Towards a Unified Approach to Modular
Ontology Development Using the
Aspect-Oriented Paradigm

Ralph Schéifermeier and Adrian Paschke

Freie Universitat Berlin,
Konigin-Luise-Str. 24-26, 14195 Berlin, Germany
{schaef, paschke}@inf.fu-berlin.de
http://www.corporate-semantic-web.de/

Abstract. In this paper, we describe our ongoing work on the applica-
tion of the Aspect-Oriented Programming paradigm to the problem of
ontology modularization driven by overlapping modularization require-
ments. We examine commonalities between ontology modules and soft-
ware aspects and propose an approach to applying the latter to the
problem of a priori construction of modular ontologies and a posteriori
ontology modularization.

Keywords: ontology modularization, aspect-oriented development, cross-
cutting concerns

1 Introduction

The majority of existing modularization approaches are specialized solutions,
relying on semantic (cf., for example, [1-5]) or structural relatedness (e.g., [6-
8]) and are only parametrizable to a limited degree. Parameters often reflect
the internal operational mode of the modularization algorithm rather than re-
quirements concerning the expected outcome of the modularization process from
a user’s point of view. Moreover, requirements may be related to different di-
mensions of the problem space. They can comprise functional requirements, i.e.,
requirements directly related to the problem domain or the task an ontology or
ontology module is supposed to fulfill, and non-functional requirements, such as
provenance information, multilingualism, or tractability of reasoning tasks.

The aspect-oriented programming paradigm allows for the separation of mul-
tidimensional requirements into dedicated software code modules (aspects), lead-
ing to better code modularity and therefore reusability. Using AOP, modules can
be recombined (interwoven) either extensionally, by explicitly marking the points
in the code where the execution flow should be diverted to a different module,
or intensionally, by specifying a set of properties such code points are expected
to have in common.

In this paper, we examine commonalities between ontology modules and soft-
ware aspects and describe our ongoing work towards the application of the above
mentioned principles of the AOP paradigm to ontologies. We argue that the lat-
ter enables (a) straightforward development of modular ontologies from scratch,
and (b) flexible a-posteriori modularization, driven by user requirements.

2 The Aspect-Oriented Paradigm Applied to Ontologies

Aspect-oriented software programming (AOP) languages provide syntactic means
for the separation of so called cross-cutting concerns in software code into ded-
icated modules. As defined by the ISO/IEC/IEEE standard 42010 of software
architecture®, “concerns are those interests which pertain to the systems develop-
ment, its operation or any other aspects that are critical or otherwise important
to one or more stakeholders”. Cross-cutting concerns are concerns which emerge
from requirements on different levels, concern the entire or a significant part
of the system and are thus scattered across the system, diminishing code lo-
cality and hindering system evolution and reusability [9]. See Figure 1 for an
explanatory example of cross-cutting concerns.

Req. 1: Car

Req. 2:
Tractable

Provenance

|
I
Engine : Customer reasoning
: /
|
Frame | ‘ Tax U Mulitilingualism "
| i - [
E Units !
Wheels lf‘ sold Tractable :
i reasoning \
! See="
Stakeholder 1: | Stakeholder 2:
Engineering | Sales

Fig. 2: Selection of an ontology module

Fig.1: Cross-cutting concerns by the ex-
ample of a car ontology. Different stake-
holders are interested in different aspects
of the core concept (car). The different in-
terests (concerns) reflect requirements for-
mulated by each of the stakeholders. At
the same time, stakeholder-independent re-
quirements cross-cut the ontology. Each of
theses requirements has a different dimen-
sion.

that satisfies two cross-cutting require-
ments: It should only contain concepts
of the subdomain “car components” of
the car domain (“Engineering” aspect,
dotted), and it should only contain con-
structs that allow for tractable reasoning
(“Tractability” aspect, dashed). The re-
sulting module (grey) only contains those
constructs that are concerned by both as-
pects.

In AOP terminology, the encapsulation of a single concern in a dedicated
module is referred to as aspect. An aspect consists of two components: the actual
implementation of the functionality, referred to as advice, and information about
all points in the application’s control flow at which the advice should be executed,
referred to as join points. In this manner, we use the notion of aspects in order
to relate ontological constructs to different requirements (see Figure 2).

Listing 1.1 shows an example of a concern “authentication” that cross-cuts
with the actual business logic of a bank application and leads to tangled code.
Listing 1.2 shows how the authentication concern is encapsulated in an aspect
“Authentication”. The authentication handling code has been centralized in the
advice of the aspect.

! http://www.iso-architecture.org/42010/

Listing 1.1: Example of the cross- Listing 1.2: The concern “authentica-
cutting concern “authentication” af- tion” is encapsulated in an aspect “Au-

fecting different parts of the code. thentication”.
withdraw (Account a, float amount) { public Aspect Authentication () {
AuthService as = getAuthService (); AuthService as = getAuthService ();
if (!as.authenticated (a.user)) if (!as.authenticated (a.user))
as.authenticate (a.user); as.authenticate (a.user);
a.balance —= amount; }
} @aspect Authentication
deposit (Account a, float amount) { withdraw (Account a, float amount) {
AuthService as = getAuthService (); a.balance —= amount;
if (!as.authenticated (a.user)) }
as.authenticate(a.user); @aspect Authentication
a.balance 4+=amount; deposit (Account a, float amount) {
} a.balance +=amount;
}

Note that this example demonstrates the explicit (extensional) variant of join
points, in the form of tags assigned to each part of the code where an aspect
is applicable. In order to achieve complete detangling of cross-cutting concerns,
AOP introduces two principles: quantification and obliviousness.

2.1 Quantification

AOP allows for an intensional definition of join points by using quantified state-
ments in the form

Vm(py,...,pn) € Mz s(m(py,...,pn)) = (m(py, ..., pn) = alpy, ..., pn)),

where M is the set of all methods defined within the software product, s
a predicate specifying the join point properties, m(p1,...,p,) € M a method
adhering to the signature m(p1,...,pn), and a(py,...,pn) the execution of the
advice with all the parameters of each method, respectively [10]. The set of all
join points defined by s is called a pointcut.

In the case of the authentication example, an instantiation of this formula
would be:

Ym(p1,...,pn) € M : siglm(p1, . ..,pn)) = m(Account acc, float amount)

— (m(acc, amount) — Authentication(acc, amount)).

In order to select ontology axioms in the same fashion, a means of quantifi-
cation over such axioms is necessary.

vax(ph < pn) €0: S(a’x(plu . pn)) - (a’x(pla ce pn) - a‘(a‘x(plu o pn)))7

with O being an ontology, ax(p1, ... p,) axioms (in the form of n-ary predi-
cates the domain of which is the union of the vocabulary of the ontology language

in question and the vocabulary of the problem domain, such as class, property
and individual names), and a(ax(p1, - . . pn)) a function that applies the aspect to
az(p1, .. .pn), whereupon we define the application of an aspect to an axiom as
the inclusion of that particular axiom in the module represented by the aspect.
In this manner, the aspect “tractability” from the example scenario could be
implemented by building a query that selects all axioms which are compatible
with the OWL-EL profile.

@ Stakeholder

@0 hasAspect
|

Car —>

hasWheel
min 4 Wheel

Fig. 3: Extensional join point definition using an OWL annotation.

As mentioned in section 1, join points can also be specified extensionally,
for example, by manually annotating axioms which cover a particular aspect
with a dedicated OWL Annotation (see Figure 3). This is of particular use for
a priori modular ontology development if used, e. g., by an ontology editor with
switchable contexts, each context representing an aspect. A user could then
extensionally define an aspect-oriented ontology module by switching aspects.

2.2 Obliviousness and Harmlessness

The fact that in aspect-oriented software systems control flow is handed over
from the main module to the aspects, making the main module (and any other
modules) unaware of the (quantified or extensionally specified) assertions made
about it by external aspects that might possibly be applied to it, is termed
obliviousness [9]. The practical consequence of obliviousness is that the developer
of a module is not required to have knowledge about or spend additional effort
in anticipation of a possible application of an aspect to her module.

Danters et al. allude to the problem that obliviousness is only guaranteed on
a syntactic level while external aspects have in fact the potential to alter the
semantics of the target module, making them potentially dangerous [11]. They
propose the adaption of the harmlessness property for aspect-oriented systems,
defining a harmless aspect as an aspect which, when applied to a target module,
does not alter the semantics of the target.

While it is obvious that the obliviousness property naturally holds for ontol-
ogy modules, the harmlessness property does not. Nevertheless, it is agreed upon
in the recent literature that it is desirable if an ontology module is uninvasive,
i.e., its addition to an ontology has no side effects. Whether uninvasiveness of a
module applied by the means of an aspect is a required feature or not depends
on the specific use case.

Grau et al. [12] as well as Konev et al. [13] propose the notion of conservative
extensions which guarantee that a module added to an ontology does not alter
the meaning of the original ontology:

Let O; C O ontologies, S a signature and L a logic. O is a conservative
extension of Oy wrt. L, if for every axiom azx with sig(az) C S: O E ax iff
0, E ax.

In the same vein, we define a harmless aspect of an ontology O as an aspect
that yields the selection of a module O; that is the conservative extension of O
with respect to L.

It has been noted that determining whether a module is a conservative ex-
tension of an ontology is a highly complex problem and even undecidable for
expressive ontologies [12, 13]. However, semantic locality is a sufficient condition
for a conservative extension [4], and [14] suggests that the less complex syntactic
locality constitutes a practically acceptable approximation.

3 Conclusion and Future Work

In this paper, we pointed out that ontology modularization and aspect-oriented
programming share interesting commonalities and that the aspect-oriented para-
digm can be applied to a priori modular ontology development as well as a poste-
riori module extraction. The next step will consist in providing a proof-of-concept
system that dynamically interweaves aspects defined in the above manner.

Further work is necessary in order to achieve a functional meta description of
ontology axioms for the purpose of pointcut definition. The formalism described
in section 2.1 works in terms of meta predicates with the domain consisting of
vocabulary of the ontology language, reifing axioms contained in the ontology.

The research question raised in this paper is how the application of the
aspect-oriented paradigm affects the quality of ontology modularizations. Our
hypothesis is that aspect-oriented ontology development yields useful ontology
modules wrt. to cross-cutting modularization requirements, such as dynamic ac-
cess, understandability, maintenance, and re-use. We expect that the intensional
specification of ontology modules with pointcuts adds dynamicity and flexibil-
ity to modular development, making it easier to evolve modular ontologies in
situations where evolution implies modularization requirement changes.

To evaluate our approach and test our hypothesis, we will apply the approach
to different modularization use-cases in the context of ontology development
projects. Aspects considered in these use cases will comprise project affiliation,
temporal attribution, workflow affiliation, re-use, and module understandability.
We then use quality metrics in order to assess the quality of the modularizations
gained using our approach and compare it with existing approaches.

Acknowledgements

This work has been partially supported by the “InnoProfile-Transfer Corporate
Smart Content” project funded by the German Federal Ministry of Education
and Research (BMBF) and the BMBF Innovation Initiative for the New German
Léander - Entrepreneurial Regions.

References

1. Cuenca Grau, B., Parsia, B., Sirin, E.: Combining OWL ontologies using &-
Connections. Web Semantics: Science, Services and Agents on the World Wide

10.

11.

12.

13.

14.

15.

Web 4(1) (January 2006) 40-59

Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic Modularity and Mod-
ule Extraction in Description Logics. In: Proceedings of the 2008 conference on
ECATI 2008: 18th European Conference on Artificial Intelligence, Amsterdam, The
Netherlands, The Netherlands, IOS Press (2008) 55-59

Suntisrivaraporn, B.: Module Extraction and Incremental Classification: A Prag-
matic Approach for ££7 Ontologies. In Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M., eds.: The Semantic Web: Research and Applications. Number
5021 in Lecture Notes in Computer Science. Springer Berlin Heidelberg (January
2008) 230-244

Grau, B.C., Horrocks, 1., Kazakov, Y., Sattler, U.: Extracting Modules from On-
tologies: A Logic-Based Approach. [15] 159-186 DOI: 10.1007/978-3-642-01907-4.
Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artificial Intelligence
174(15) (October 2010) 1093-1141

d’Aquin, M., Doran, P., Motta, E., Tamma, V.A.M.: Towards a parametric on-
tology modularization framework based on graph transformation. In Grau, B.C.,
Honavar, V., Schlicht, A., Wolter, F., eds.: Proceedings of the 2nd International
Workshop on Modular Ontologies, WoMO 2007. Volume 315 of CEUR Workshop
Proceedings., CEUR-WS.org (2007)

Schlicht, A., Stuckenschmidt, H.: A Flexible Partitioning Tool for Large Ontologies.
In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology - Volume 01. WI-IAT ’08, Washington,
DC, USA, IEEE Computer Society (2008) 482—488

Coskun, G., Rothe, M., Teymourian, K., Paschke, A.: Applying community de-
tection algorithms on ontologies for indentifying concept groups. In: Proceedings
of the 5th International Workshop on Modular Ontologies, Ljubljana, Slovenia
(September 2011)

Filman, R., Friedman, D.: Aspect-Oriented Programming Is Quantification and
Obliviousness. Workshop on Advanced Separation of Concerns, OOPSLA (2000)
Steimann, F.: Domain Models Are Aspect Free. In Briand, L., Williams, C., eds.:
Model Driven Engineering Languages and Systems. Number 3713 in Lecture Notes
in Computer Science. Springer Berlin Heidelberg (January 2005) 171-185
Dantas, D.S., Walker, D.: Harmless Advice. In: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. POPL
'06, New York, NY, USA, ACM (2006) 383-396

Grau, B.C., Horrocks, 1., Kazakov, Y., Sattler, U.: Modular Reuse of Ontologies:
Theory and Practice. Journal of Artificial Intelligence Research 31 (February 2008)
273-318 ACM ID: 1622664.

Konev, B., Lutz, C., Walther, D., Wolter, F.: Formal Properties of Modularisation.
[15] 25-66 DOI: 10.1007/978-3-642-01907-4.

Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Tsarkov, D.:
Syntactic vs. Semantic Locality: How Good Is a Cheap Approximation? In Schnei-
der, T., Walther, D., eds.: Workshop on Modular Ontologies (WoMO) 2012. (2012)
40-50

Stuckenschmidt, H., Parent, C., Spaccapietra, S., eds.: Modular Ontologies: Con-
cepts, Theories and Techniques for Knowledge Modularization. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg (2009) DOI: 10.1007/978-3-642-
01907-4.

