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Abstract. The paper summarizes the conception, data preparation and
result evaluation of the LDMC, which has been organized in connection
with the DMoLD’13 - Data Mining on Linked Data Workshop, Prague,
September 23 (as part of the ECML/PKDD conference program).

1 Introduction

The organization of contests or ‘challenges’ has long tradition both in data
mining (KDD Cup, ECML/PKDD Discovery Challenge, Kaggle.com, and many
other, see also http://www.kdnuggets.com/competitions/) and semantic web
(SW Challenge, LinkedUp Challenge, USEWOD Challenge, OAEI, etc.) How-
ever, the intersection of these two fields doesn’t seem to sufficiently exploit the
potential of open competitions yet. USEWOD Challenge and OAEI definitely
have aspects of ‘data mining’, however, they focus on mining problems specific
for the semantic web field itself (linked data usage analysis and ontology match-
ing, respectively). What has been missing was a challenge event addressing a real
business knowledge discovery problem, for which semantic web approaches would
be beneficial, be it thanks to their data modelling flexibility structure or thanks
to their capability of interlinking data from independent, heterogeneous sources.
This event should give priority to reuse and adaptation of ‘the best of the breed’
from the long KDD tradition rather than to inventing linked-data-tailored ap-
proaches from scratch; in this respect it should be tied to a data mining rather
than core semantic web event.

The Linked Data Mining Challenge (LDMC) has thus been envisaged to fill
this important gap, and, generally, to spur the research collaboration between
the semantic web community (represented by the linked data sub-community as
its practice-oriented segment) and the data mining community.

This summary paper describes the conception, data preparation and re-
sult evaluation for the first LDMC edition, organized in connection with the
DMoLD’13 - Data Mining on Linked Data Workshop, in Prague on September
23, as part of the program of ECML/PKDD, one of the most recognized scientific
conferences in the data mining field.

The paper is structured as follows.



2 Business Domain, Mining Tasks and Underlying Data

2.1 Business Domain

The public procurement domain is fraught with numerous opportunities to cor-
ruption, while also offering a great potential for cost savings through increased
efficiency. For example, it is estimated that the public procurement market ac-
counts for 17,3 % of EU’s GDP (as of 2008) [10], hence optimization in this area,
including detection of fraud and manipulative practices, truly matters.

Data from this domain are frequently analyzed by investigative journalists
and transparency watchdog organizations; these, however,

1. rely on interactive tools such as OLAP and spreadsheets, incapable of spot-
ting hidden patterns, and

2. only deal with isolated datasets, thus ignoring the potential of interlinking
to external datasets.

Focusing (one or multiple editions of) the LDMC activity on this domain could
possibly initiate a paradigm shift in analytical processing of this kind of data,
eventually leading to large-scale benefits to the citizenship.

2.2 Mining Task Formulation

Due to the novelty of this kind of challenge, it was originally assumed that the
task would be merely exploratory : mining for interesting hypotheses of any kind,
whose plausibility and novelty would be subsequently judged by domain experts.
However, the conjunction of the challenge with the ECML/PKDD conference,
where predictive data mining predominates, made us also start considering suit-
able predictive tasks. Eventually, the first, 2013, edition of LDMC has been set
up as a combination of three tasks, of which Tasks 1 and 2 would be predictive
and Task 3 would amount to ‘free exploration’.

In all tasks the experimenters were assumed to make use of linked data
resources. Some external resources have been already interlinked to the origi-
nal dataset. It was also possible to heuristically link further resources from the
Linked Data Cloud. The data provided was not fully cleaned and it did not
adhere to the used ontologies entirely, especially regarding cardinalities.

2.3 Task 1

The task was to predict the number of bidders (as integer value). In the training
dataset, the number of bidders was expressed as value of the pc:numberOfTenders
property. The preciseness mattered most for the lower values, e.g., predicting 2
bidders where there are 3 is a more important error than predicting 12 bidders
where there are 13. This has been reflected in the evaluation measure.

The dataset was divided as follows:



– The training dataset contained 1,658 US public contracts (as instances of
pc:Contract class), with the number of submitted tenders known. There has
been 38,743 RDF triples, and 469 owl:sameAs links with external entities.

– The testing dataset contained 1,737 notices of US public contracts (as in-
stances of pc:Contract class) that were still open to bidders. There have been
37,489 RDF triples, and 346 owl:sameAs links with external entities. The
number of tenders (i.e. pc:numberOfTenders) for the public contracts was
not yet known and thus not featured in the data. The selected contracts
were assumed to be closed shortly after the deadline for submitting results
for this task.

The results for the task were required to be delivered in CSV format with two
columns. First column would contain the URI of an annotated public contract,
and the second column would contain the predicted number of tenders for the
public contract in the format of positive integer.

The principal evaluation measure at the level of individual object has been the
absolute value of the difference between the predicted value v̄ and the reference
value v, adjusted by the reciprocal value of the (smaller, except zero) value size
and normalized to [0,1] by a sigmoidal function:

Err(v, v̄) =
2

1 + e−
‖v−v̄‖

max(1,min(v,v̄))

− 1

The adjustment by reciprocal value made the cost of errors uneven for the same
value difference (same difference for larger values counting less than that for
smaller values). The error values were to be aggregated by average.

2.4 Task 2

The task was to classify the contracts as multi-contract or its opposite. A multi-
contract is a contract that (often, ‘suspiciously’) unifies two or more unrelated
commodities. It is also possible to classify a contract as borderline. In the training
dataset, the multi-contract annotation is expressed as value of the artificially
added multicontract property.

Due to difficulties in the manual annotation process, the datasets were rather
tiny:

– The training dataset contained 40 multi-contracts and 168 non-multi-contracts.
There have been 141,976 triples, and 372 owl:sameAs links to entities.

– The testing dataset contained 10 multi-contracts and 42 non-multi-contracts
(to keep the positive/negative ratio equal as in the training set). There have
been 60,518 triples, and 82 owl:sameAs links to entities.

The data corresponded to UK public contracts, plus CPV codes and DBpedia
entities.

The results for the task were be delivered in CSV format with two columns.
The first column should contain the URI of an annotated public contract, and



the second column should contain annotation for the predicted variable with
three possible values: 0 if the contract is not a multi-contract, 0.5 if the contract
is a borderline case, and 1 if the contract is a multi-contract.

The evaluation measures considered have been:

– Accuracy: average distance between the predicted values and the reference
values, all of which can take the discrete values from the set 0, 0.5, 1, see
above.

– Precision: the proportion of predicted multi-contracts (i.e. predicted value
1) that are indeed multi-contracts (i.e. reference value 1).

– Recall: the proportion of true multi-contracts (i.e. reference value 1) that are
predicted as multi-contracts (i.e. predicted value 1).

2.5 Task 3

The task was to find (and possibly attempt to suggest explanations to) any kind
of interesting hypotheses (nuggets) in data. An example could be hypotheses
related to uneven distributions of CPV codes in different geographical segments
of contracts data, but many other options were possible.

The data contained 5,002 instances of pc:Contract, described using 431,300
RDF triples; there have been also 5,120 owl:sameAs links The contract data
came from the following resources

– https://www.fbo.gov/

– http://usaspending.gov

– http://contractsfinder.businesslink.gov.uk

– http://linked.opendata.cz/resource/dataset/far-codes (FAR codes
referred to by the US contracts, as collected by the LDMC team)

– http://linked.opendata.cz/resource/dataset/cpv-2008 (CPV codes re-
ferred to by the UK contracts, as collected by the LDMC team)

– http://dbpedia.org/ (encyclopaedic data)

Evaluation was supposed to based on interestingness of the findings (and
possibly their interpretation), described in a submitted paper and judged by
experts in public procurement. Although Task 3 was possibly more relevant
for getting practical insights into the data from the business point of view, it
has not attracted enough attention (possibly due to ECML/PKDD bias towards
computational rather than business aspects of KDD) and has not been addressed
by any of the submissions.

2.6 Vocabularies Used

The data for all three tasks has been modelled using RDF vocabularies and
ontologies, including the following:

– Public Contracts Ontology (http://purl.org/procurement/public-contracts#)
– Schema.org (http://schema.org/)



– GoodRelations (http://purl.org/goodrelations/v1#)
– Dublin Core Terms (http://dublincore.org/documents/dcmi-terms/)
– Simple Knowledge Organization System (http://www.w3.org/TR/skos-reference/)
– VCard (http://www.w3.org/2006/vcard/ns#)
– Asset Description Metadata Schema (http://www.w3.org/ns/adms#)

The format of data was RDF in Turtle serialization (GZipped).

3 Data Selection and Preparation Process

There has been very little previous experience with preparing RDF data for anal-
ysis by mainstream data mining tools. The process of data preparation proved
more difficult than initially expected. By consequence, both Task 1 and Task
2 suffered from the extremely small size of the samples. We will now discuss
problems encountered when preparing the datasets for both predictive tasks.

3.1 Data Selection and Extraction

Data for Task 1 depended on the availability of the number of contract bidders
in source data. In many public procurement datasets this number is currently
not disclosed, for example in the case of British ContractsFinder. Therefore, our
choice of datasets from which to draw the sample for this task was severely
limited. Due to our limitation to English language data, we chose to use data
from USASpending.gov, which provides data on the number of business entities
that bid on contract notices. Having chosen this source soon we discovered that
it only provides data about awarded public contracts, all of which already have
number of bidders published. While the retrospective disclosure was sufficient
for the training sample, it was not possible to prepare a testing sample from such
data. For the purposes of testing dataset we hoped to obtain a selection of public
contracts notices, for which the deadline for submitting tenders was situated in
the future, so that the number of bidders would be unknown prior to the delivery
of LDMC’s results. In such a selection the number of bidders would be revealed
after the deadline for submitting results to LDMC, typically in contract award
notices. However, since all public contracts in the USASpending.gov dataset had
already been awarded, we needed to find another data source, which publishes
contract notices. While there are several such sources, the major one that we
found is FedBizOpps.gov, which conveniently provides a data dump in XML,
thanks to the Data.gov (U.S.) open data initiative.

We transformed the CSV data from USASpending.gov to RDF using a SPARQL
mapping executed by tarql (https://github.com/cygri/tarql). Similarly, we
converted the FedBizOpps.gov dataset from XML to RDF using a custom XSLT
stylesheet. Having both datasets in RDF, we needed to establish identity links
between the same public contracts from the two sources. We used a simple Silk
(http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/) linkage rule
based on contract identifiers and associated version numbers, with which we how-
ever only managed to link a small fraction of public contracts present in both



dataset. The low recall of the linkage rule was caused by differences in identifiers
used for public contracts in the processed datasets. Even though some differ-
ences have been smoothed by applying a straightforward normalization, we had
to omit public contracts with widely distinct, erroneous (such as the omnipresent
”0001” code) or even missing identifiers. Ultimately, we obtained 1658 identity
links between public contracts in the two datasets, all of which were used for the
training sample for Task 1.

To prepare the testing dataset for Task 1 we needed to collect public con-
tracts for which the number of bidders would be disclosed during the interval
between the deadline for LDMC’s results submission and the publication date
of LDMC evaluation results (minus a few days to allow for data processing and
evaluation). Based on an analysis of the typical delay between the deadline for
tender submission and the date when the number of bidders is published, we
opted for a delay of 1 month, meaning that the testing dataset included pub-
lic contracts notices with tender submission deadline from the interval starting
a month before the LDMC’s results submission deadline to at least a month
prior to the publication date of LDMC evaluation results. Such selection criteria
yielded 1737 public contracts. Knowing about the lossy nature of linking these 2
sources and given the assumption that for a large part of the contracts award the
data is not published at all, we expected to be able to obtain the actual number
of bidders only for a fraction of the testing dataset. During the submissions’
evaluation we harvested recent data from USASpending.gov and interlinked it
with data from the testing dataset using the same procedure as described above.
This exercise yielded 50 public contracts for which we got the actual number
of bidders. Consequently, the evaluation of task 1 was based on this fractional
subset of the original testing data.

Preparation of datasets for Task 2 faced different challenges. Because of our
restriction to English language data, we chose to use the British Contracts-
Finder application as a source, since it provides XML exports, which we had
already converted into RDF. However, as we learnt afterwards, there were sev-
eral problems with missing data in the converted output, which were due to the
overly imperative nature of the XSLT stylesheet that had been used to execute
the transformation. For example, additional Common Procurement Vocabulary
codes were lacking at times, since the stylesheet had been written so as to expect
exactly one additional code. The crucial role in preparation of the datasets for
Task 2 was enacted by two domain experts whom we contracted to annotate the
data. Their task was to classify the data either as multi-contracts or as non-
multi-contracts. We coined the term ‘multi-contract’ to denote public contracts
that bundle unrelated products or services (for example, software and cleaning
services), which in fact should be split into multiple separate contracts. In or-
der to pre-filter the public contracts for manual annotation, we extracted public
contracts that had the least similar main object and one of their additional ob-
jects. The objects of contracts in British ContractsFinder are expressed using
the Common Procurement Vocabulary (CPV), a standard code list for public
procurement in the EU. CPV has a hierarchical structure, so we inferred the



dissimilarity of two CPV codes from their distance in the hierarchical tree of
CPV. Having the CPV data previously converted to RDF, we merged it with
British contracts data and extracted contracts with 1000 least similar codes.
The resulting list of contract URIs was transformed into a readable table using
a complex hand-crafted SPARQL SELECT query. In this way, we managed to
provide the domain experts with a friendlier representation than would be raw
RDF, while also presenting them with only a manageable subset of contracts
that were more likely to be annotated as multi-contracts. Unfortunately, due to
the prolonged preparation time and limited availability of domain experts we
ended up with 200 annotated public contracts only. Moreover, as we learnt from
the domain experts, pre-filtering public contracts based on distance in the CPV
hierarchy did not work as expected because of the existence of closely related
CPV codes contained in completely different branches of the code list.

The annotated public contracts have been split into two parts, the first of
which was published as the training set, while the second was stripped from
annotations and used as the testing set. The annotations for the testing set were
withheld in order to serve as validation data.

Preparation of data for Task 3 was by far the least problematic. Much of
its ease of preparation can be ascribed to minimal requirements on its output.
Since Task 3 was about open exploration of data, it was possible to provide just
the available data without much preprocessing. Having transformed both source
datasets for Tasks 1 and 2, i.e. USASpending.gov and British only Contracts-
Finder, we selected 5,002 random instances of public contracts coming from a
mix of the two sources, which were then used for the dataset of Task 3.

All datasets prepared for the LDMC had been subject to basic cleaning and
deduplication. On the other hand, at this step the datasets had been polluted
by artefacts and by-products of cleaning procedures that left traces of their
materialized auxiliary data in their output.1 Datasets had been enriched by geo-
coding postal addresses present in them. Business entities participating in public
procurement, i.e. contracting authorities and bidders, had been linked to corre-
sponding DBPedia resources. However, due to poor quality of the data, lacking
strong identifiers, the precision and recall of the external linkage was very low.
Finally, datasets had been enhanced with DBPedia data harvested by following
their links by LDSpider (https://code.google.com/p/ldspider/), which was
configured to fetch resources within the 1-hop neighbourhood. Unsurprisingly,
supplying potentially relevant data from DBPedia came at the cost of further
increasing the level of noise in the resulting sample datasets.

3.2 Data Propositionalization

In order to further lower the barrier of entry for LDMC participants, we originally
planned to deliver the datasets for all tasks in the form of relational tables or a

1 In particular, apart from pruning identical resources, the deduplication also led to
over 14 thousand superfluous owl:sameAs links that connected resources with the
same URIs, due to a bug in the version of Silk we used.



single table in CSV. The reasoning behind this decision was motivated by the
recognition that most existing data mining tools are not capable of handling
RDF, whereas they support well tabular data either in relational tables or in
CSV. The same motivation drove Ramanujam et al. [7] when they proposed
transforming RDF into relational structures to enable reuse by existing tools.
An additional advantage of having data in CSV was the possibility to use Kaggle2

competitions as parallel platform for undertaking analysis of the same data.
Unfortunately, in the end we did not manage to provide propositionalized

data to LDMC participants. The main cause behind this state of affairs was
due to our underestimation of time and resources needed to develop a solution
for RDF propositionalization. The primary source of complexity was our deci-
sion to transform RDF in a schema-agnostic fashion, so that the mechanism is
not task-specific and is able to recursively process previously unknown linked
data. In order to fulfil this requirement, we had to program automatic discov-
ery of empirical schema of data via exploratory SPARQL queries. An additional
source of complexity arose from the messiness of processed data, which had to
be normalized and enriched before proceeding with propositionalization.

Our intention was to deliver LDMC datasets in two additional forms: set
of relational tables and single aggregated table. When the goal is to produce a
single table from RDF, the most naive implementation could use a table with
3 columns for subjects, predicates and objects, which is not all that usable.
A slightly more sophisticated approach is to convert RDF into a set of per-
property tables, in which each property becomes the name of a table containing
2 columns for subjects and objects associated with the property. To get closer to
the typical form of relational data Ramanujam et al. [7] proposed to transform
RDF into tables per each class, containing all properties used with the class
instances in 0...1 cardinality, while for each property of higher cardinality a
separate table is created. To execute the transformation from RDF to tabular
data, SPARQL SELECT query form is a well-suited option [1]. Thanks to its
strong SQL heritage, SPARQL allows to implement most aggregation functions
used for propositionalization in SQL [8]. Moreover, SPARQL 1.1 provides the
results directly in standardized tabular format, either in CSV or TSV [9]. The
details of our initial plan for RDF propositionalization are described in our
previous paper [6].

4 Summary of Participants’ Results

The response to the challenge call was relatively weak, presumably due to the
novelty of the task and small number of researchers with sufficient expertise in
both data mining and linked data. Task 1 has been addressed by two groups, from
the Technical University of Darmstadt (TUD) and from the Vrije Universiteit
Amsterdam (VUA). Task 2 has only been addressed by the (same) VUA group.
Task 3 (free exploration) has unfortunately not attracted any participant.

2 http://www.kaggle.com



4.1 Task 1

Both participants obtained comparable values of the error formula on the vali-
dation set. TUD was slightly better (0.3747) than VUA (0.3849). Both results
are worse than a constant-value predictor with the constant set to any value
between 4 and 7 (for VUA also including 3). The best constant-value pre-
dictor was obtained for the most frequent value in the validation set, 4, with
Err(v, v̄) = 0.3057. However, for value 1, which was most frequent in the train-
ing set, the constant predictor would perform much worse (0.8138). The dis-
balance of class values in the training and validation datasets (possibly related
to the temporal shift: the validation dataset contained newer contracts due to
requirement of their unknown result at the time of participants’ analysis) was
probably caused by the overall small size of the data: only 50 examples have
been eventually used for validation.

4.2 Task 2

The only participant, VUA, reached the accuracy of 0.7885. Similarly to Task 2,
this result is below the baseline corresponding to predicting the most frequent
value (non-multi-contract), which is 0.8077. The precision was 0.3333 (out of
the 3 predicted multi-contracts, one was a labelled as such) and the recall was
0.1 (one of the ten labelled multi-contracts was predicted as such). Somewhat
surprisingly, the experimenters did not seem to exploit the information about the
overall number of multi-contracts in the validation dataset, which was publicly
available on the website.

4.3 Domain Experts’ View

The authors of LDMC submissions avoided interpretation of their results and
instead focused on technical aspects of the data mining techniques employed.
No submission was received for the open, exploratory task 3. Therefore, domain
experts were not able to judge the relevance of submissions.

4.4 Syntactical Issues of Results Delivered

Instead of URIs of contracts, the TUD team used URIs of their identifiers (values
of adms:Identifier). Furthermore, all 3 delivered submissions were not formally
valid CSV.

5 Conclusions

The first edition of LDMC already provided useful feedback to its organizers.
Discussion to be held at the DMoLD’13 workshop is likely to led to improvements
in the challenge’s setting. A crucial question to be solved is why the impact of
external linked data was claimed to be negligible for the result of predictive tasks.



In longer term, we plan to eventually complement RDF data by data trans-
formed to the CSV format, including a single (‘propositional’) table. This will
allow to address predictive tasks via the Kaggle platform. Regarding the col-
location of the DMoLD workshop with the ECML/PKDD conference, it is to
be determined whether this kind of conference is an optimal venue; a possible
alternative would be a more business-oriented conference with focus on business
aspects of data mining.
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6. Mynarz, J., Svátek, V.: Towards a benchmark for LOD-enhanced knowledge discov-
ery from structured data. In: Second International Workshop on Knowledge Discov-
ery and Data Mining Meets Linked Open Data (Know@LOD’12). Available from
WWW: http://ceur-ws.org/Vol-992/paper6.pdf. ISSN 1613-0073.

7. Ramanujam, S., Gupta, A., Khan, L., Seida, S., Thuraisingham, B.: Relationalizing
RDF stores for tools reusability. In: Proceedings of the 18th international conference
on World Wide Web. New York (NY): ACM, 2009, pp.1059–1060.

8. Reutermann, P., Pfahringer, B., Eibe, F.: A toolbox for learning from relational
data with propositional and multi-instance learners. In: Proc. 17th Australian Joint
Conference on Advances in Artificial Intelligence. Springer, 2004, pp. 1017–1023.

9. Seaborne, A. (ed.). SPARQL 1.1 Query results CSV and TSV formats [online]. W3C
Recommendation 21 March 2013. Available from WWW: http://www.w3.org/TR/
sparql11-results-csv-tsv/

10. Study on the evaluation of the Action Plan for the implementation of the legal
framework for electronic procurement (Phase II): Analysis, assessment and rec-
ommendations. Version 3.2. 9 July 2010. Online: http://ec.europa.eu/internal_
market/consultations/docs/2010/e-procurement/siemens-study_en.pdf.


