
Combinations of Antipattern Heuristics in
Software Architecture Optimization for

Embedded Systems

Ramin Etemaadi1 and Michel R.V. Chaudron2,1

1 Leiden Institute of Advanced Computer Science, Leiden University, Netherlands
2 Joint Department of Computer Science and Engineering, Chalmers University of

Technology and Gothenborg University, Sweden
etemaadi@liacs.nl and chaudron@chalmers.se

Abstract. A large number of quality properties need to be addressed
in nowadays complex embedded systems by architects. Evolutionary al-
gorithms can help architects to find optimal solutions which meet these
conflicting quality attributes. Also, architectural patterns and antipat-
terns give the architect knowledge of solving design bottlenecks. Hence,
antipatterns heuristics have been used as domain-specific search oper-
ators within the evolutionary optimization. However, these heuristics
usually improve only one quality attribute and using them in multi-
objective problem is challenging. This paper studies the extent to which
heuristic-based search operators can improve multiobjective optimization
of software architecture for embedded systems. It compares various com-
binations of heuristic-based operators in a real world automotive system
case study.

Keywords: Embedded System Architecture Design Optimization;
Architectural Antipatterns; Domain-Specific Search Operators;
Evolutionary Multiobjective Optimization (EMO);

1 Introduction

The architecture has deep impact on non-functional properties of a system such
as performance, safety, reliability, security, energy consumption and cost. Due to
the complexity of today’s software systems, designing a system which meets all
its quality requirements becomes increasingly complex. Hence, system architects
have to employ optimization techniques to be able to explore more design pos-
sibilities and to find optimal architectural solutions. Metaheuristic approaches
frame the challenge of designing architectures as an optimization problem and
iteratively try to improve a candidate solution with regard to the given qual-
ity attributes. Evolutionary Algorithms (EA), as a well-known metaheuristic
approach, is a common optimization technique for solving system architectural
problems. However, EA for generating new solutions uses generic search opera-
tors, such as Crossover or Mutate, which are blind to the problem and do not
take into account the domain knowledge. To overcome this issue, domain-specific

search operators have been proposed. The downside of using domain-specific
search operators, is that the algorithm might find local optimal solutions. In
addition, each domain-specific operator is usually useful only for one specific
objective, and this is a threat to the optimality of results in multiobjective prob-
lems.

This paper studies and compares various combinations of EA search opera-
tors (both domain-specific and generic) for multiobjective optimization of soft-
ware architecture. The domain-specific operators are motivated by software ar-
chitectural antipatterns. However, each heuristic-based search operator improves
only one quality attribute of the solution, which is challenging for multiobjective
problems. We apply various combination of operators to a case study, which is
derived from a real world automotive embedded system.

The paper is organized as follows: Firstly, Section 2 discusses related work.
Then, Section 3 describes our optimization framework, how we define heuristic-
based search operators for optimization of software architecture, and the pro-
posed combinations of these heuristic-based search operators. The case study
that we applied our approach on, is represented in Section 4. Finally, The paper
concludes in Section 5.

2 Related Work

In the following, the state of the art of approaches which employ software design
heuristics for optimizing architecture design are discussed:

2.1 PerOpteryx

Koziolek et al. [1] introduced a hybrid approach that incorporates architectural
performance “Tactics” into an evolutionary optimization process. They defined
architectural tactics to improve two quality attributes: Performance and Cost.
They implemented those tactics as part of the evolutionary optimization process.
They showed that by using tactics, optimization algorithms can achieve better
solutions. However, their experiment was conducted in information systems con-
text and with 2-dimension optimization settings.

2.2 Antipatterns in Palladio

Turbiani et al. [2] discussed the advantages of using software performance an-
tipatterns in an iterative manner. They introduced a couple of performance an-
tipatterns and defined automatic approach to detect and solve the bottlenecks
in software architecture solution. They demonstrated by applying this technique
iteratively, the system performance can be improved significantly. However, they
did not discuss quality attributes other than performance. They also did not in-
tegrate their approach within an evolutionary optimization process. Thus, the
downside of their approach is that without having generic degrees of freedom
and involving randomness in the optimization iterations, the optimality of the
results is highly dependent on the initial architecture.

3 Multiobjective Optimization of Software Architecture

According to the studies in the related work, it is known that using domain-

specific operators is beneficial for software architecture optimization. However,

by increasing the number of objectives for architecture optimization, we face new

challenges. The first challenge is that each heuristic technique usually improves

only for one specific quality attribute and as a result it may deteriorate other
objectives. The second challenge is that in multiobjective optimization problems

(more than 3 objectives) comparing the results of two optimization processes

is difficult because the solutions are mostly non-dominated compared to each

other. So, it is not trivial to figure out what is the best way of combining the

heuristic-based search operators for multiple objectives.

 In this paper, we defined an experiment to compare various combinations

of heuristic-based search operators for an embedded system architecture prob-

lem with four objectives based on a measurement called ‘Averaged Hausdorff

distance‘. For this reason, we used a real world case study from automotive in-

dustry. Our optimization framework, with heuristic-based operators based on

various combinations, was applied on that case study.

 In this section, sub-section 3.1 describes brie

y the AQOSA optimization framework

(The details of the AQOSA framework is reported by authors in [8]).

Then, sub-section 3.2 introduces the heuristic-based search operators which we

used in this experiment. Subsequently, sub-section 3.3 discusses various ap-

proaches for combinations of heuristic-based search operators.

3.1 AQOSA Framework

AQOSA is a framework which uses a metaheuristic optimization approach based

on generic algorithms for automated software architecture design. The frame-

work supports analysis and optimization of multiple quality attributes including

response time, utilization, safety and cost. It uses an architectural Intermediate

Representation (IR) model for describing the architectural design problem. The
AQOSA framework takes as input:

 i) an initial functional part of the system (i.e. components that provide the

needed functionality and their communications),

 ii) a set of typical usage scenarios (including triggers to create workloads),

 iii) an objective function (implying which architecture properties should be

optimized),

 iv) a repository that contains a set of specifications of hardware and software

components.

 Then, AQOSA iterates through the following steps:

1. Generate a new set of candidate architecture solutions: Hence, AQOSA uses

 a representation of the architecture where it knows which are the degrees of

 freedom in the design and how to generate alternative architecture.
2. Evaluate the new set of candidate architecture solutions for multiple quality

 properties: This works by generating analysis models from the architecture

 model using model transformations and then analysing these models.

3. Select a set of optimal solutions. It is based on the chosen evolutionary
algorithm.

4. Iterate to step 1 until some stopping criterion holds. This can be a maximum
number of generations or a criterion on the objective function.

Below we briefly present the framework modules:

Architecture Modelling Because AQOSA is designed to optimize architec-
tures in a wide range of domains, it aims to be independent of specific mod-
elling languages. Therefore, it uses its own internal architecture representa-
tion, AQOSA intermediate representation (AQOSA-IR). The IR-model inte-
grates multiple quality modelling perspectives for the architectural level opti-
mization purpose. However, it is possible to transform well-known architectural
models like AADL or UML/MARTE to this intermediate representation.

Architecture Optimization The AQOSA optimizer tries to optimize the soft-
ware architecture with respect to potentially conflicting quality attributes based
on Genetic Algorithm (GA). To this end, it automatically generates new ar-
chitectural design alternatives. It has been implemented based on the Opt4J
optimization framework [3].

Degrees of Freedom When an architect finalizes an architectural design for a
system, generally there are still some ways in which the solution can be varied
without changing the functionality. We call them Degrees of Freedom(DoF). The
component-based paradigm that underlies our approach, allows us to recompose
components in different topologies without changing the functionality of the
system. We support the following degrees of freedom in the AQOSA framework:
(1) Number of hardware nodes, (2) Number of connections between hardware
nodes, (3) Network topology, (4) Software on hardware allocation, (5) Software
components replacement, (6) Processor nodes replacement, (7) Communication
lines replacement.

Evolutionary Algorithms AQOSA is compatible with well-known Evolutionary
Multi-Objective Algorithms (EMOA). For the experiment of this paper we em-
ployed the famous algorithm NSGA-II (proposed by Deb [4]).

Architecture Evaluation The AQOSA evaluation sub-system gets an evalua-
tion model which is transformed from an AQOSA-IR and a decoded genotype for
specific evaluation purpose (e.g Response Time or Safety). It feeds these models
to each evaluator and returns the results to the optimization module. In this
experiment, we evaluated four quality attributes: Response time, processor uti-
lization, safety, and cost. Performance attributes (response time and utilization)
have been implemented by extending the JINQS [5] Queuing Networks (QN)
library. For safety analysis we have implemented a Fault Tree Analysis (FTA)
method introduced by Forster [6].

3.2 Heuristic-based Search Operators

Software architecture design patterns look at the positive and constructive fea-
tures of a software system, and suggest common solutions. In contrast, antipat-
terns look at the negative and destructive features of a software system, and
present common solutions to the problems that make negative consequences [7].
Because bottlenecks affect quality attributes negatively, we use antipatterns in
order to diagnose the bottlenecks in architectural solutions in our optimization
approach. Further, we describe four architecture heuristic as domain-specific
search operators which we applied to the case study in this paper. The first two
operators are derived from Concurrent Processing Systems antipattern. As it
is stated in [7], “[This antipattern] occurs when processing cannot make use of
available processors”. In other words, the processes running on the system can-
not use the available resources effectively. This could happen when the processes
are assigned to the processors in a non-balanced way [7]. The later two operators
use the same principle for other quality attributes.

Component Movement According to Concurrent Processing Systems an-
tipattern, non-balanced assignment of processes to processors can make the
system slow and cause a performance bottleneck. Hence, this operator moves
the most intensive component deployed on the highest utilized processor to the
least utilized processor in the architecture.

Processor Change for Performance When there is a processor with high
utilization in the architecture, a solution to reduce utilization is replacing it
with a better processor. In AQOSA, there is a repository of available hardware
resources. A processor with higher clock rate can reduce the overall utilization
of the system, so it can be selected for replacement.

Processor Change for Cost The former operator tackles processor utilization
bottleneck. However, cost is another quality attribute and optimization objec-
tive. Replacing a processor with higher clock rate (probably more expensive) to
solve utilization makes a deterioration for cost objective. Conversely, this oper-
ator replaces the less utilized processors with cheaper ones and probably lower
clock rate.

Processor Change for Reliability This operator is designed to decrease fail-
ure probability, and consequently increase reliability. There may be some nodes
in an architectural solution which have processors with the high probability of
failure. They should be identified and replaced by the processors with lower
probability of failure.

3.3 Combination of Optimization Operators

Each heuristic-based search operator is useful for the relevant quality attribute
that is made for. However, it might have no effect on the other quality properties,

or might deteriorate them. For example, the “Component Movement” operator
is beneficial for response time and “Processor Change for Performance” operator
is beneficial for processor utilization while they are not useful for cost and failure
probability. “Processor Change for Cost” and “Processor Change for Reliabil-
ity” operators act the same way in favour of different objectives. In this paper,
the extent to which heuristic-based search operators can improve multiobjective
optimization of software architecture is studied.

To define the experiment in this study, we overrode the mating procedure of
GA as follows: Two parents are needed to be operated by the search operators
and they generate two offsprings. Calling the search operators could be done in
various calling orders which we called ’Combinations’. The following combina-
tions of operators are considered for calling search operators to act on a pair of
parents and generate two offsprings for the next generation:

Random For both offsprings, the mating procedure picks heuristic-based oper-
ators randomly.

Sequential For both offsprings, the mating procedure picks heuristic-based op-
erators sequentially. It means that it uses the round robin ordering for operators.

Random-Sequential For one offspring, the mating procedure picks a heuristic-
based operator in the random order, and for the other one, it picks the operator
sequentially.

Half-Random For one offspring, the mating procedure picks a heuristic-based
operator randomly, and for the other one, it uses the generic operators (Crossover
and/or Mutate).

Half-Sequential For one offspring, the mating procedure picks a heuristic-
based operator in the round robin order, and for the other one, it picks the
generic operators (Crossover and/or Mutate).

Half-Random-Sequential For one offspring, the mating procedure picks the
generic operators (Crossover and/or Mutate), and for the other one, it switches
between random and sequential ordering from generation to generation.

4 Case Study

4.1 Automotive Subsystem

To compare the aforementioned combinations of operators, we applied them to a
real case study from automotive industry. The case study was conducted at Saab
Automobile AB and has been reported in the previous authors’ work [8]. The

DriverDoorAjarSwitch TripStemButton

WheelRotat ion

TransShLeverPstn

LeverPstnSensor

WriteEngineSpeedGauge WriteCoolantTempGauge

LowWasherFluidLevelSwitchOATSensor

WriteVehicleSpeedGauge

OTADisplayInfo

Display_Engine

ControlOdometer ControlGearSelected
Indication

ReadLowWasherLevel

VehicleOdometer

ReadTripStemButtonReadDriverDoor
AjarSwitch

ReadOATSensor

EngineCoolantTempSensor

ControlWheelSpeed

WheelSpeedSensor (4 Wheels)

ReadWheelSpeed
Sensors

TransmissionVehicle
Interface

SystemPowerMode

IgnitionSwitch

ProvidePowerModeInfo

EngineCoolantTemp

CoolantDisplayValue

ControlCoolantTemp
Gauge

VehicleSpeed

VehicleSpeedDisplayValue

ControlVehicleSpeed
Gauge

EngineSpeed

EngineSpeedDisplayValue

ControlEngineSpeed
Gauge

WasherFluidLow

ControlWasherLevel
Indication

OutsideAirTemp

OATDisplayValue

ControlOutAirTemp

CrankShaftSensor

EngineVehicleInterface

Gauge_Engine

SensorsValues

GearDisplayValue WasherDisplayValueOdometerDisplayValue

StemButtonValueAjarSwit chValue

OdometerDisplayInfo WasherDisplayInfo

GearDisplayInfoLegend

System Output

System Input

Internal Signal

Fig. 1. Component diagram of Automotive Instrument Cluster system.

system represents the Saab 9-5 Instrument Cluster Module ECU (Electronic
Control Unit, a node in a network) and the surrounding sub-systems. It con-
sists of 18 components as depicted in Figure 1. The Instrument Cluster Module
is responsible for 8 concurrent user functions. Hence, for providing these func-
tionalities, it should be able to response 6 sporadic tasks and 4 periodic tasks
concurrently. Details of these tasks have been reported in [8] and [9].

For generating new architectural solutions, the repository of hardware com-
ponents contains these elements:

– 28 Processors: ranging over 14 various processing speeds from 66MHz to
500MHz; Each of them has two levels of failure rate. A processor is more
expensive if it has less chance of failure and vice versa.

– 4 Buses: with bandwidths of 10, 33, 125, and 500 kbps, and latencies of 50,
16, 8, and 2 ms. A bus is more expensive if it supports higher bandwidth.

As an estimate of the size of the design space in this case study, consider
the following reasoning: Assume we omit architecture topology changing and fix
an architecture with six processors and three bus lines for their interconnections
(exactly like the current realization in the industry). For these constraints there
are 286 · 43 different possibilities, which is more than 30 billion architectures.

When also considering variations in the architecture topologies, this number
would be even considerably higher.

4.2 Results

The goal of the experiment is to compare the combinations of operators, in terms
of achieving optimal solutions faster. To this end, we defined the experiment with
these steps:

1. We run the optimization process with high number of generations. So, with
giving enough time to the algorithm, it could achieve optimal solutions. We
used this set of solutions as the reference Pareto front in comparison with
other Pareto fronts.

2. We run optimization with generic operators (without heuristic-based search
operators) and also with six various combinations of optimization opera-
tors, all of them with low number of generations (each optimization process
20 times). In this situation, better combination can achieve optimal results
within few number of generations.

3. We measured the distance between the results from step1 and step2. Shorter
distance between the Pareto fronts, or in other words, closer result from
step2 to the results of step1 means that combination could achieve better
results in few number of generations. We interpret that combination as a
better combination.

For the step1, we run the optimization with the following parameter settings:
number of generations=200, initial population size(α)=1000, parent population
size (µ)=250, number of offspring(λ)=500, archive size=50, crossover rate is set
to 0.95.

For the step2, we run 20 times for each combination with these settings: num-
ber of generations=15, initial population size(α)=100, parent population size
(µ)=25, number of offspring(λ)=50, archive size=20, heuristic rate and crossover
rate are both set to 0.95.

At the step3, to calculate the distance between two set of Pareto front results
which achieved from step1 and step2, we used a measurement called ‘Averaged
Hausdorff distance‘. Schütze et al. [10] defined ‘Averaged Hausdorff distance‘ as:

max

(1

N

N∑
i=1

dist(xi, Y)p

)1/p

,

(
1

M

M∑
i=1

dist(yi, X)p

)1/p
 (1)

Where X = x1, x2, ..., xn and Y = y1, y2, ..., ym are two Pareto fronts with the
size of N and M . We set p = 1 for this experiment.

Figure 2 depicts the difference between the results of optimization with (white
boxes) and without (gray box) heuristic-based search operators. It shows the
boxplot chart of the distance between 20 runs of each combination of operators
as described in Section 3.3 and the step1. In the chart, lower values indicate
better combination because it represents the distance with optimal results. For

●

●

●

●

●

●

●

●

●

●

Generic Operators Half−Random Random Half−Sequential Sequential Half−RandomSequen. Random−Sequential

0.
14

0.
16

0.
18

0.
20

0.
22

0.
24

Averaged Hausdorff Distance

Fig. 2. Averaged Hausdorff Distance of different operator combinations.

calculating the distance between Pareto fronts, we normalized the values of four
dimensions and then we used Equation 1 to calculate the averaged Hausdorff
distance of two Pareto fronts. Therefore, vertical axis in Figure 2 represents the
averaged Hausdorff distance.

The plots in Figure 2 show that combinations with one generic operator
generated offspring (Half-*) cause wider boxplots, or in other words, they are
more dependent on luck for finding optimal results. They are more similar to
the results of running with generic operators. Instead, combinations with tighter
boxplots represent better combinations. Among them, Sequential and Random-
Sequential combinations perform best. Because, they show lower median values
and tight boxes.

5 Conclusions

In this paper we introduced a comparison between various approaches for combi-
nations of heuristic-based search operators in a model-based tool that integrates
multiple quality analysis of software architecture. We implemented knowledge
of architecture antipatterns as the domain-specific search operators within an
evolutionary algorithm. We defined an experiment based on a real world case
study and we applied it for a 4-objective software architecture optimization prob-
lem. We showed that search operators for improving one objective can be used
in multiobjective optimization context. The results showed that proper combi-
nation of heuristic-based search operators can lead optimization algorithm to

optimal solutions faster. However, for preventing not trapping in suboptimal so-
lutions, rooms for randomness should always be considered in the optimization
parameters settings.

As the future work, it is interesting to study effects of weighting heuristic-
based search operators on the results of optimization process, especially when
number of operators which forcing each objective are unbalanced.

6 Acknowledgments

This work has been supported by the Netherlands national project OMECA
(Optimization of Modular Embedded Computer-vision Architectures).

Also, authors thank Noushin Khaki for her contribution in implementation
of these operators for AQOSA framework.

References

1. Koziolek, A., Koziolek, H., Reussner, R.: Peropteryx: automated application of tac-
tics in multi-objective software architecture optimization. In Crnkovic, I., Stafford,
J.A., Petriu, D.C., Happe, J., Inverardi, P., eds.: QoSA/ISARCS, ACM (2011) 33–
42

2. Trubiani, C., Koziolek, A.: Detection and solution of software performance antipat-
terns in palladio architectural models. In Kounev, S., Cortellessa, V., Mirandola,
R., Lilja, D.J., eds.: ICPE, ACM (2011) 19–30

3. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4J: a modular framework
for meta-heuristic optimization. In Krasnogor, N., Lanzi, P.L., eds.: GECCO, ACM
(2011) 1723–1730

4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2)
(2002) 182–197

5. Field, T.: JINQS: An Extensible Library for Simulating Multiclass Queueing Net-
works. (2010)

6. Förster, M., Trapp, M.: Fault Tree Analysis of Software-Controlled Component
Systems Based on Second-Order Probabilities. In: ISSRE, IEEE Computer Society
(2009) 146–154

7. Trubiani, C.: Automated generation of architectural feedback from software per-
formance analysis results. PhD thesis, Universita di L’Aquila (2011)

8. Etemaadi, R., Lind, K., Heldal, R., Chaudron, M.R.V.: Quality-driven optimiza-
tion of system architecture: Industrial case study on an automotive sub-system.
Journal of Systems and Software 86(10) (2013) 2559–2573

9. Etemaadi, R., Lind, K., Heldal, R., Chaudron, M.R.V.: Details of an Automotive
Sub-System: Saab Instrument Cluster Module. Technical report, number: 2013-01,
Leiden Institute of Advanced Computer Science, Leiden University (2013)

10. Schütze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged hausdorff
distance as a performance measure in evolutionary multiobjective optimization.
IEEE Trans. Evolutionary Computation 16(4) (2012) 504–522

