
Modularization of Graph-Structured Ontology with
Semantic Similarity

Soudabeh Ghafourian, Amin Rezaeian, and Mahmoud Naghibzadeh

Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
so.ghafourian@stu-mail.um.ac.ir
amin.rezaeian@stu-mail.um.ac.ir

naghibzadeh@um.ac.ir

Abstract. Modularization is a key requirement to manage the size and com-
plexity of large ontologies by replacing each one by a set of smaller ontologies.
Two reasons for this requirement are that current ontology languages such as
OWL do not allow partial reuse of ontologies and ontologies are ever growing
to cover more knowledge in a specific domain. Many existing modularization
methods focus on either semantics or structural aspects of ontologies while both
of them are important. In this paper, we consider both semantic and structure by
combining these aspects using random walk algorithms to achieve a balance be-
tween them. We also define weights for different relations to take semantic into
account. The proposed method is designed using two algorithms: a greedy algo-
rithm and a heuristic one to reduce run-time and time-complexity. Our goal is to
produce reusable modules of high quality and support large ontologies. The re-
sults of the experiments show that our algorithms perform well in comparison
with existing golden standard.

Keywords: Ontology Modularization, Partitioning, Ontology Reuse, Semantic
Similarity

1 Introduction

Today, we use ontologies in the context of information processing, semantic web, and
many other contexts [1]. Large ontologies usually contain many terms. These large
ontologies are confronted with challenges in their life cycle such as processing and
maintenance [2].

Modularization is an approach to tackle challenges of large ontologies. An ontolo-
gy module is a small ontology that can have inter-module links with other small on-
tologies [1] and the union of the produced modules is semantically equal to the first
ontology [3].

Ontology modularization is used to achieve different goals such as scalability for
querying data and reasoning on ontologies, scalability for evolution and maintenance,
complexity management, understandability, context-awareness and personalization
and reusability. The goals of ontology modularization can affect the understandabili-
ty, the advantages, and disadvantages of the resulting modules [1].

Reusability is one of the important goals of modularization of ontologies that apply
when designing ontologies or when developing new applications based on ontologies.
Current ontology languages such as OWL do not allow importing only parts of an
ontology. This is a problem because if an ontology developer needs to reuse only
parts of an ontology, they must import the whole ontology, which takes more space
[4]. For example, we have home appliances ontology and an ontology developer who
is interested in small home appliances; the developer would like to import the part of
the ontology, which concerns only small home appliances. Therefore, he is not inter-
ested in loading the whole ontology but rather an extracted module of the ontology
[2].

In this paper, we present modularization algorithms that assign weights to the dif-
ferent relations that are used in the formalization of the ontology. The goal of our
modularization is reusability. The proposed modularization algorithms are performed
after the weighing phase of different relations is completed. Until now, some of these
relations such as inverseOf, unionOf, intersectionOf, disjointWith, have not been
considered. Since different kinds of the relations represent different semantic aspects
of the ontology, the weighing is determined according to the importance of these rela-
tions. The proposed algorithms consider both structural and semantic criteria.

Our goal is to produce modules in which concepts are both structurally and seman-
tically closely related; hence, the resulting subontologies can be reused in developing
new applications.

Modularization is done based on an agglomerative hierarchical algorithm on which
we perform some optimization to achieve a better result and use new scoring function.
We also propose another algorithm to reduce time-complexity.

The remainder of the paper is organized as follows: in the next section, we briefly
present some of the related work. In section 3, we define weights for different rela-
tions; describe our modularization algorithms and criteria for modularization. In
Section 4, we evaluate the proposed method and report our results. Finally, Section 5
concludes this paper with future work suggestions.

2 Related work

In this section, we review related work to ontology modularization. Recently, many
different approaches have been proposed for this purpose. There are several catego-
ries for modularization. We categorize modularization based on types of representa-
tion of ontology into two sets: graph-based approaches and logic-based approaches
[2-3]. Our work is based on graph approaches. In logic-based approaches, the mod-
ules are produced based on logical representation of ontologies. The work in [5] ex-
tracts modules from OWL-DL ontology based on user's semantic query. Graph-based
approaches use graph-theoretic algorithms to traverse the hierarchy of ontologies and
some heuristics to get relevant modules [6]. In general, the works [7-10] use agglo-
merative algorithms to modularize ontologies. An agglomerative approach is an itera-
tive bottom up one in which, in each iteration, two modules with the highest similarity
are merged to produce a new module. The work in [7] defines structural and linguistic

similarities. The first criterion is based on hierarchy of classes and the other one is
based on similarities between the local descriptions of the classes. They present parti-
tion algorithms that combine criteria as a scoring function. Their goal is ontology
matching. In matching ontologies, one tries to find the most similar ontology amongst
a set of ontologies to the one for which a match is requested. The approach performs
modularization of each two ontologies whose similarity is needed. In the modulariza-
tion, the hierarchical subclassOf relation and a linguistic similarity measure are used.

In [8], A weighted graph is constructed from rdfs:subClassOf and
rdfs:subPropertyOf relationships. owl:equivalentClass or owl:equivalentProperty are
identified in a preprocessing stage. They present a structure-oriented partitioning al-
gorithm and add RDF sentences to construct blocks from the modules. The goal of
this work is ontology matching. This work only considers limited relationships. Rela-
tions such as inverseOf, unionOf, intersectionOf, disjointWith, are not considered.

Paper [11] describes a structure-based ontology partitioning. They construct a di-
rected weighted graph based on structure similarities. Five types of criteria between
concepts, i.e., subclass, domain/range, definition, substring, and distance relation, are
defined. The weighted matrix is constructed according to the number of connections
between nodes; then they use Line Island Method [12] to partition and finally perform
optimization to improve the partitioning.

The work in [13] proposes an ontology partitioning method, which produces over-
lapped modules, i.e., final modules may have common concepts. They use semantic
similarity between concepts, so their generated graph is conceptual. This work con-
siders structure and semantic, but it does not distinguish between different relation-
ships.

In [9], different graph representations for ontologies are developed. There are three
basic representations and two different extensions of these representations. They use
several methods to convert ontologies into graphs, and apply community detection
algorithms to partition the graphs. Their experiments show that the algorithms work
much better when subject, object and predicate are represented as different nodes.
Paper [10] further develops the findings of paper [9], but the main difference is that
they define a weight function for different relations of the ontology as shown in Table
1; this is the first steps in a semantic approach. They apply three community detection
algorithms (a type of an agglomerative algorithm) on different graph representations.

The general topic of papers [7-8] is ontology matching based on structural aspects
of ontologies. However, we are interested in ontology modularization with the goal of
reusability of resulting modules. The works described in [11] and [13] mostly use
structure in order to make a graph representation of an ontology and use classic graph
clustering methods to modularize ontologies, while our method uses a hierarchical
clustering method. We use different graph clustering methods than [9-10], in addition
we consider more relations. These relations are mentioned in section 3.2.

3 Proposed Approach

In this section, we first describe how we represent ontologies. Then we present how
we construct the weighted matrix. Next, we normalize the weights of edges, and then
Neighborhood Random-Walk Distance is introduced [15]. Finally, the modularization
algorithms are described.

Our goal is to bring together into one module the most related concepts that have
highest semantic similarities and presumably describe one subdomain. This agrees
with the concept of domain specific ontologies [10]. If a good modularization algo-
rithm such as agglomerative algorithms and a suitable scoring function is used this
goal is reachable.

Agglomerative algorithms [16] are algorithms where the modules with the highest
similarity are iteratively merged. They are bottom-up, this means, initially every node
is considered as an independent module and in the end there is only one module.

3.1 Different Graph Representations of Ontology

Ontology web language1 (OWL) is a semantic web language. It is based on the Re-
source Description Framework2 (RDF). RDF represents information as triples of the
form (Subject, Predicate, and Object).RDF triples can be mapped to a graph where
subject and object are nodes and each predicate is a directed edge from a subject to an
object. It displays a simple mental model for RDF that is frequently used [14].

We also use other graph models; since the predicate of one triple is a subject or an
object in some other triples, we represent every subject, object, and predicate as sepa-
rate nodes [10].

There are various representations of ontologies [10].We represent each one of sub-
jects, objects and predicates as a separate node in which we have two types of edges:
one type of edge is from subject to predicate and another is from predicate to object.
The predicate node contains object or datatype properties. We also consider every
individual as a node.

3.2 Constructing Weighted Matrix

We define a weight function to give weighs to different relationships of the ontology.
This function assigns an integer number to existing relationships as shown in Table 1.
The main reason for weighing relationships is that different relationships have differ-
ent semantics and show different aspects of the ontology. We would like to distin-
guish between these aspects and their importance by their weights. This is not meant
that a relation with a higher weight is more valuable than a relation with a lower
weight, but sometimes it means that a relation with a higher weight has existential
precedence over a relation with a lower weight. Therefore, the weights can be
changed for different applications and/or in different contexts. For example, if sub-

1 OWL - http://www.w3.org/OWL
2 RDF - http://www.w3.org/RDF

ClassOf relation exists because it is part of ontology language, then domain and range
relations are meaningful. Therefore, we assign weight 10 to subClassOf and weight 5
(i.e., one half the weight) to domain/range relation. In some other situations, the
weights are assigned based on the wideness or narrowness of their meanings. Exam-
ples are given below.

List of Different Relationships and Weights. The weights represented in Table 1 are
based on previous research and also our assessments of relations which are not stu-
died by previous research. The base of weights is what is mentioned in [10]. For new
relations, the weight assignment logic is explained in the previous subsection.

The equivalent relation denotes that the classes have the same meaning, so the
classes that have equivalent relation are put into one module. Considering the
meaning of the equivalent relation, they are given the highest weight. Furthermore,
the subclass relations give some important information about classes; hence, these
relationships have high semantic contribution to ontology modularization. As
mentioned before, the weight of this relationship is higher than that of domain/range
relationship but not as much as the equivalent relationship has [10].

Table 1. List of relationships and weights

Property Weight Property Weight
equivalentClass 20 [10] unionOf 10

subClassOf 10 [10] intersectionOf 10
subPropertyOf 10 [10] disjointWith 0-10

domain 5 [10] complementOf 10
range 5 [10] inverseOf 20

comment 0.2 [10] FunctionalProperty 5
seeAlso 0.2 [10] InverseFunctionalProperty 5

isDefinedBy 0.2 [10] Other relations 1
label 0.2 [10]

The union and intersection relations are the same as subclass relations because if

for example class A is the union of C, B and D then each class C, B and D is a sub-
ClassOf A.

If disjoint relation exists between highest-level concepts, the weight is considered
to be zero because they are really disjoint, however if it occurs in lowest-level con-
cepts, the weight is considered 10. If it occurs somewhere in between, the weight is
assigned accordingly.

When two concepts have a complement relationship, it means they are strongly
connected. We consider that at first, they have a subclass relationship (their super
class is the universal set) and then they have a complement relationship.

We put the inverseOf relations in the modules of the property that is related to, so
its weight should be high.

For object property, when the properties have an inverse functional attribute, it
means this property implies unique value and on the other hand, domain and range

edges represent subdomains of ontologies. We add the restrictions such as cardinality
after modularization because they contain literal values.

Unifying the Weight of Edges. If there is more than one relationship between two
nodes, we add up the weights of all the existing relationships between the nodes.
Thus, all weights are taken into consideration in our modularization algorithms.

3.3 Normalization

In this phase, the weights of the edges in the graph are normalized to be between zero
and one. Thus, the weight of the edge outgoing from a node v is divided by the sum of
the weights of outgoing edges from node v. This is needed for input matrix of random
walk in which every element must be between zero and one.

 ௜ܹ,௩
௡௢௥௠௔௟ = ୛೔,ೡ

∑ (ܸ)ݏ݁݃݀݁_ݐݑ݋∋݆ݒ,݆ܹ
 (1)

Where ௜ܹ,௩ is the weight of the edge outgoing from a node v that is normalizing
and the denominator is the sum of the weights of outgoing edges from node v.

3.4 Neighborhood RandomWalk Distance

We use the neighborhood random walk method [15] to measure vertex closeness. A
random walk is a mathematical representation of the path one may navigate through
multiple random steps.

 ݀൫ݒ௜ , ௝൯ݒ = ∑ ܲ(ܶ)ܿ(1 − ܿ)௅௘௡௚௧௛(்)
்:௩೔→௩ೕ (2)

Where ܲ is transition probability matrix, ݐ݃݊݁ܮℎ(ܶ) is length of random walk
where ݐ݃݊݁ܮℎ(ܶ) ≤ ݈, l is the length that a random walk can go, ܿ is restart probabili-
ty where ܿ ∈ (0,1), ݀൫ݒ௜ , .௝ݒ ௜ toݒ ௝൯ is the neighborhood random walk distance fromݒ
It measures vertex closeness and ܶ is a path from ݒ௜ to ݒ௝ whose length is ݐ݃݊݁ܮℎ(ܶ)
with transition probability ܲ(ܶ).

We perform matrix multiplication on a transition probability matrix of the ontology
graph to use the neighborhood random walk model [15].

 ܴ௟ = ∑ ܿ(1 − ܿ)ఊܲఊ௟
ఊୀ଴ (3)

In this equation, ܴ is the neighborhood random walk distance matrix. Intuitively
every element at row i, column j in R, captures the probability of navigating from
node i to j with at most l steps in graph. l is the length that a random walk can go and
it comes from the previous formula, and ߛ is the random walk step. The neighborhood
random walk distance matrix is constructed in the following steps:

1. Assigning weights to different relationships
2. Normalization of weight of step 1
3. Constructing transition probability and neighborhood random walk distance matrix

3.5 Modularization Algorithm

The proposed modularization algorithm in this section is an agglomerative algorithm.
The main difference between our algorithm and other similar algorithms in [7-8] and
[9-10] is that we use a new scoring function that calculates both intra-and inter-
connectivity. We apply scoring function for every concept node in our algorithm in
order to improve the efficiency. It means that the distance between the node and every
other node is measured. Another difference is that we consider more relations than
other approaches. We use an agglomerative algorithm, such that in each iteration, we
select two modules that have the highest positive impact on the score of modulariza-
tion. Then those modules are merged. From the scoring function perspective, the
scores of other modules may not change. This way the required computation for com-
puting modularization score is not high. The process is shown in Algorithm 1.

The advantages of agglomerative algorithms are that we don’t have to know the
size and the number of modules and the result of these algorithms depend on the cho-
sen similarity criterion [16].The input to our algorithm is the neighborhood random
walk distance matrix.
Our criterion function is the silhouette coefficient [17] (݅)ݏ where −1 ≤ (݅)ݏ ≤ 1. If
 is close to one it means that the node will be appropriately grouped. The average (݅)ݏ
 of a module is a measure that shows how appropriately the nodes have been (݅)ݏ
grouped into modules.

(݅)ݏ = ௔(௜)ି௕(௜)
௠௔௫{௔(௜),௕(௜)}

 (4)

Where ݅ is node, ܽ(݅) is the average similarity of ݅ to all other nodes within the
same module, ܾ(݅) is the highest average similarity of ݅ to nodes of other modules,
and ݏ(݅) should be computed for each node ݅. For the module ܿ, ݏ௖ which is the aver-
age of all s(i) for all nodes i in module c, is defined as follows:

௖ݏ = ∑ ௦(௜)೔∈೎
௡೎

 (5)

In this equation ݊௖ is the number of nodes in module c. To score the modulariza-
tion ܥ, we define the scoring function as follows:

(ܥ)݁ݎ݋ܿݏ = (6) (௖ݏ)௖∈஼݁݃ܽݎ݁ݒܽ

Equation (6) is used to compute efficiency of the modularization. It comes from the
average of scores of each module. Each module’s score is computed by the average of
scores of its nodes. As the score of every node is calculated using both intra- and in-
ter-module connections, the resulting efficiency of modularization is effected by both
intra- and inter-module connections of all nodes in graph.

Algorithm 1. Modularization (adjacencyMatrix)
 //C represents whole modularization
 C = put every node in a separate module
 for K=N down to 2 // K shows number of modules

// for all the pairs of nodes that could be merged
 maxS= -2
 for i=1 to K-1
 for j=i+1 to K
 c=Union(i,j);//merge modules i and j into module C
 C=C⋃{c}\{i,j};
 S=Score(C); //according to equation (6)
 //if this new score is better, save it
 if S>maxS
 maxS = S;
 modularization=C;
 end if
 end for
 end for
 bestModularization=modularization;
end for

Heuristic Algorithm. We propose the heuristic algorithm to support large ontologies
and reduce time-complexity. It is shown in Algorithm 2. The input of this algorithm is
incidence matrix that is constructed from adjacency matrix R that is calculated using
equation (3). Each row of incidence matrix represents an edge, which consists of first
node, second node and weight. It is useful for large data sets. This matrix is ordered
descending by weight column.

The time-complexity of this method is ܱ(݊ଶ) where n is the number of concepts in
the ontology, whereas the complexity of Algorithm 1 is O(n3.complexityscoring).

Algorithm 2. Modularization (adjacencyMatrix)
//C represents whole modularization
 C = put every node in a separate module
 for i=1 to N // N shows size of Adjacency Matrix
 for j=1 to N

incidenceMatrix =constructIncidenceMatrix (adjacen-
cyMatrix);

 end for
 end for
incidenceMatrix = Sort(incidenceMatrix);

 for i=1 to K // K shows length of adjacency matrix
 if Numberofmodules ==1
 break;
 end if
 //module(i,1) is the module for start node of edge(i)
 //module(i,2) is the module for end node of edge(i)
 c=Union(module(i,1),module(i,2));

//if size of merged modules are more than ߳ which is
//number of concepts/3, don’t combine modules.

 if |c|>߳
 continue;
 else
 C=C⋃{c}\{module(i,1),module(i,2)};
 end if

//Checks the score of modularization if it is fixed
//do not merged and terminate the algorithm.

 sc=Score(C);
 if (sc_old=sc)
 break;
 end if
 sc_old=sc;
 end for

4 Experimental Results

We have implemented the proposed modularization algorithms in Matlab and use
Java to process the ontologies. We use F-measure [10] to evaluate our methods. F-
measure is a value between zero and one and higher values show better performance.
This metric compares produced modules to reference modules that are already availa-
ble for tested ontologies. F-measure is computed for pairs of modules in which one
module is selected from reference modularization and another is one from the gener-
ated modules. Finally, the average F-measures of all modules is computed as the F-
measure of whole modularization.

ܨ − ݁ݎݑݏܽ݁݉ = ଶ∗௣௥௘௖௜௦௜௢௡∗௥௘௖௔௟௟
௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟

 (7)

Where precision is the number of common concepts between two modules, divide
by number of concepts in generated module. On the other hand, recall is calculated by
dividing number of common concepts by number of reference concepts.

4.1 Dataset

We use FOAF3, AAIR4, BIO5 and SWCO6 ontologies as introduced in [10] and
compared our results to concept grouping of these ontologies that are provided in their
websites, and in [10]. Table 2 shows the details of these ontologies. The following
provides a brief description of them:

 Friend of a Friend (FOAF) Ontology: FOAF is an ontology that describe persons,
their activities and other personal information.

3 http://xmlns.com/foaf/spec/20100101.html
4 http://xmlns.notu.be/aair
5 http://vocab.org/bio/0.1/.html
6 http://data.semanticweb.org/ns/swc/ontology

 Biographical Information Ontology (BIO): BIO is an ontology to represent bio-
graphical information about people, both living and dead.

 Semantic Web Conference Ontology (SWCO): The SWCO defines concepts about
academic conferences.

 Atom Activity Streams Vocabulary ontology (AAIR): This ontology is a vocabu-
lary for describing social networking sites activities.

Table 2. Details of ontologies

Ontology Number of modules
as stated in the

reference

Number of classes Number of property

FOAF 5 13 61
BIO 5 42 33
SWCO 5 29 16
AAIR 4 41 26

In [10], they apply three algorithms: Fast Greedy Community (FGC), Walk Com-
munity (WTC) and Spin Glass Community (SGC). Because FGC and WTC are ag-
glomerative algorithms, we compare our algorithms with them. As there are several
ways introduced in [10] to represent an ontology as a graph, we choose a type of their
representation of ontology in that every subject, object and predicate is represented as
a separate node.

Our results are shown in Table 3. Column 1 and 2 show F-measure of our algo-
rithms and column 4 and 5 show [10] algorithms the F-measure. The F-measure result
is multiplied by 100 as it is done in [10].

Table 3. F-measure comparison of different Algorithms on different ontologies

Ontology Alg 1 Alg 2 FGC [10] WTC [10]

FOAF 40 30 32 34
BIO 43 33 83 79
SWCO 47 38 28 31
AAIR 50 41 51 51

Analysis of Result. The distribution of classes and properties within their concept
grouping affect F-measure. For example for the FOAF ontology, one group just con-
tains properties but we consider both classes and properties to modularize. In concept
grouping of AAIR and SWCO, the distribution between classes and property is ba-
lanced and subclass relation is defined as the main concept. The groups of the BIO
ontology contain one group for classes and four groups for properties, so our score is
low. When the concept grouping contains the groups that have classes and property,

our score is good because the main objective of ontology modularization is that the
modules describe subdomains.

A Simple Case Study. We also use a small ontology given in [8], which consists of
six classes, and one property. In [8], they produce three modules, i.e. modules {Refer-
ence, Inproceedings, Book, Monograph}, {Author, Person}, and {hasAuthor}. How-
ever in our work, we produce two modules {Reference, Inproceedings, Book, Mono-
graph}, and {has Author, Author, Person}. The reason for these modularizations is
that while the work in [8] only considers subClassOf relations, we have considered
domain/range and subClassOf relations. The modularization presented by [8] is as-
sumed as reference, and the calculation of F-measure is shown in Table 4. F-measures
comparing modules 1 and 2 are consequently 1.0 and 0.5, which are computed using
equation (7). As we have only two modules, the F-measure for third module becomes
zero. The average of these three gives 0.5 as the F-measure for whole modularization.

Table 4. Experimental result on sample dataset

 Module1 Module2 Module3

Precision 1.0 0.3 0
Recall 1 1 0
F-measure 1.0 0.5 0

5 Conclusion

We have proposed modularization algorithms based on semantic and structure of
ontology. Semantic is considered based on assigning weight to different relationships.
Furthermore, we have considered more relationships than other approaches that con-
sider only hierarchical relation of classes. Considering more relationships from an
ontology leads to making more edges in graph representation of that ontology. Thus,
one can make a better decision on whether two nodes are similar.

We used neighborhood random walk distance matrix to combine semantic and
structural aspects of an ontology. Each element of this matrix is calculated consider-
ing weights of almost all elements of the transition probability matrix, thus weights
used in proposed method are more precise than methods, which only use weight ma-
trix.

We have introduced a new scoring function to merge modules. The objectives of
this function are to maximize the intra-module similarity and to minimize inter-
module similarity. The scoring function shows how appropriately nodes have been
grouped in their modules according to its objectives.

As a result, we have produced meaningful modules as we consider more relations
than similar methods, and process these relations such that each edge weight has an
impact on every module selection.

In future work, we plan to evaluate our experiments with other evaluation methods
and other datasets to determine the efficiency of our algorithms. Furthermore, we
would like to further investigate the weight of edges to improve our approach.

References

1. Parent, C., Spaccapietra, S.: An Overview of Modularity. In: Stuckenschmidt, H., Parent, C.,
Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 5-23. Springer, Heidel-
berg(2009)

2. Özacar, T., Öztürk, O., Ünalır, M.O.: ANEMONE: An Environment for Modular Ontology
Development. Data & Knowledge Engineering. 70, 504-526 (2011)

3. Doran, P., Tamma, V., Payne, T.R., Palmisano, I.: An Entropy Inspired Measure for
Evaluating Ontology Modularization. In: 5thInternationalConference on Knowledge Capture
(KCAP'09), pp. 73-80. ACM, New York (2009)

4. Pathak, J., Johnson, T., Chute, C.: Survey of Modular Ontology Techniques and their
Applications in the Biomedical Domain. Integrated Computer-Aided Engineering. 16,
225-242 (2009)

5. Zhangl, L., Liul, K., Qinl, X., Tangl, SH.: Extracting Module from OWL-DL Ontology. In:
2011International Conference on System Science, pp. 176-179.IEEE Press (2011)

6. Abadi, M.J.S, Zamanifar, K.: Producing Complete Modules in Ontology Partitioning. 2011
International Conference on Semantic Technology and Information Retrieval, pp. 137-143.
IEEE Press (2011)

7. Hu, W., Zhao, Y., Qu, Y.: Partition-Based Block Matching of Large Class Hierarchies. In:
Mizoguchi, R., Shi, Zh., Giunchiglia, F. (eds.) The Semantic Web – ASWC 2006. LNCS,
vol. 4185, pp. 72–83. Springer, Heidelberg (2006)

8. Hu, W., Qu, Y., Cheng, G.: Matching Large Ontologies: A divide-and-conquer approach.
Data & Knowledge Engineering, 67, pp. 140–160 (2008)

9. Coskun, G., Rothe, M., Teymourian, K., Paschke, A.: Applying Community Detection Al-
gorithms on Ontologies for Identifying Concept Groups. In: Proceeding of the 5th Interna-
tional Workshop on Modular Ontologies (WoMO 2011), pp. 12-24. IOS Press (2011)

10. Coskun, G., Rothe, M., Paschke, A.: Ontology Content "At a Glance". In: 7th International
Conference on Formal Ontology in Information Systems (FOIS 2012), pp. 147-159. IOS
Press (2012)

11. Stuckenschmidt, H., Schlicht, A.: Structure-Based Partitioning of Large Ontologies. In:
Stuckenschmidt, H., Parent, Ch., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol.
5445, pp. 187-210. Springer, Heidelberg (2009)

12. Batagelj, V.: Analysis of large networks - islands. In: Dagstuhl seminar 03361: Algorithmic
Aspects of Large and Complex Networks (2003)

13. Etminani, K., Rezaeian-Delui, A., Naghibzadeh, M.: Overlapped ontology partitioning
based on semantic similarity measures. In: 2010 5th International Symposium on Telecom-
munications (IST), pp. 1013–1018. IEEE (2010)

14. Resource Description Framework (RDF), http://www.w3.org/RDF/
15. Cheng, H., Zhou, Y., Xu, Yu, J.: Clustering Large Attributed Graphs: A Balance between

Structural and Attribute Similarities. ACM Transactions on Knowledge Discovery from Da-
ta. 5, 1-33 (2011)

16. Fortunato, S.: Community detection in graphs. Physics Reports. 486, 75-174 (2010)
17. Rousseeuw, P.: Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster

Analysis. Journal of Computational and Applied Mathematics. 20, 53–65 (1987)

