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Abstract: Providing applications in stipulated qualities is a challenging task in today’s
cloud environments. The dynamic nature of the cloud requires special runtime models
that reflect changes in the application structure and their deployment. These runtime
models are used to forecast the application performance in order to carry out mitiga-
tive actions proactively. Current runtime models do not evolve with the application
structure and quickly become outdated. Further, they do not support the derivation of
probing information that is required to gather the data for evolving the runtime model.
In this paper, we present the initial results of our research on a forecasting approach
that combines Kieker and Palladio in order to forecast the application performance
based on a dynamic runtime model. To be specific, we present two instrumentation
languages to specify Kieker monitoring probes based on structural information of the
application specified in Palladio component models. Moreover, we sketch a concept
to forward the monitored data to our PCM-based runtime model. This will empower
Palladio to carry out performance forecasts of applications deployed in dynamic envi-
ronments, which is to be tackled in future research steps.

1 Introduction

Cloud-based applications evolve continuously during their runtime as integrated services
are updated or their deployment context changes. For instance, cloud environments allow
to migrate software components online from one infrastructure to another (cf. [WLK11]).
Moreover, the functionality of used third-party services may evolve during runtime, e.g.,
by integrating additional services or due to version updates. As the application functional-
ity is offered with certain qualities being influenced by these changes, the quality assurance
of cloud applications within their dynamic context is challenging. The concept of runtime
models has been established as an effective technique in order to reflect current applica-
tions states and to forecast their quality attributes such as performance [BBF09]. This
enables the proactive identification of upcoming performance bottlenecks and allows to
perform mitigative actions in time to maintain a certain application quality.

Owing to frequent changes, rigid prediction models proposed in the related work, e.g.,
[GT09] and [LWK+10], quickly become outdated and, hence, do not provide the appro-
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priate basis for performing forecasting during runtime. The need for runtime models that
represent actual characteristics of the application, such as the application structure and
deployment information, seems to be indicated. Current instrumentation approaches for
creating runtime models, such as Kieker [vHWH12], generate and maintain dynamic run-
time models on the basis of monitored method invocation traces. The key characteristic of
such runtime models in reflecting the current application status offer a promising basis for
the forecast of application qualities in dynamic environments.

Kieker provides powerful tool-support for maintaining the synchronization between the
runtime model and the actual application characteristics. However, Kieker’s monitoring
purpose excludes the forecast of application qualities, such as performance, which is re-
quired for carrying out mitigative actions proactively. In order to gain the ability of fore-
casting application attributes, we combine the monitoring capabilities of Kieker with the
forecasting capabilities of Palladio (see [BKR09]) in one single runtime model. With this
combination, we aim for covering two interrelated aspects in the quality assurance of dy-
namic cloud applications. First, this will enable the forecast of the application performance
on basis of an up-to-date representation of cloud applications. Second, the combination
will furnish the verification of structural changes, e.g., meant to mitigate forecasted per-
formance bottlenecks, against data-geolocation policies (cf. [HHJ+13]).

However, two problems arise when combining Kieker and Palladio to achieve the afore-
mentioned goal. The locations where to inject probes in the application for collecting
method traces have to be specified, as this is required to generate the dynamic runtime
model. One available source for structural information of the application is the Palladio
component model (PCM) that may be exploited as reference for the probing information.
Thus, the first problem is how to specify probing information based on PCMs. The second
problem is that monitoring results (i.e., the runtime information) must be forwarded to the
PCM. Thus, the second problem is how to enrich the PCM with the collected monitoring
data.

In this paper, we present the results of an initial step towards the integration of both tools.
We introduce two instrumentation languages to address the first problem allowing to gen-
erate probes in our next research steps. The instrumentation aspect language (IAL) allows
to specify where monitoring probes are injected in the code based on structural application
information codified in the PCM. It also specifies which application attributes have to be
monitored. To this aim, the instrumentation record language (IRL) describes data struc-
tures to represent the monitored information. In order to address the second problem, we
propose an approach to augment conventional PCMs with monitoring information to fur-
nish a PCM-based runtime model. Furthermore, application usage profiles are generated
based on monitoring information that are subsequently used to carry out accurate fore-
casts. This closes one gap in MDSE and makes Palladio models beneficial during runtime,
e.g. for runtime adaptation of the observed cloud application.

The remainder of the paper is structured as follows. Section 2 describes an application
scenario based on CoCoME [RRMP11]. Section 3 gives an overview of the proposed
approach, which is detailed in Section 3.1 and Section 3.2. Section 4 discussed related
work before the paper is concluded in Section 5.
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Figure 1: Example iObserve Adaptation Scenario for observation of data-migration processes in the
CoCoME case study in which some German data policy is violated.

2 Example Adaptation Scenario: Observation of data-migration pro-
cesses in the CoCoME case study

In our motivating scenario, an international supermarket chain, i.e., stakeholder ’Dis-
counter’ (see Fig. 1), runs a trading application, which is structurally based on Co-
CoME [RRMP11]. The discounter uses the trading application for management and con-
trolling purposes. Among other tasks, the application gathers shopping transactions of
customers to offer payback discounts. The business logic of the trading application is
hosted on-premise, being located in Germany. For scalability reasons the persistency layer
is outsourced to the cloud. The application uses a DBaaS solution provided by ’DBaaS
Provider 1’. For the sake of simplicity, we assume in this scenario that the provider
owns the underlying infrastructure. Anyway, the infrastructure could be owned by a
third party as well. The used DBaaS is a MySQL instance named ’MySQL1’ offered
as a service that is executed on an Eycalyptus virtual machine ’VM1’. The data center
hosting VM1 is located in Germany. In order to offer apparently unlimited storage ca-
pacities (cf. cloud characteristics described by the NIST standard [MG11]) the database
is connected to storage resources provided by stakeholder ’DBaaS Provider 2’ that oper-
ates data centers worldwide. The database containing personally identifiable information
(PII), i.e., purchasing and credit card information of EU customers, is shared among both
databases and is hosted at different data centers ’D1’ and ’D2’. Due to the EU data pro-
tection directive (see http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?

uri=CELEX:31995L0046:en:HTML) the PII is not allowed to cross the EU borders,
which is stipulated in data-geolocation policies.

In the following, we sketch a scenario based on this architecture that leads to a violation
of the data-geolocation policies. The ’Discounter’ runs a discount campaign during christ-
mas. An unexpected large amount of users respond to this campaign, which leads to a
huge amount of transactions collected by the trading application. In order to assure a high
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Figure 2: Kieker and Palladio Coupling

performance level the ’DBaaS Provider 2’ continuously forecasts performance to identify
bottlenecks that his databases may face in the near future. The forecasting algorithms in-
dicate an upcoming violation of performance SLAs. In order to mitigate this upcoming
incident the provider plans to automatically migrate the ’MySQL2’ database to one of his
other data centers having sufficient unused capacities during the problematic time frame
to fulfill the performance SLAs. The migration of VMs during their runtime is called VM
live migration and has perceived large attention recently (see, for instance, [WLK11]. Tar-
get of the live migration of VM2 (hosting MySQL2) is data center D3 being located in
the USA. The ’DBaaS Provider 2’ actually migrates the VM2. With this migration, PII
exceeds the boundaries of the EU. While meeting the performance SLAs towards ’DBaaS
Povider 1’, this migration violates the data-geolocation policies attached to the PII.

3 Generation of the Dynamic Runtime Model

The proposed forecasting approach includes a model-driven monitoring and performance
forecasting based on Kieker and Palladio. In order to carry out forecasts during runtime,
several artifacts have to be created during design time (cf. Figure 2).

During design time, the PCM specifying the application has to be created. The model code
relationship can either be achieved programmatically or with code generation. The PCM
is annotated with information on the instrumentation probe placement specified in the IAL
(see subsection 3.1). A code generator, to be developed in our future research, creates
probes and weaving information out of the artifact supporting different AOP-technologies
used on code level. The resulting application is then deployed and executed.

At runtime, the monitoring probes collect data and feed them into a Kieker analysis com-
ponent that interprets the monitoring data and determines response times, call traces, and
workload profiles. Based on those, the PCM runtime model is updated and fed to a Palladio
simulator to forecast the application performance, as described in subsection 3.2.
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3.1 Instrumentation Aspect

Instrumentation is a cross cutting concern in software systems and can therefore be ex-
pressed with aspect-oriented techniques, such as aspect-oriented modeling (AOM). Fig-
ure 3 illustrates the relationship of the instrumentation aspect language (IAL) and the in-
strumentation record language (IRL) to the Kieker monitoring artifacts.
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Figure 3: Overview of our model-based instrumentation approach

The IAL allows to express join points for the instrumentation aspect in a Palladio model
through queries over that model. Furthermore, it allows to define the advice by specifying
the record structure used for a probe and the information sources for the monitoring record.
This information is then used to generate probes and additional weaving information. The
record structure itself is described in artifacts written in the IRL, which provides a sim-
ple record model based on a programming language independent type system (cf. IDL of
CORBA [Gro06]). The code generation process of the IAL and IRL depend on the target
language, meaning the programming language used to implement the system, the different
technologies to realize aspect integration, and the way Palladio model elements are repre-
sented in the target language, for example, the package structure and naming scheme of
identifiers. The target language and the technologies to realize the aspect are considered
together, as they both influence how code in general is generated. The naming scheme is a
separate issue, as it can vary even if the same language and technology are used.

The first issue can be resolved by adding information on the used technology and thereby
the programming language to the model of the software system. As Palladio is not bound
to a specific technology and does not allow to specify technology choices in its model,
we have two options to integrate the technology information into the model. First, we can
extend Palladio to include technology information, which has the downside that modifi-
cations to Palladio effect all tools created for Palladio, making it hard to introduce this
feature into the Palladio community. Furthermore, it is against the design principle of Pal-
ladio to be technology independent. Second, we can extend the aspect language to carry
such information. However, the specification of the technology is not really part of the
model level of the aspect. Therefore, we decided to describe the technology information
through annotations based on the semantics package of the Kieler framework [vHFS11].
This allows to extend the annotations if necessary in order to cover different technologies
and further properties. Moreover, it makes the distinction between aspect and technology
information clearer to the user of the language.
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The second problem is the mapping of references from model to code. As we cannot
control the realization of modeled components in code, we cannot write a simple resolving
algorithm covering this area. Instead, we provide an interface for a reference resolution
method that can be introduced on project basis.

3.1.1 Instrumentation Aspect Language (IAL)

The instrumentation aspect language is based on the Xtext (see http://www.xtext.

org) language framework. The IAL itself comprises a path like expression language to
refer to Palladio model elements, and expressions to define the advice.
package kieker.monitoring.probe

@communication SOA−J2EE
aspect TradingSystem.∗∗.Application[#name=’Store1’].Calc.getCart(in Cart) {

before BeforeOperationEvent(time,id,$name)
after AfterOperationEvent(time,id,$name)

}

Listing 1: Model of a monitoring aspect formulated in the insturmentation aspect language

Listing 1 shows a small IAL example realizing the instrumentation of the software system
described in our scenario. The example instruments components which belong to Store1
or the discounter. The first line in the listing specifies the package structure the aspect
belongs to. The annotation in line three expresses the technology used to realize the com-
munication for the specified method. The join point expression is a path query, navigating
the Palladio model. In this case it refers to all methods in our scenario TradingSystem of a
Calc component inside an Application component that is named Store1.

The path syntax is also used for the advice to define the parameters of the monitoring
records. time or id are framework functions and are expressed by their name. The third
parameter in the example is $name. While design time and run time properties of com-
ponents are prefixed with a #, properties provided by the reflection API are prefixed with
$. Therefore, the $name property refers to the name of the context element, which is the
method getCard in the example. The language supports other reflection API calls and built
in functions that will be published on the Kieker development website.

To complement the language and its auto-generated editor, the tooling includes code gener-
ation. Our generator consists of one main generator component, providing aspect reference
resolution by querying the Palladio model and collecting the resulting model nodes. The
single model nodes are expanded to full qualified paths and then passed to a technology
specific code generator, which is selected based on the annotation information.

The technology specific generator covers code generation for the probes and its configu-
ration files. To be able to create correct references in these configuration files, it requires
a project specific mapping function, which is introduced on load time into the generator
component using the inject feature of Xtend (see http://www.xtend.org) that we use
to implement the generators. Based on this information, the technology specific generator
produces the probe and configuration informations for the aspect integration.
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3.1.2 Instrumentation Record Language (IRL)

The instrumentation record language (IRL) allows to declare data structures in a program-
ming language independent way. The present incarnation of the IRL supports properties
and constants of primitive data types. The IRL is equipped with a flat type system exclud-
ing recursive types. This keeps the complexity of code generators and type mappings at
a minimum. Furthermore, it hinders the creation of complex data structures that would
cause an increase in monitoring costs.

The type system implemented in the IRL provides a small set of primitive types (such as
int, string, boolean, and arrays or vectors) that can be represented in any programming
languages. Furthermore, the IRL has sub-typing capabilities, which allows to specialize
record types and minimizes the specification effort. For example, the IRL code snippet in
Listing 3.1.2 realizes three record types used in the Kieker event-based trace monitoring
concept and a geolocation record.

package kieker.common.record.flow.trace.operation

struct AbstractOperationEvent {
const string NO SIGNATURE = ”<no signature>”
long timestamp =−1
long traceId =−1
int orderIndex =−1
string operationSignature = NO SIGNATURE
string classSignature = NO SIGNATURE

}

struct AfterOperationFailedEvent :
AbstractOperationEvent {

string cause = ”<no cause>”
}

package kieker.common.record.geolocation

struct GeoLocation {
int countryCode // ISO 3166−1 numeric

}

Listing 2: Record types for monitoring for traces and geo location

The IRL code generator is designed to be extended by any number of record generator
supporting new languages or APIs. At present, we support Java, C, and Perl. These
language specific generators must implement the generator API implemented through the
abstract class RecordLangGenericGenerator. The class defines a set of abstract methods and
provides a model query function to collect all property declarations of all parent types of
a record type, a common functionality for all generators.

3.2 Palladio Usage Model Adaptation

The PCM includes a usage model that represents the behavior of certain classes of applica-
tion users. Thus, it represents the interaction between users and the application in the form
of sequences of system entry calls annotated with the workload the system has to handle.
In our approach, we create a usage model based on runtime information or adapt an exist-
ing usage model accordingly. Therefore, we must collect monitoring data, interpret it, and
use it to modify the usage model. The resulting model is used together with other partial
PCM models for forecasting.

Analysis techniques which are part of the Kieker framework are used to analyze the moni-
toring records and gather call traces and workloads (i.e., frequency of calls to the system).
Based on the trace information, the sequence of system entry calls is constructed. The
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frequency of calls to the system is used to initialize the workload specification. For this, a
statistical analysis is conducted on the monitoring data, which results in probability distri-
butions suitable for workload specification. In addition, if the monitoring identified move-
ments of software components from one provider to another, for example, other partial
PCM models are adapted in a similar way.

Triggered by the events captured by Kieker, the PCM-based runtime model is continuously
modified and thus reflects current application characteristics. In order to identify possible
upcoming bottlenecks, trends have to be derived from the monitoring history. Trends in
call traces and workloads are used to iteratively adapt the PCM usage model to reflect how
the system usage profile may evolve when time advances. Similarly, other partial PCM
models are adapted. Thus, the trend observed in history via monitoring is continued at
modeling level. As soon as the monitoring identifies another trend, the PCM is adapted
accordingly. For each iteration, a forecasting is conducted based on the current character-
istics of the system to identify possible bottlenecks.

4 Related Work

The utilization of runtime models to carry out forecasts of different application qualities
has received considerable attention in the past. Runtime model based performance pre-
diction has been addressed by, e.g., Ivanovic et al. [ICH11], who propose static analysis
techniques to create runtime models able to predict performance bottlenecks to appear in
the near future. In order to carry out performance predictions, Leitner et al. [LWK+10]
combine prediction models, created manually during design time, with monitoring data,
and machine learning techniques. Schmieders et al. [SM11] propose the use of model
checkers, monitoring data and context assumptions in order to proactively identify perfor-
mance bottlenecks. Availability has been addressed by, e.g., Bucchiarone et al. [BMPR12],
who combine multilayer monitoring data and decision trees to trigger adaptations proac-
tively in order to maintain desired application availability thresholds. Ghezzi et al. [GT09]
use Markov chains and monitoring data as input for a model checker that checks the model
against availability requirements derived from SLAs.

While some solutions above are able to cope with resource re-assignments, they all fall
short in coping with newly introduced services at runtime. In order to tackle this issue, the
work proposed by van der Aalst et al. in [vdASS11] builds a runtime model automatically,
i.e., a transition system, by analyzing and aggregating monitored method invocation traces.
As being annotated with response time information, the transition system furnishes the per-
formance forecasts of the application. Hoorn proposes the SLAstic approach [vHRGH09]
that uses architecture description models (ADM) developed at design time and adapts that
model at runtime based on monitoring data. However, SLAstic is not able to cope with
the integration of new probe and record types. Futhermore, the ADM is a specialized
model that must be manually created to meet the structure of the implementation. The
aforementioned approaches do not apply usage models that aim to reflecting the use of
the application by its users. As usage models have been successfully applied to predict
application qualities during design time (cf. [BKR07]), we assume that the utilization of
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this technique will increase the effectiveness of forecasting during runtime.

5 Conclusion and Outlook

The forecasting of application qualities is a complex challenge in dynamic environments
such as the cloud. To address this challenge, we propose a dynamic runtime model that
interrelates runtime monitoring data, collected by Kieker, and performance forecasting,
carried out by Palladio, in order to avoid performance break-ins proactively, i.e., before
they occur.

In this paper, we tackled two problems arising from the conceptual integration of Kieker
and Palladio. Firstly, we address how to derive probes from a Palladio component model
(PCM) that we need to instrument the application with probes. We propose two languages
(IRL and IAL) that enable Kieker to gather performance characteristics of the monitored
application, and to create a dynamic runtime model. This model will be used by Palladio
to carry out performance predictions. Secondly, once the monitoring data has been gath-
ered, it has to be forwarded to the related representations in the runtime model, such that
adaptation or maintenance decisions can be taken based on the monitored behavior. To
handle this problem, we developed data filters which propagate the monitoring data to the
usage and allocation runtime models.

We motivated our work with a realistic scenario in which cloud components migrate over
the Internet to remote data centers, which aims at avoiding performance break-ins. The
problem of enforcing data-geolocations is not addressed yet and will be part of our future
work. Furthermore, we plan to support the collection of arbitrary state information of the
monitored application. This requires the integration of the corresponding type system on
a dynamic basis, which is a non trivial task.
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