
Proc. Kieker/Palladio Days 2013, Nov. 27–29, Karlsruhe, Germany
Available online: http://ceur-ws.org/Vol-1083/
Copyright c© 2013 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

Towards Integrating Java EE into ProtoCom∗

Daria Giacinto, Sebastian Lehrig

University of Paderborn
Zukunftsmeile 1
33102 Paderborn

giacinto@mail.upb.de
sebastian.lehrig@upb.de

Abstract: A key concept of model-driven software development is the transforma-
tion of models into other models or source code. ProtoCom is such a transformation
that generates a performance prototype from a Palladio Component Model (PCM) in-
stance by means of a model-to-text transformation. The actual supported platform, on
which the PCM instance is mapped, is Java SE. Even though related work suggests
that multiple platforms should be supported, their concrete integration into ProtoCom
is only conceptual. For instance, Java EE has been investigated as a possible target
platform, however, ProtoCom lacks its integration as well as the consideration of the
current Java EE standard. Therefore, we provide a novel conceptual mapping from
PCM to Java EE, thus, allowing to implement a transformation that realizes the map-
ping. As basis for this implementation, we also provide an initial Java EE reference
implementation of a simple example PCM model.

1 Introduction

Model-driven software development deals with the development of software systems on
the basis of models. These models are transformed into another model or source code,
e.g., an architectural model is transformed into an implementation of the modeled system.
One application of model-driven techniques is the automatic generation of performance
prototypes. For this, performance engineers transform a model of the architecture into
prototyped source code, usable for performance measurements [BDH08]. These engineers
subsequently take measurements in a test environment. The prototype indicates how the
system, once realized, will behave in the real production environment.

In our preliminary work [LLK13], we argue that performance prototyping should support a
wide range of target platforms based on Java SE, Java EE, C#, Python, etc. The reason for
this need is that different platforms crucially impact the performance of a system. Also in
practice, a high variety of different target platforms is used. For example, in the context of
cloud computing, typical target platforms support Java EE (CloudBees, CloudJee, Open-

∗The research leading to these results has received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant no 317704 (CloudScale).

69



Shift, Oracle Cloud), C# (Microsoft Azure), or Python (Google App Engine). However,
current work on performance prototyping considers only a small set of these languages,
thus, restricting analysis results to specific target platforms.

Palladio is one approach in the area of model-driven generation of performance pro-
totypes. It facilitates the modeling of component-based architectures with a focus on
performance-relevant information. For this modeling, Palladio comprises the Palladio
Component Model (PCM), a component-based architecture description language (ADL).
This language allows performance engineers for early design-time performance analyses,
e.g., via performance prototyping. To generate a performance prototype from a PCM in-
stance, ProtoCom is used. The current ProtoCom version transforms PCM instances into
a Java SE implementation. Technically, other platforms are currently unsupported, even
though concepts for Java EE have been investigated [Bec08]. Besides Palladio, we are
currently unaware of any approach that transforms an ADL to a performance prototype.

To cope with the lack of supported target platforms, we plan and investigate the integration
of Java EE into Palladio’s ProtoCom. We decided to start with Java EE for multiple rea-
sons. The mapping is already conceptually planned and prototypically implemented in the
context of the PHD thesis by Becker [Bec08], thus, providing a point to start with. How-
ever, the initial implementation lacks full automation via a model-to-text transformation.
Furthermore, Java EE evolved since the publication of Becker’s thesis, thus, requiring an
adaption of the work. Java EE is also interesting because it provides services that make
the transformation more simple compared to Java SE. For example, Java EE’s EJB con-
tainers support the use of dependency injection. In contrast, the transformation from PCM
to Java SE has to use different design patterns to facilitate dependency injection. Another
advantage is that Java EE facilitates the development of component-based architectures.
Thus, it provides direct concepts to build components. As these concepts are similar to
the PCM concepts, they can be adapted more easily and preserve the information of the
PCM better [Bec08]. From a practical point of view, several cloud computing providers
use Java EE as a platform (see above).

The contribution of this paper is our novel mapping concept from PCM to Java EE per-
formance prototypes. This concept considers the recent Java EE version (Java EE 7) and
provides the basis for a full automation. We evaluate the applicability of this concept by
a Java EE reference implementation based on a simple toy example. In particular, we use
this toy example throughout this paper to illustrate our mapping concept.

This paper is structured as follows. Section 2 provides the foundations for the PCM to
Java EE mapping. Section 3 introduces the toy example that is used to illustrate the map-
ping. The subsequent Sec. 4 describes the mapping from PCM to Java EE in detail. We
evaluate the applicability of this mapping by the reference implementation described in
Sec. 5. Finally, Sec. 6 summarizes the related work of this paper before Sec. 7 concludes.

70



2 Foundations

This section gives an introduction about the foundations of the mapping from PCM to
Java EE performance prototypes. At first, the performance prototype generator ProtoCom
is presented (Sec. 2.1). Afterwards, the current target technology Java SE and the future
target technology (Java EE) are explained in Sec. 2.2.

2.1 ProtoCom

Prototyping allows to test in an early development phase whether the system meets extra-
functional requirements. Furthermore, it facilitates to analyze the quality, e.g., predict the
performance of the system [Bec08]. In performance prototype generation, a transforma-
tion generates a directly compilable performance prototype implementation from a model
instance. This prototype can be used to test the performance on the target environment.
Thereby, the prototype emulates the modeled system’s resource demands.

In our case, we use ProtoCom that generates performance prototypes from PCM instances.
These performance prototypes can be deployed on realistic hardware environments oper-
ating a JVM to simulate resource demands on processing resources [LZ11]. Simulation
data can be used to analyze the performance on the target environment. For the prototype
generation, ProtoCom uses a model-to-text transformation written in the programming
language Xpand.

2.2 Target Technologies

Java SE The current transformation uses Java SE as the target platform. For communi-
cation between components, the Java SE prototype uses the Java RMI middleware.

Java EE The Java Enterprise Edition (Java EE) [DS13] supports the development of
Java applications that implement enterprise services. These applications are made up of
different components that are packed into Java EE modules ready for the deployment on
the server. There are different module types available, e.g., Web modules contain servlet
class files, EJB modules contain EJB class files and the Enterprise Archive (EAR) module
that holds all other modules building the application.

Furthermore, each module can comprise an optional XML deployment descriptor that de-
scribes the module’s content. These descriptors are optional because a developer can di-
rectly add annotations into the Java source code that provide the same information. At
deployment, the server configures components according to annotations and/or deploy-
ment descriptors, respectively.

Java EE provides the ability to create distributed applications that are not only accessible
from modules residing in the same application but also from different applications. The

71



communication between EJBs deployed on different servers is facilitated by the means of
the Remote Method Invocation over Internet Inter-ORB-Protocol (RMI-IIOP) [DS13].

3 Example Scenario: The Alice&Bob-System

We illustrate our toy example, called Alice&Bob, in Fig. 1. This system consists of two
server instances, for example two Glassfish servers. On one server, the Alice component
is deployed that provides the interface IAlice with the method callBob(). The other server
deploys the Bob component that provides the interface IBob with the method sayHello().
The IAlice interface is provided to a user who can invoke this method through a client-side
technology like a browser. This invocation can be received by a servlet on server side that
forwards the call to the specific component.

Figure 1: Alice&Bob System

4 PCM to Java EE Mapping

This section describes the mapping of a PCM instance to Java EE step-by-step with the
help of the Alice&Bob system. Furthermore, the actual transformation to Java SE is ex-
plained to show the differences. The concepts of the mapping to Java SE are based on the
PHD thesis by Becker [Bec08].

At first, the mapping of PCM’s repository (Sec. 4.1), i.e., Interfaces, Basic Components
including PCM’s Service Effect Specification (SEFF), Provided and Required Roles and
Composite Components, is described. Afterwards, the design decisions how to map PCM’s
assembly (Sec. 4.2), allocation (Sec. 4.3) and usage scenario (Sec. 4.4) are explained. The
comparison of the Java SE- and Java EE mapping is summarized in Table 1.

4.1 Repository

The repository model consists of interfaces (Sec. 4.1.1) and basic components (Sec. 4.1.2)
that can provide (Sec. 4.1.3) and/or require (Sec. 4.1.4) these interfaces. Furthermore,

72



PCM Concept Java SE Java EE
Interfaces Java Interface Java EE Business Interface
Basic Components Classes with Simulated SEFF Stateless Classes with Simulated

SEFF bundled in an EJB Module,
which is packed into an EAR Mod-
ule

Provided Roles Port Classes Port Classes
Required Roles Context Pattern Dependency Injection/Annotation
Composite Components Facade Class EJB Modules bundled in an EAR

Module
Assembly Context Instance of Component Class Deployed EAR Module
Assembly Connector Deployment Descriptor EJB Deployment Descriptor/Anno-

tations
Internal Actions Resource Demand Generator Resource Demand Generator
Call Actions RMI/SOAP Call RMI-IIOP
Control Flow Java Control Flow Java Control Flow
Data Flow Annotations Java Control Flow Java Control Flow
Allocation Context Manual Deployment Manual Deployment
Resources [Uses Physical Resources] [Uses Physical Resources]
Usage Model Workload Driver Workload Driver

Table 1: Comparison of the Current and Future Mapping based on [BDH08, Bec08]

components can be composed to composite components (Sec. 4.1.5). The component
developer is responsible for the repository model.

4.1.1 Interfaces

Interfaces specify a set of operations to be required or provided by components. The inter-
face provided by an implementing component specifies which functionality other compo-
nents can expect from it. The interface required by an component states which function-
ality is needed from a component implementing the interface. In the PCM, an interface
describes the signatures of their operations. An operation consists of an operation name,
an ordered list of parameters, a return type, and an unordered list of exceptions. Further-
more, interfaces are independent of a particular component. Interfaces are related to a
component by the concept of roles, namely, required, and provided roles. Java interfaces
are independent of a class and implementable by several classes. Therefore, they consist
of a signature but no implementation.

In the current Java SE mapping, PCM interfaces are directly mapped to Java SE interfaces.
In contrast, EJBs can additionally provide a business interface. A business interface is a
standard Java interface that contains only the business methods of an enterprise bean. The
difference of the Java EE business interface to the Java SE interface is that the Java EE
business interface defines the client’s view of the EJB. The client can only invoke the
methods stated in the business interface. Method implementations and deployment set-
tings are hidden from the client. This mechanism better facilitates that another component
is restricted to component methods that are stated in the interface, even if the component
provides further methods, e.g., because it implements additional interfaces. Furthermore,
it is possible to annotate the interface as local or remote. The choice depends on whether

73



local or remote access to the implementing enterprise bean should be allowed.

For the Java EE mapping of our example system, the Alice- and Bob are business interfaces
annotated with @remote. The reason for this annotation is our intention to deploy the
implementing components (Alice and Bob) on two different servers.

4.1.2 Basic Components

Basic Components are components whose implementation cannot be decomposed into
further components. Basic Components can be formed by objects in an object-oriented
language. One class per component is needed in Java SE/EE as a minimum to mimic the
PCM Basic Component.

In our example mapping, there exists an Alice class and a Bob class. The EJB classes con-
tain the additional annotation @stateless, as it is a Palladio assumption that components
are stateless. Hence, the EJB saves no information about a state. Each class that consti-
tutes to the Basic Component is packed into an EJB module. An EJB module is bundled
in an EAR module. In this way, EJB modules can be reused and directly deployed on
the server. The specification of the behavior for each provided operation (PCM’s Service
Effect Specifications; SEFFs) is mapped to Java EE code emulating the resource demands.
They can be adapted from the PCM to Java SE mapping.

4.1.3 Provided Roles

As shortly mentioned in the section about interfaces (Sec. 4.1.1), provided and required
roles are the means to relate an interface to a specific component. These roles are used
to specify the component’s functionality and behavior. The provided role states which
interface is provided by the component and, thereby, specifies its offered functionality.
Thus, the provided role is equal to the understanding of a class implementing an interface
in Java EE and Java SE, respectively.

In our example, the Alice component and the Bob component have a provided role. The
Alice component provides the IAlice interface and the Bob component the IBob interface.

In the PCM, it is possible to have a component with different roles that offer the same
operation, i.e., the operations have an identical signature. This cannot be expressed by
Java. Therefore, a port class is introduced as a workaround. This port class realizes the
proxy pattern [GHJV95]. For example, the IAlicePort implements the IAlice interface and
forwards the call from the callBob() method to the Alice class that implements the concrete
functionality of this method. The method names in the component class get a unique name,
showing the relation to the particular port. These unique names solve the issue of having
the same provided operations in one class.

74



4.1.4 Required Roles

A required role specifies the needed interface implemented by a component. The trans-
formation has to regard that the required roles can be initialized differently, depending on
the assembly. Therefore, this information should be implemented outside of the compo-
nent. In Java SE, there exists no concept of explicit required interfaces. Hence, in the
current Java SE mapping, the dependency injection- and context pattern is used by the
transformation to guarantee decoupling [Fow04, SVC06].

In contrast to Java SE, Java EE has dedicated support for required interfaces. Required
interfaces are specified by annotations. These annotations are then resolved by the EJB
container at run time through dependency injection. Dependency injection obtains refer-
ences to resources at run time without the direct instantiation of them. The declaration
of the dependency is stated by an annotation in the source code in front of the use of the
resource. This annotation is used as an injection point, e.g., @EJB. Thereby, the server can
provide the required instance at run time. In an annotation, usually the interface name is
stated as the type for the injected instance. This supports the decoupling of the code from
a specific implementation. When the required resource is deployed on the same server,
annotations can be used to declare the dependency. In the example Alice class, the injected
bean is given the name IBob by means of the name attribute of the EJB annotation. The
annotation is directly followed by the declaration of the type and name of the required
bean: the Alice class requires an object of type IBob.

In case of a remote resource, the remote location has to be specified in the deployment
descriptor of the EJB module that contains the component requiring a remote component.
As the Alice component requires an instance of the remote component implementing the
IBob interface, the location is specified in the EJB module deployment descriptor con-
taining the Alice class. In the descriptor, the name assigned in the EJB annotation to a
required instance is resolved to a remote location. The particular required component is
identified through a portable Java Naming and Directory Interface (JNDI) name. Remote
access to an EJB is based on the Common Object Request Broker Architecture (CORBA).
It enables the interaction of applications written in different languages over a network. For
this, the provided interfaces of objects are presented by an Interface Definition Language
(IDL) that is mapped to the particular programming language. Client- and target Object
Request Broker (ORB) typically use the Internet Inter-ORB-Protocol (IIOP) as a common
protocol. EJBs deployed on different servers communicate by the means of the Remote
Method Invocation over Internet Inter-ORB-Protocol (RMI-IIOP) [DS13]. Therefore, the
IP address has to be specified in the deployment descriptor. In combination with the JNDI
name it facilitates the access to the remote EJB.

4.1.5 Composite Components

Composite Components consist of a set of inner components that can be Basic Compo-
nents and Composite Components. These Composite Components combine the function-
ality of its inner components to offer its own functionality. They are disregarded in the
mapping and left as a future work. A first idea how they can be mapped to Java EE would

75



be to create for each inner component an EJB module and combine them in an EAR mod-
ule that represents the Composite Component.

4.2 Assembly

Existing components are assembled into a system that can be deployed. A system can have
provided- and required roles, too. A system’s role is explicitly added and delegated to a
provided or required role of its inner components. In Java EE, the inner components of a
system are the particular EAR modules, each holding a Basic Component or Composite
Component.

In a PCM system, the inner components are connected by Assembly Connectors. The in-
teraction between EAR modules is facilitated by JNDI and the deployment descriptor or
annotations, respectively. At the moment, the deployment descriptor of the EJB module
specifies the concrete connection to a required interface. This setting of the remote loca-
tion of a bean may be changed and stated in the EAR deployment descriptor because the
connection is unknown until the deployment. When it is stated there, the system deployer
can easily adapt the deployment descriptor to the designed allocation.

4.3 Allocation

The allocation comprises the connection of components to executing hardware resources.
In the current mapping, the component deployer has to do the allocation manually. Namely,
the deployer has to export the files constituting one EAR module as an EAR file and de-
ploy it on the server running on the specific hardware node. However, as a future work we
consider a full automated deployment.

4.4 Usage Scenario

The usage scenario model of the PCM specifies the behavior of users of the system. It
models user interaction and the data that users exchange with the system. In the current
mapping, a workload driver emulates the behavior of a user as it is specified in the usage
scenario model.

In case of Java EE as a target platform, there exist two ways of generating workload.
One possibility is to generate workload over the http interface by the use of a tool like
Apache JMeter [Fou]. Another possibility is the use of a client application that generates
a workload over the RMI-IIOP interface.

The interaction with the Alice&Bob system is facilitated by the use of a servlet that serves
as the system’s interface. The modeled user invokes the method of the servlet through the
browser. This method calls the callBob() method of the IAlice interface.

76



5 Reference Implementation

To evaluate the applicability of our mapping concept, we implemented a reference im-
plementation that realizes the Alice&Bob system1. Based on successfully operating this
reference implementation on two Glassfish servers (i.e., in a distributed fashion), we con-
clude that our mapping concept is indeed applicable.

In contrast to Becker’s implementation [Bec08], we provide an implementation fully uti-
lizing Java EE features: business interfaces, annotations, RMI-IIOP communication, and
EAR modules. Firstly, Becker used normal Java SE interfaces, thus, neglecting the use of
dedicated access restriction mechanisms. Secondly, instead of annotations, Becker applied
XML deployments that generally lower the maintainability of EJBs and, consequently, a
possible prototype generation. Thirdly, according to the Java EE specification [DS13],
RMI-IIOP should be used for communication between EJBs on different servers. Becker
used RMI communication that can have a different performance impact and can be an un-
wanted realization technology (as not standard conform). Finally, Becker lacks support
for deployable EAR modules and relies on a manual deployment of implementation code.
In contrast, our concept focuses on making prototypes deployable out-of-the-box as EJB
modules.

6 Related Work

In his PHD thesis [Bec08], Becker describes a ProtoCom supporting Java SE and Java EE.
However, Java EE changed since the publication of his thesis. For example, annotations
are now commonly used instead of deployment descriptors. Furthermore, his Java SE and
Java EE mappings lack full automation, thus, requiring to manually adjust the prototypes.
We revise the Becker’s Java EE mapping to cope with these issues.

Lehrig and Zolynski [LZ11] provide an improved version of ProtoCom. They argue that
Becker’s version suffers from usability issues (incomplete prototypes, inefficient deploy-
ment process). To eliminate these usability issues, they improve the transformation to
Java SE. This new ProtoCom generates the complete performance prototype and eases the
deployment process as no application servers have to be configured. They also removed
the support for Java EE as the mapping was outdated and lacked automation. However,
because performance prototyping should support a wider range of languages, we work to-
wards integrating Java EE, again. For this integration, we address usability issues similar
as Lehrig and Zolynski do for Java SE.

1The implementation can be accessed via https://svnserver.informatik.kit.edu/i43/
svn/code/Palladio/Incubation/JEEProtoCom/AliceAndBob (User: anonymous; Password:
anonymous; Visited on 14/11/2013).

77



7 Conclusions

In this paper, we present a conceptual mapping from PCM to Java EE, evaluated by a ref-
erence implementation of a toy example. We also show the differences between mappings
to Java SE and Java EE. Our findings serve performance engineers as a starting point for
implementing Java EE performance prototypes. Especially our reference implementation
is the basis for an automated transformation from PCM to such prototypes.

In our future work, we have to investigate mapping concepts currently disregarded. These
concepts are, e.g., SEFFs and Composite Components. Moreover, we plan to fully auto-
mate the generation of Java EE performance prototypes.

References

[BDH08] Steffen Becker, Tobias Dencker, and Jens Happe. Model-Driven Generation of Per-
formance Prototypes. In Samuel Kounev, Ian Gorton, and Kai Sachs, editors, SIPEW,
volume 5119 of Lecture Notes in Computer Science, pages 79–98. Springer, 2008.

[Bec08] Steffen Becker. Coupled model transformations for QoS enabled component-based soft-
ware design. PhD thesis, Carl von Ossietzky University of Oldenburg, 2008.

[DS13] Linda DeMichiel and Bill Shannon. Java TM Platform Enterprise Edition 7. Technical
report, Orcale, 2013.

[Fou] Apache Foundation. Apache JMeter. http://jmeter.apache.org/ [Visited on
26/10/13].

[Fow04] Martin Fowler. Inversion of Control Containers and the Dependency Injection pat-
tern, 2004. http://martinfowler.com/articles/injection.html [Vis-
ited on 23/10/13].

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[LLK13] Michael Langhammer, Sebastian Lehrig, and Max E. Kramer. Reuse and configuration
for code generating architectural refinement transformations. In Proceedings of the 1st
Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling, VAO
’13, page 6:16:5, New York, NY, USA, 2013. ACM.

[LZ11] Sebastian Lehrig and Thomas Zolynski. Performance Prototyping with ProtoCom in a
Virtualised Environment: A Case Study. In Proceedings to Palladio Days 2011, 17-18
November 2011, FZI Forschungszentrum Informatik, Karlsruhe, Germany, 2011.

[SVC06] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software De-
velopment: Technology, Engineering, Management. John Wiley & Sons, 2006.

78


