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Abstract: The Palladio Bench is a tool to model, simulate and analyze Palladio Com-
ponent Model (PCM) instances. However, for the Palladio Bench, no single interface
to automate experiments or Application Programming Interface (API) to trigger the
simulation of PCM instances and to extract performance prediction results is available.
The Descartes Query Language (DQL) is a novel approach of a declarative query lan-
guage to integrate different performance modeling and prediction techniques behind a
unifying interface. Users benefit from the abstraction of specific tools to prepare and
trigger performance predictions, less effort to obtain performance metrics of interest,
and means to automate performance predictions. In this paper, we describe the realiza-
tion of a DQL Connector for PCM and demonstrate the applicability of our approach
in a case study.

1 Introduction

Performance predictions are normally subject to a recurring process. The process in Fig-
ure 1 is an example of this process. First, users need to specify which performance metrics
they demand to trigger a performance prediction using tools compatible to their perfor-
mance modeling formalism. Second, the architecture-level performance model needs to
be transformed into an analysis model to perform the performance prediction. Analysis
models are usually more abstract and capture only the high-level details of an architecture-
level performance model. Examples of architecture-level performance models include
the Descartes Meta-Model (DMM) [KBH12] and the Palladio Component Model (PCM)
[RBB+11, BKR09]. We assume an architecture-level performance model is already avail-
able. Third, after the results of a performance prediction are available, the user can extract
the relevant performance metrics. Typically, this process is executed in iterations and in-
volves the use of one or more tools for each step to achieve the demanded goals. Thus, the
manual effort is high and users need to learn the low-level details of each tool that is part
of the performance prediction process.

The PCM is an architecture-level model performance modeling language to model soft-
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Figure 1: The performance prediction process

ware systems based on component-oriented architectures for performance predictions al-
ready at design time. The Palladio Bench provides the necessary tools to model PCM
instances, to trigger performance predictions and to extract the results. However, the Palla-
dio Bench does not provide the means to automate the steps in the performance prediction
process and provides no single Application Programming Interface (API) for automation.
Each step involves one or multiple actions necessary to trigger the transition to the next
step. In this paper, we present the Descartes Query Language (DQL), contribute a DQL
Connector for PCM and show the applicability with PCM in a case study. DQL is our
novel approach of a declarative query language to ease performance predictions and to au-
tomate recurring tasks [Gor13]. With DQL, different performance modeling formalisms
and prediction techniques can be integrated as DQL Connectors with a single unified in-
terface and API. Users benefit from less manual effort, a flat learning curve to trigger
performance predictions, a declarative description to obtain results and an API to embed
performance predictions in software components.

The remainder of this paper is structured as follows: Section 2 introduces DQL and rele-
vant approaches. In Section 3 the implementation of a DQL Connector for PCM will be
described and Section 4 demonstrates the applicability of our approach. Section 5 sum-
marizes and discusses our work and the results presented and gives an outlook to future
work.

2 Foundations and Related Work

2.1 Descartes Query Language

The Descartes Query Language (DQL) is our novel approach of a query language to trig-
ger performance predictions independent of a specific performance modeling formalism
or prediction technique [Gor13]. DQL aims to integrate existing performance prediction
approaches to unify their interfaces by a declarative language. The design DQL focuses on
architecture-level performance models, e.g. the Descartes Meta-Model (DMM) or Palladio
Component Model (PCM), and captures usage scenarios that can be either offline scenar-
ios during the design time of software systems or online scenarios during the run-time of a
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software system [KBH12, RBB+11]. In this paper, we focus on Model Structure Queries
to obtain structural information of a performance model and Performance Metrics Queries
to trigger performance predictions and to extract result. Furthermore, DQL automates
performance predictions through the exploration of Degrees of Freedom (DoFs). DoFs
express the configuration parameter space of performance model entities to find solutions
for optimization problems automatically [KAM13, HvHK+13].

Figure 2 shows the architecture of DQL. The architecture consists of three major parts: (i)
DQL Language & Editor provides an Xtext1-based editor, query parser and Application
Programming Interface (API) to DQL. This part of DQL receives queries from external
sources, either through the editor part from users or through the API part from software
components, and delegates them to the DQL Query Execution Engine (QEE). In (ii) the
DQL QEE encapsulates the core logic of DQL and performs the performance modeling
formalism-independent processing of queries. Finally, in (iii) DQL Connectors encap-
sulate all performance modeling formalism-specific logic and control the execution of
performance predictions. The DQL Connector Registry is a utility component to manage
available DQL Connectors in a DQL environment.

In Fig. 3 the DQL Editor embedded in the Eclipse Integrated Development Environment
(IDE) is shown. The upper half contains a DQL query that is part of the case study in
Sec. 4, while the lower half visualizes the result of the query.

2.2 Related Approaches from SPE

In Software Performance Engineering (SPE) the main objective is the systematic analysis
of the performance of software systems [SS91, MDA04]. Many approaches for the anal-
ysis of performance models have emerged that differ in their expressiveness, computing
effort and modeling formalism [Koz10, BDIS04]. Due to the different interfaces and ap-
plications of tools, new problems arise. In [WFP07] the problems are summarized: “As
a result no tool does the job the user needs, so the user goes and invents one. Further,
various tools all have different forms of output which makes interoperability challenging
at best.”. We position our approach between approaches for intermediate modeling and
metric modeling.

1http://www.eclipse.org/Xtext/
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Figure 3: DQL Query Editor and Result View

Intermediate modeling techniques such as KLAPER and CSM reduce the effort for the
transformation of performance models between different representations and purposes
[GMRS08, WPP+05]. Unfortunately, these approaches expose no unified interfaces, tools
lack from missing APIs and online prediction scenarios during run-time of systems are
not treated. Thus, we propose to implement intermediate modeling techniques as DQL
Connectors and to make use of their existing transformations.

SMM is a standard for the modeling of metrics and MAMBA is an implementation of
SMM [Obj12, FvHJ+11, FvHJ+12]. The modeling of metrics allows the standardized
analysis of metrics independent of their source and eases the development tools. How-
ever, the Measurement Architecture for Model-Based Analysis (MAMBA) approach is
not intended to control a performance prediction process and is limited to the access to
performance metrics. We propose the integration of MAMBA and DQL to form a unified
interface to performance data repositories and performance prediction techniques through
a DQL Connector for MAMBA.

3 Implementation

3.1 Mapping from PCM to DQL

As first step towards the realization of a DQL Connector for PCM, we describe our map-
ping approach from PCM to the Mapping Meta-Model. The Mapping Meta-Model as
shown in Figure 4 serves as abstraction layer to integrate performance modeling for-
malisms into DQL. Furthermore, instances of the Mapping Meta-Model serve to trigger
performance predictions in requests from the DQL QEE to DQL Connectors and to return
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Figure 4: The Mapping Meta-Model

results from DQL Connectors to the DQL QEE and users. The Mapping Meta-Model de-
scribes essential model entities of architecture-level performance models, e.g. Resource

and Service. In a request to obtain performance metrics for such entities, instances of
the type Probe attach to Resources and Services and contain a reference to a metric of
interest. On the other hand, Probes are replaced by instances of types derived from Result

to represent responses. The Mapping Meta-Model contains additional types to reference
DoFs and to store statistical aggregates computed on top of plain performance metrics.

In the Usage Model of PCM, workload-specific modeling aspects are modeled by domain
experts to represent usage scenarios of the modeled software system [RBB+11]. We iden-
tify the types UsageScenario and EntryLevelSystemCall as relevant entities in the PCM
Usage Model to be mapped to the type Service in the Mapping Meta-Model. In addition,
PCM provides a Repository Model to model and store software components with their
behavioral descriptions [RBB+11]. Here, the type ExternalCallAction is relevant and
mapped to the Service type of the Mapping Meta-Model. ExternalCallAction represents
the call of a service provided by another component. Finally, in the Resource Environment
Model of PCM the types ProcessingResourceSpecification and CommunicationLink-

ResourceSpecification can be mapped to the Mapping Meta-Model type Resource. The
first type represents active resources of a hardware server, the latter type represents the
network link of a hardware server. With this mapping, the following performance metrics
can be extracted from PCM simulations: (i) demandedTime and utilization for Resource
and (ii) responseTime for Service [Mer11].

For the mapping of Resources we employ a workaround. The workaround is necessary due
to a shortcoming of the the SensorFramework and the format of results. To obtain result
results for specific resources, we modify the identifiers with the suffixes @CPU and @HDD

in case of a ProcessingResourceSpecification and @LAN in case of a Communication-

LinkResourceSpecification. By this workaround, the DQL Connector can access the
computed results through the SensorFramework and provide a distinct mapping to trigger
predictions and to obtain results.

The DQL Connector for PCM supports DoFs in PCM instances and varies them using
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the PCM Experiment Automation API [Mer11]. A DoF in a PCM instance can be, e.g.,
the workload population in the PCM Usage Model to analyze the behavior of a software
system under varying workload intensities. We implement DoFs based on the available
variations for PCM types and support the full exploration of the resulting configuration
parameter space. The full parameter space spans across Πn

i=1 di different combinations,
where n is the amount of available DoFs and di is the number of different settings of a
DoF i. For each combination of DoFs, the DQL Connector triggers one PCM simulation
and returns one result set.

3.2 DQL Connector for PCM

The initial steps to develop the DQL Connector for PCM are the creation of a new OSGi
Bundle, to enclose meta-information in the OSGi Bundle, and to provide a OSGi Declara-
tive Service implementing ConnectorProvider to the OSGi run-time [OSG11, OSG12].
ConnectorProvider is an interface to implement a factory class that is used to create
instaces of the classes derived from QueryConnector. The implementation of Query-

Connectors are the subsequent steps to realize the DQL Connector and to enrich the func-
tionality.

The DQL Connector for PCM consists of two implementations of QueryConnector. First,
the ModelStructureQueryConnector is used to obtain strutural information from a per-
formance model. The implementation is based on Eclipse Modeling Framework (EMF)
operations and Object Constraint Language (OCL) to search for instances of the types
described in the previous section. The available performance metrics for the eligible enti-
ties are mapped in the DQL Connector. Second, the PerformanceMetricsQueryConnector

configures and controls the performance prediction process and extracts the performance
metrics of interest. To configure and control performance predictions, the DQL Connec-
tor for PCM relies on the PCM Experiment Automation API [Mer11]. The extraction of
performance metrics is realized through direct access to the SensorFramework API.

4 Case Study

4.1 Description of the MediaStore Example

The MediaStore2 is a running example for applications of PCM and demonstrates the
features of the Palladio Bench [BKR09]. It is an instance of the PCM with a component-
oriented architecture and can be used to trigger simulations that derive performance met-
rics. The architecture is built up on a three tier approach and made up of (i) a web front-end
component for users, (ii) a business tier consisting of the core business logic and a digital
watermarking component, and (iii) a database tier. Tiers (i) and (ii) are deployed on an ap-

2https://sdqweb.ipd.kit.edu/wiki/PCM_MediaStore_Example_Workspace
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LIST ENTITIES

USING pcm@’mediastore.properties’;

Listing 1: List Entities Query

LIST METRICS (RESOURCE ’_5uTBUBpmEdyxqpPYxT_m3w@CPU’ AS AppServer_CPU,

RESOURCE ’_tVi40Dq_EeCCbpF63PfiyA@CPU’ AS DBServer_CPU)

RESOURCE ’_tVi40Dq_EeCCbpF63PfiyA@HDD’ AS DBServer_HDD)

USING pcm@’mediastore.properties’;

Listing 2: List Metrics Query

plication server (AppServer), tier (iii) is deployed on a database server (DBServer). Both
are interconnected by a network link.

4.2 Performance Analysis of the MediaStore Example

This section is presents an outline how to conduct a performance analysis of a PCM model
through the DQL Connector for PCM. The performance analysis relies only on DQL
queries and omits the Palladio Bench as interface. The case study consists of three main
objectives: (i) To explore the model structure of the MediaStore example, (ii) to analyze
available performance metrics for specific model entities, and (iii) to trigger a performance
prediction and extract performance metrics. Additionally, we present an example how to
automate experiment series in the Palladio Bench using a single DQL query.

The first objective in this case study is to obtain a listing of all available performance-
relevant entities in the MediaStore. The result set contains all entities, i.e. all mapped
Resources and Services, and their absolute identifiers. Listing 1 shows the corresponding
query from the Model Structure Query Class. The second line in the query contains the
USING keyword. It provides means to (i) select an adequate DQL Connector to execute the
query and (ii) it contains the model location. The interpretation of the model location is
subject to the referenced DQL Connector. In case of PCM, a properties file with references
to all required PCM sub-models is used. The first line of the query contains the LIST

ENTITIES expression to obtain all model entities and to interpret the DQL mapping of the
entities found.

The second objective is to obtain the available performance metrics for the model entities
of interest. The query in Listing 2 contains the corresponding example and is again part of
the Model Structure Query Class. Here, the LIST METRICS expression is used together with
a set of references of relevant model entities. The references to model entities contain the
DQL type, the performance model formalism-specific absolute identifier and an optional
alias to identify the reference in result sets easily. The DQL Editor provides the neces-
sary means for the auto-completion of absolute identifiers of resources and services. The
result set of this query contains for each of the requested resources the available metrics
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SELECT AppServer_CPU.utilization, DBServer_CPU.utilization, DBServer_HDD.utilization

FOR RESOURCE ’_5uTBUBpmEdyxqpPYxT_m3w@CPU’ AS AppServer_CPU,

RESOURCE ’_tVi40Dq_EeCCbpF63PfiyA@CPU’ AS DBServer_CPU,

RESOURCE ’_tVi40Dq_EeCCbpF63PfiyA@HDD’ AS DBServer_HDD

USING pcm@’mediastore.properties’;

Listing 3: Basic Query in the Palladio Bench

demandedTime and utilization as described in the preceding section.

Finally, the third objective is to trigger a performance prediction and to extract the perfor-
mance metrics of interest from the performance prediction results. The query in Listing 3
contains the necessary statement for this objective and is from the Performance Metrics
Query Class. The FOR expression references the model entities of interest. A DQL Connec-
tor may use this information to provide tailored predictions, which is, in case of the PCM
Experiment Automation API, not applicable, but still necessary for the SELECT expression.
Only referenced model entities can be used in the SELECT expression. The SELECT expres-
sion contains all performance metrics of interest for specific model entities. In this case,
the utilization rates for the entities AppServer_CPU, DBServer_CPU and DBServer_HDD
are of interest. This query triggers a performance prediction through a simulation run in
the Palladio Bench and the performance metrics are returned as mean values computed
directly from the results available through the SensorFramework.

Additionally, as an example for automation of tasks in the Palladio Bench, Listing 4 con-
tains a DoF Query. The query extends Listing 3 through the EVALUATE DOF expression. The
EVALUATE DOF expression together with the VARYING expression triggers an full exploration
of the specified DoFs. Here, the exploration varies two parameters with two settings each,
leading to a total amount of 2 × 2 = 4 independent simulations in the Palladio Bench and
the same amount of result sets presented to the user. The exploration varies (i) the work-
load intensity of the closed workload used in the MediaStore example and (ii) changes the
component-internal behavior through the replication of a given internal action. For both
variations, the PCM Experiment Automation API provides implementations to vary the
PCM model instances.

As final part of the case study, Figure 3 shows the user interface of DQL. The DQL Editor,
shown in the upper half, provides means to edit queries with completion features DQL
expressions, context-sensitive identifiers of model entities, and syntax highlighting. The
result visualization, shown in the lower half, is a tabular representation of a Mapping Meta-
Model instances and displays all types referenced by the EntityMapping, see Figure 4
and a visualization of the Mapping Meta-Model returned as result in the lower half. The
screenshot shows the state of the Eclipse-based user interface after the execution of the
query from Listing 4. Thus, four results are shown in the lower half that can be analyzed
by a user.
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SELECT AppServer_CPU.utilization, DBServer_CPU.utilization, DBServer_HDD.utilization

EVALUATE DOF

VARYING ’_TyV-MFBwEd6ActLj8Gdl_A’ AS ClosedWorkloadPopulation <100, 200>

’_Q8jwMEg9Ed2v5eXKEbOQ9g’ AS ActionReplication <2, 8>

FOR RESOURCE ’_5uTBUBpmEdyxqpPYxT_m3w@CPU’ AS AppServer_CPU,

RESOURCE ’_tVi40Dq_EeCCbpF63PfiyA@CPU’ AS DBServer_CPU,

RESOURCE ’_tVi40Dq_EeCCbpF63PfiyA@HDD’ AS DBServer_HDD

USING pcm@’mediastore.properties’;

Listing 4: Complex DoF Query in the Palladio Bench

5 Conclusion & Future Work

We presented the Descartes Query Language (DQL), a novel query language to specify
performance queries, and a DQL Connector for Palladio Component Model (PCM). DQL
unifies the interfaces of available performance modeling formalisms and their prediction
techniques to provide a common Application Programming Interface (API). DQL is in-
dependent of the employed modeling formalisms, hides low-level details of performance
prediction techniques and thus reduces the manual effort and the learning curve when
working with performance models.

Instead, the DQL Connector for PCM encapsulates all PCM-specific details and unifies the
APIs of Eclipse Modeling Framework (EMF), Object Constraint Language (OCL), PCM
Experiment Automation and the SensorFramework. Our case study with the MediaStore
example showed the applicability of our approach to control the Palladio Bench through
DQL. The current state of the implementation can be used to conduct a performance analy-
sis and extends the functionality of the Palladio Bench by means to automate performance
predictions with Degrees of Freedom (DoFs).

As part of our future work on DQL, we plan to integrate further DQL Connectors and to
provide additional query classes. Additional query classes in DQL are intended to address
problems like the automated detection of bottlenecks. These classes are intended as a step
towards goal-oriented queries.
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