects, making the main module (and any other
modules) unaware of the (quantified or extensionally specified) assertions made
about it by external aspects that might possibly be applied to it, is termed
obliviousness [9]. The practical consequence of obliviousness is that the developer
of a module is not required to have knowledge about or spend additional effort
in anticipation of a possible application of an aspect to her module.

Danters et al. allude to the problem that obliviousness is only guaranteed on
a syntactic level while external aspects have in fact the potential to alter the
semantics of the target module, making them potentially dangerous [11]. They
propose the adaption of the harmlessness property for aspect-oriented systems,
defining a harmless aspect as an aspect which, when applied to a target module,
does not alter the semantics of the target.

While it is obvious that the obliviousness property naturally holds for ontol-
ogy modules, the harmlessness property does not. Nevertheless, it is agreed upon
in the recent literature that it is desirable if an ontology module is uninvasive,
i.e., its addition to an ontology has no side effects. Whether uninvasiveness of a
module applied by the means of an aspect is a required feature or not depends
on the specific use case.

Grau et al. [12] as well as Konev et al. [13] propose the notion of conservative
extensions which guarantee that a module added to an ontology does not alter
the meaning of the original ontology:

76

Let O1 ⊆ O ontologies, S a signature and L a logic. O is a conservative
extension of O1 wrt. L, if for every axiom ax with sig(ax) ⊆ S: O |= ax iff
O1 |= ax.

In the same vein, we define a harmless aspect of an ontology O as an aspect
that yields the selection of a module O1 that is the conservative extension of O
with respect to L.

It has been noted that determining whether a module is a conservative ex-
tension of an ontology is a highly complex problem and even undecidable for
expressive ontologies [12, 13]. However, semantic locality is a sufficient condition
for a conservative extension [4], and [14] suggests that the less complex syntactic
locality constitutes a practically acceptable approximation.

3 Conclusion and Future Work

In this paper, we pointed out that ontology modularization and aspect-oriented
programming share interesting commonalities and that the aspect-oriented para-
digm can be applied to a priori modular ontology development as well as a poste-
riori module extraction. The next step will consist in providing a proof-of-concept
system that dynamically interweaves aspects defined in the above manner.

Further work is necessary in order to achieve a functional meta description of
ontology axioms for the purpose of pointcut definition. The formalism described
in section 2.1 works in terms of meta predicates with the domain consisting of
vocabulary of the ontology language, reifing axioms contained in the ontology.

The research question raised in this paper is how the application of the
aspect-oriented paradigm affects the quality of ontology modularizations. Our
hypothesis is that aspect-oriented ontology development yields useful ontology
modules wrt. to cross-cutting modularization requirements, such as dynamic ac-
cess, understandability, maintenance, and re-use. We expect that the intensional
specification of ontology modules with pointcuts adds dynamicity and flexibil-
ity to modular development, making it easier to evolve modular ontologies in
situations where evolution implies modularization requirement changes.

To evaluate our approach and test our hypothesis, we will apply the approach
to different modularization use-cases in the context of ontology development
projects. Aspects considered in these use cases will comprise project affiliation,
temporal attribution, workflow affiliation, re-use, and module understandability.
We then use quality metrics in order to assess the quality of the modularizations
gained using our approach and compare it with existing approaches.

Acknowledgements

This work has been partially supported by the “InnoProfile-Transfer Corporate
Smart Content” project funded by the German Federal Ministry of Education
and Research (BMBF) and the BMBF Innovation Initiative for the New German
Länder - Entrepreneurial Regions.

References

1. Cuenca Grau, B., Parsia, B., Sirin, E.: Combining OWL ontologies using E-
Connections. Web Semantics: Science, Services and Agents on the World Wide

77

Web 4(1) (January 2006) 40–59
2. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic Modularity and Mod-

ule Extraction in Description Logics. In: Proceedings of the 2008 conference on
ECAI 2008: 18th European Conference on Artificial Intelligence, Amsterdam, The
Netherlands, The Netherlands, IOS Press (2008) 55–59

3. Suntisrivaraporn, B.: Module Extraction and Incremental Classification: A Prag-
matic Approach for EL+ Ontologies. In Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M., eds.: The Semantic Web: Research and Applications. Number
5021 in Lecture Notes in Computer Science. Springer Berlin Heidelberg (January
2008) 230–244

4. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Extracting Modules from On-
tologies: A Logic-Based Approach. [15] 159–186 DOI: 10.1007/978-3-642-01907-4.

5. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artificial Intelligence
174(15) (October 2010) 1093–1141

6. d’Aquin, M., Doran, P., Motta, E., Tamma, V.A.M.: Towards a parametric on-
tology modularization framework based on graph transformation. In Grau, B.C.,
Honavar, V., Schlicht, A., Wolter, F., eds.: Proceedings of the 2nd International
Workshop on Modular Ontologies, WoMO 2007. Volume 315 of CEUR Workshop
Proceedings., CEUR-WS.org (2007)

7. Schlicht, A., Stuckenschmidt, H.: A Flexible Partitioning Tool for Large Ontologies.
In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology - Volume 01. WI-IAT ’08, Washington,
DC, USA, IEEE Computer Society (2008) 482—488

8. Coskun, G., Rothe, M., Teymourian, K., Paschke, A.: Applying community de-
tection algorithms on ontologies for indentifying concept groups. In: Proceedings
of the 5th International Workshop on Modular Ontologies, Ljubljana, Slovenia
(September 2011)

9. Filman, R., Friedman, D.: Aspect-Oriented Programming Is Quantification and
Obliviousness. Workshop on Advanced Separation of Concerns, OOPSLA (2000)

10. Steimann, F.: Domain Models Are Aspect Free. In Briand, L., Williams, C., eds.:
Model Driven Engineering Languages and Systems. Number 3713 in Lecture Notes
in Computer Science. Springer Berlin Heidelberg (January 2005) 171–185

11. Dantas, D.S., Walker, D.: Harmless Advice. In: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. POPL
’06, New York, NY, USA, ACM (2006) 383–396

12. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular Reuse of Ontologies:
Theory and Practice. Journal of Artificial Intelligence Research 31 (February 2008)
273–318 ACM ID: 1622664.

13. Konev, B., Lutz, C., Walther, D., Wolter, F.: Formal Properties of Modularisation.
[15] 25–66 DOI: 10.1007/978-3-642-01907-4.

14. Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Tsarkov, D.:
Syntactic vs. Semantic Locality: How Good Is a Cheap Approximation? In Schnei-
der, T., Walther, D., eds.: Workshop on Modular Ontologies (WoMO) 2012. (2012)
40–50

15. Stuckenschmidt, H., Parent, C., Spaccapietra, S., eds.: Modular Ontologies: Con-
cepts, Theories and Techniques for Knowledge Modularization. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg (2009) DOI: 10.1007/978-3-642-
01907-4.

78

