
Modeling and Verification of
Redundancy Policies?

Hamza Chouh, Charlotte Callon, Ghita Jalal
Frédéric Boulanger, and Safouan Taha

Supélec E3S – Computer Science Department
firstname.lastname@supelec.fr

Abstract. In this paper, we present a metamodel for specifying redund-
able software and hardware architectures. This metamodel takes into
account the constraints on the number of redundant elements, the num-
ber of allowed failures, the execution times and allocation constraints.
From such a specification, we generate all possible structural configura-
tions. Then, we check that each of these configurations can be scheduled.
This has been implemented as a tool chain relying on Alloy, SynDEx,
and model transformations in Eclipse/EMF. This work allows system
architects to explore different hardware and software architectures to
implement different redundancy policies. It has been applied on a simple
case study from the Ariane V launcher.

1 Introduction

A large number of fields such as industry, medicine and transport have
a need for highly complex systems that are required to provide their
functionalities under constraints of safety and reliability. Since computer
systems and software are increasingly used in such critical systems, it
is well known that both software and hardware are likely to present
some defects that can lead to failures. Handling these defects without
any catastrophic consequences is required when there is no guarantee of
removing all the defects from the system design. A way to design such
systems is to provide redundancy, that is to duplicate some critical parts
of hardware and/or software. Hardware redundancy is a common prac-
tice, but software redundancy is also essential since a software execution
can be corrupted by, for example, memory faults.
In this paper, we first define a meta-model that helps designing redun-
dant systems. Our meta-model provides the necessary constructs to spec-
ify both hardware and software architectures together with allocation
and timing constraints. Then, we give a tool chain to exploit such ab-
stract models to generate concrete redundant configurations.
The first step to model the redundant system is to give a high-level
description of its hardware and software architectures in terms of com-
ponents, without taking redundancy into consideration. This description
can be thought of as a functional decomposition of the system. Then, to

? This work has been supported by CNES (http://www.cnes.fr).



provide information about redundancy, the user will be able to specify
the following constraints:
Policy constraints: choice of cold, warm or hot redundancy, number of

copies of a hardware or a software component, number of failures
the system must support;

Allocation constraints, or how software components can be mapped
onto hardware components;

Communication constraints between software components that are re-
lated to control or data exchanges;

Timing constraints about both the communications over the buses and
the execution of the software components on the hardware compo-
nents to which they may be allocated.

From this user model, our tool chain will generate (if any) hardware
and software configurations that satisfy all the constraints on policy, al-
location and communication. These concrete configurations instantiate
the abstract model with precise information about replication of hard-
ware and software components, allocations, connections to buses etc.
Then, the tool chain will take the timing constraints into account to
check which configurations can be scheduled and therefore executed. It
will also provide a valid schedule of software executions on the available
hardware.

Redundancy model
with constraints

Redundancy
configuration

Alloy specification

Alloy

Alloy solution

SynDEx model SynDEx

Validated
schedule

Fig. 1. Tool chain and work flow

Our tool chain, shown on Fig. 1, relies on the following parts:
1. The Redundancy Metamodel for describing the HW/SW architec-

ture, the redundancy policy as well as allocation, communication
and timing constraints,

2. A model transformation from the Redundancy Metamodel toward the
Alloy[1] language to obtain a set of Alloy predicates that are solved
to generate concrete configurations,

3. A model transformation from the Alloy output solutions back to the
Redundancy Metamodel to analyze the generated configurations,

4. A model transformation from the Redundancy Metamodel that pro-
duces SynDEx[2] code for checking if a concrete configuration can
be scheduled.



2 Simple Case Study
To show how redundant systems can be modeled using our meta-model,
we will go through an example which is a very simple model of the
Ariane V flight control-command system.

2.1 System architecture
For the purpose of this case study, we decomposed the Ariane V hardware
system as follows:
– SRI (Inertial Reference System): the sensors,
– OBC (On-Board Computer): the processors,
– EPH (Hydraulic flight control Electronics): the actuators.

Similarly, we decomposed the software system as follows:
– Measures, getting the position and attitude of the launcher.
– Computations of the necessary actions for following the trajectory.
– Commands, such as increasing thrust or steering.

2.2 Policy
Now that we have a functional decomposition of our system, we need to
choose the type of redundancy - cold, warm or hot - and the number of
copies for each component. For our example, the following redundancy
policy can be chosen for the hardware:
– Hot redundancy for sensors: all sensors are measuring all the time,
– Warm redundancy for processors: all processors are initialized but

only one of them has the control over the system,
– Cold redundancy for actuators: only one actuator is running, the

others are disconnected.
The redundancy policy for software:
– Hot redundancy for measures,
– Warm redundancy for computations: several types of algorithms

will be running but only one will provide results,
– Cold redundancy for commands.

For this example, we choose to have two copies of each component of the
system and we want to handle one failure for each duplicated component.

2.3 Allocation
Allocation consists in mapping each software component onto a hardware
component. The meta-model we designed allows the allocation of several
software components on several hardware components. For instance, we
could choose to allocate measures and computations on processors or
sensors, so that a measure could be done indifferently on a processor or
a sensor. The same would go for computations. This can help covering
more cases.
For our example of the Ariane space launcher, we keep things simple and
allocate:
– Measures on sensors,
– Computations on processors,
– Commands on actuators.



2.4 Communication and Timing

We know that the computations depend on measures and produce
commands. We thus add data dependencies and the size of the corre-
sponding data (to compute communication time). We also add informa-
tion about the period of software tasks and their execution time on the
given hardware, to obtain the final model shown on Fig. 2.

hot [2]
Measure
period=45

warm [2]
computation
period=45

cold [2]
command
period=45

software

hot [2]
sensor

warm [2]
processor

cold [2]
actuator

hardware

«allocated on»
execTime=5

«allocated on»
execTime=20

«allocated on»
execTime=5

«dependency» dataSize=5

«dependency» dataSize=10

Fig. 2. Ariane V redundancy model

3 Related Work

Several approaches of redundancy can be found in the literature. Many
focus on the automatic generation of fault-tolerant schedules, using as-
sumptions on the failure model (fail-silent or fail-safe), on the homogene-
ity of the hardware (same execution time for a task on all processors,
same communication time for a piece of data on all buses) or on the
number of supported faults [3–5]. Other approaches dynamically sched-
ule backup tasks when a primary tasks fails [6]. Our approach aims at
offering analysis tools to the designer of a system and of its redundancy
policy. We therefore rely on previous work about fault tolerance and
redundancy and try to harness existing tools in a tool chain. The meta-
model we created for modeling the hardware and software components
of a system and the redundancy constraints that they should satisfy, as
well as the model transformations between this metamodel and the tool
specific formats, allows us to share information among these tools and
to exploit their results. We support different execution times on differ-
ent processors and different communication times on different buses, as
in [7]. The meta-model we propose here is inspired from the MARTE
profile [8] (GRM and HLAM packages) and we added an extension for



supporting abstract allocation constraints since MARTE’s Alloc package
only models static allocation.

4 Redundancy Metamodel

As shown in the left part of Fig. 3, our Ecore metamodel provides the user
with a concise specification language to model the hardware/software
architectures together with policy, allocation, communication and timing
constraints. For this purpose, the Redundancy Metamodel provides the
following concepts :
Redundable a type of software or hardware elements that will be re-

dundant. It has a maximum number of instances, a maximum num-
ber of failures and a policy type.

Allocation a mapping constraint between a software cluster and a hard-
ware cluster (e.g. a measure must be executed on a sensor). It has
an executionTime parameter to set the specific execution time of an
instance of sw when allocated on an instance of hw.

Dependency a need for communication between two software clusters
(e.g. the need for an algorithm to get data from sensors). It has a
dataSize parameter that models the size of the data that is sent
from the src cluster to dst.

Fig. 3. Redundancy Metamodel

A typical example of a user model for a redundant system was given in
Fig. 2.
Our tool chain generates, from such a high-level redundant system model,
many concrete configurations with precise connections to buses and pre-
cise allocations between software and hardware instances. As shown in
the right part of Fig. 3, our Redundancy Metamodel provides the follow-
ing low level concepts to model these concrete configurations :
Instance an element that will be part of the system and directly derive

from a cluster. Each hardware or software instance has a state to
describe whether it is running, passive or failed.



Bus a communication medium between hardware instances.
Communication a communication between two software instances. It

instantiates a dependency between software clusters.
An example of concrete configuration written in our meta-model is shown
on Fig. 5 in section 5.
The first usage of the redundancy metamodel is the specification of re-
dundant systems at a high level of abstraction. The second usage of the
redundancy metamodel is to provide a way to generate, view and mod-
ify concrete configurations. From a high level description, we generate
concrete configurations automatically using Alloy.

5 Solving Structural Constraints using Alloy

To generate sets of hardware and software configurations that fulfill all
the requirements induced by the constraints from the high level redun-
dancy model, a constraint solver is needed. We chose to use Alloy [1] for
this purpose since it is very well adapted to constraint solving over classes
and object-oriented models. Alloy is the name of a constraint modeling
language and of the associated constraint solver, both developed by the
M.I.T.’s Software Design Group.
We wrote a set of Alloy classes and predicates that match the elements
of our redundancy metamodel (e.g. SWCluster, SWInstance. . . ). Then,
we developed a model to text (M2T) transformation based on Java to
translate a redundant system model to the equivalent Alloy declarations.
We show in the left of Fig. 4 some of the classes and predicates we wrote,
and in the right of the figure some of the generated Alloy code for the
launcher case study. Finally, the whole code is given to the Alloy solver.

abstract sig Redundable {
instances: some Instance,
nbInstances : one Int
...

}
...
sig AllocationConstraint {

sw: one SWCluster,
hw: one HWCluster,
execTime: one Int

} {
all i: sw.instances |

i.allocatedOn.class in hw
...
execTime >= 0

}
...

sig SRI extends HWCluster {}
sig OBC extends HWCluster {}
sig EPH extends HWCluster {}
sig Measure extends SWCluster {}
sig Computation extends SWCluster {}
sig Command extends SWCluster {}
...
fact allocationConstraints {

allocationConstraint[SRI, Measure]
allocationConstraint[OBC, Computation]
allocationConstraint[EPH, Command]

}

run compute for
exactly 2 SRI_,
exactly 2 Measure_
...

Fig. 4. Example: Alloy specification

To illustrate the use of Alloy for solving the constraints of a high level
redundancy model, we over-constrained our case study:
– Two different computations must be running (hot redundancy),



– These two computations must be allocated on different processors.
We recall that there are two processors and that one may fail.

Running our M2T generator on the corresponding model and then run-
ning Alloy on the generated code leads to an error message from Alloy
that indicates that no configuration could be found.
From this error, we can conclude that our variant of the launcher system
is inconsistent. We therefore modify it by allowing the two computation
programs to be allocated on the same processor and keeping the other
constraints unchanged. Running Alloy on the model produced by our tool
chain gives us the configuration shown in Fig. 5 (in which only instances
and allocations are shown).

measure_1
Running

measure_2
Running

computation_1
Running

computation_2
Running

command_1
NotWorking

command_2
Running

software instances

sensor_1
Running

sensor_2
Running

processor_1
Running

processor_2
NotWorking

actuator_1
NotWorking

actuator_2
Running

hardware instances

«allocated on»

«allocated on»

«allocated on»

«allocated on»

«allocated on»

«allocated on»

Fig. 5. Example: a generated configuration

Now that we have consistent configurations fitting all the constraints that
were specified using the Redundancy Metamodel, we need to check their
schedulability without having to manually write code for a schedulability
checker.

6 Checking Timing Constraints using SynDEx

Running Alloy gives an allocation configuration that complies with the
system architecture and its structural constraints (policy, allocation and
communication constaints). It remains that timing constraints should be
taken into account to ensure the schedulability. We use SynDEx [2, 9], a
software developed by the INRIA Paris-Rocquencourt Research Center



in France. SynDEx allows us to model the timing constraints on inter-
connected systems and to check their schedulability. The SynDEx model
is composed of three descriptions:
– The description of the software application as a set of intercon-

nected nodes. Each node represents a computation which can be
run only when its input data is present at the entry ports. The con-
nections between nodes represent data dependencies.

– The description of the hardware architecture, which contains two
types of elements: media and operators. Operators have communi-
cation ports and processing time constraints, and media have data
transportation time constraints.

– The description of the allocation of the application onto the archi-
tecture with timing constraints.

From the configuration generated by Alloy, we get back to a more de-
tailed model based on our meta-model using an ANTLR-based compiler
we wrote. Using this model and the timing constraints initially entered
using the redundancy metamodel as inputs, another Java-based M2T
transformation in our tool chain creates a SynDEx representation of the
model. Then we ask SynDEx to generate a schedule. If SynDEx returns a
schedule, we know that the configuration is schedulable and correct. Else,
we can analyze the result of SynDEx to understand why the scheduling
fails.
If we consider again the model of the launcher depicted in Fig. 2, and
if we add hot redundancy for computations, Alloy finds an allocation
configuration such as the one of Fig. 5. However, when run through
SynDEx, it appears that this configuration is not schedulable.
We may try to run SynDEx on some other redundancy configurations
generated by Alloy. However, in this case, the inconsistency is actually
located in the constraints we have chosen. Indeed, two computations
must be able to run on the same remaining processor (when one processor
fails) and to send data to actuators within a period of 45 cycles. Sending
data requires 10 cycles and computing requires 20. This is why SynDEx
is unable to schedule such a cycle: (20 + 10) ∗ 2 > 45.
By allowing one of the two computations not to run (warm redundancy),
Alloy generates a configuration that SynDEx is able to schedule, and we
obtain the final scheduling shown on Fig. 6. The concrete configuration
generated by Alloy in this case runs one instance of the computation on
the remaining processor after the failure of the first processor.

7 Discussion

The tool chain we developed provides a mean to model a system and
redundancy constraints over it. Then, it generates allocation configura-
tions that respect these constraints. Finally, the schedulability of these
configurations can be checked. However, this work is a first approach
to the modeling and verification of redundancy policies and has some
limitations we are aware of.
First, our meta-model does not consider the cost of reconfigurations be-
tween different allocation configurations. We only take into account the



Fig. 6. Scheduling example

execution time of each software task when checking schedulability, and
in some cases, this is not enough. Indeed, considering the example of Ari-
ane V where OBCs (On-Board Computer) have warm redundancy policy,
if one of the OBCs fails, some time is needed for the redundant one to
be ready to take over, during which the system is unable to perform
computations. This is not necessarily fatal but it needs to be modeled.
More generally, going from an allocation configuration to another takes
some time that may have consequences on the behavior of the system
and is important to model.
In addition, we started from the hypothesis of a fail-stop system, which
means that we only consider failures that are detectable. Tolerance to
silent failures is a complex problem that we did not address in this work.
Moreover, the generated redundancy configurations are not sorted, which
means that some configurations could be better optimized from a schedu-
lability point of view when others consume less resources. This is par-
tially linked to the fact that no qualitative constraints are given at the
generation step.

8 Conclusion

We have presented a metamodel for redundancy modeling and a tool
chain for generating and verifying configurations. The main contributions
of this paper are:
– The metamodel to express redudancy both at a high level using

constraints, and at a lower level using detailed allocation.
– The model transformations for building an Alloy model from the

redundancy model, and for building an allocated redundancy model
from the configurations generated by Alloy.

– The model transformation from an allocated redundancy model to
a SynDEx model in order to check its schedulability.



The main motivation of this work was to ease the exploration of different
redundancy policies for a system by verifying automatically if a redun-
dancy model is sound (are there configurations that satisfy the redun-
dancy constraints), and if the configurations that satisfy the constraints
can be scheduled.

Future Works
The next steps of this work will improve our redundancy tool chain
by adding the previously discussed features. We will add information
about reconfiguration times to take into account the dynamic aspects
of redundancy, and we will provide a quality function to evaluate the
relevance of a generated configuration, which could, for example, help
minimizing the costs or improving the safety of a system.

References
1. Daniel Jackson. Software Abstractions. The MIT Press, September

2011.
2. T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid pro-

totyping for real-time embedded heterogeneous multiprocessors. In
Proceedings of 7th International Workshop on Hardware/Software Co-
Design, CODES’99, Rome, Italy, May 1999.

3. Alan A. Bertossi, Luigi V. Mancini, and Federico Rossini. Fault-
tolerant rate-monotonic first-fit scheduling in hard-real-time systems.
IEEE Trans. Parallel and Distributed Systems, 10:934–945, 1999.

4. Xiao Qin, Zongfen Han, Hai Jin, Liping Pang, and Shengli Li. Real-
time fault-tolerant scheduling in heterogeneous distributed systems.
In in Proceedings of the 2000 International Conference on Parallel
and Distributed Processing Techniques and Applications, Las Vegas,
pages 26–29, 2000.

5. Krithi Ramamritham. Allocation and scheduling of precedence-
related periodic tasks. IEEE Trans. Parallel Distrib. Syst., 6(4):412–
420, April 1995.

6. Marco Caccamo, Giorgio Buttazzo, and Scuola Superiore S. Anna.
Optimal scheduling for fault-tolerant and firm real-time systems. In
In 5th International Conference on Real-Time Computing Systems
and Applications. IEEE, pages 223–231, 1998.

7. A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel. An algorithm for
automatically obtaining distributed and fault-tolerant static sched-
ules. In Proceedings of International Conference on Dependable Sys-
tems and Networks, DSN’03, San Francisco, California, USA, June
2003.

8. Safouan Taha, Ansgar Radermacher, Sebastien Gerard, and Jean-Luc
Dekeyser. An open framework for detailed hardware modeling. In
SIES, pages 118–125. IEEE, 2007.

9. A. Vicard and Y. Sorel. Formalization and static optimization for
parallel implementations. In Proceedings of Workshop on Distributed
and Parallel Systems, DAPSYS’98, Budapest, Hungary, September
1998.


