
Requirements as First-Class Citizens:
Integrating Requirements Directly with

Implementation Artifacts

Markus Voelter1, Daniel Ratiu2, and Federico Tomassetti3

1 independent/itemis, Stuttgart, Germany, voelter@acm.org
2 fortiss gGmbH, Muenchen, Germany, ratiu@fortiss.org

3 Politecnico di Torino, Torino, Italy, federico.tomassetti@polito.it

Abstract. Requirements often play second fiddle in software develop-
ment projects. The tools for managing requirements are only loosely
integrated with the tools used for implementing the system. Further-
more, while implementation tools are based on a rich syntax and well-
understood semantics (the programing language itself), requirements
tools are often only aware of weakly structured text. This leads to acci-
dental complexity in integrating requirements with each other and with
implementation artifacts. In this paper we describe an approach based
on language engineering technologies that results in integrated develop-
ment environments where both requirements and the code are treated
as first class entities. Parts of requirements can be used directly as the
implementation, and they are managed with the same tools that are
used for the implementation. The approach is illustrated by an exten-
sion of the mbeddr system, a comprehensive IDE for embedded software
development, with functionality for managing requirements.

1 Introduction

Collecting, organizing and managing requirements is essential in the embed-
ded software development. Complete configuration management and traceability
from the code to requirements is required by safety standards such as IEC61508.
Still, it is often a cumbersome activity which either is relentlessly executed with
major effort (typically if the process requires it) or it is mainly overlooked, lead-
ing to poorly structured and maintained requirements.

One major problem with the traditional ways of collecting and maintaining
requirements is the inadequacy of the supporting tools [12]. Requirements are
often collected and managed using MS Office documents [9] or tools like Rational
DOORS, which basically manage numbered paragraphs of text with very limited
additional structure and weak modeling capabilities [3]. The relation between
requirements and implementation code or tests is collected in other documents,
or expressed with comments in the code. This requires manual synchronization
with the actual system implementation [4]. As emphasized in [2], a deeper, more
seamless integration of requirements with the other development activities would
increase their value to all stakeholders.

The study in [7] identifies element-level tracing as a major challenge. It is not
surprising that, when possible, practitioners try to escape the need for systematic



requirements management and tracing, using an ”agile” process as an excuse.
However, while agile approaches to requirements engineering limit the burden
of managing them, they often do not provide a maintenance strategy; instead,
requirements are considered transient artifacts. This is not acceptable in many
embedded systems projects, where quality standards require a more structured
approach to requirements management.

In this paper we present an approach to use language engineering and projec-
tional editors to deeply integrate requirements into software development tools.
Requirements are captured using an extensible language specific to the ”require-
ments domain”, just as other artifacts are expressed with languages specific to
their particular domains (C code, state machines, data flow blocks). We have
implemented this approach based on the JetBrains MPS language workbench
and the mbeddr stack for implementing embedded software (discussed in the
next section). The approach leads to four main benefits:

– Rich and extensible requirements language: By using the language modu-
larization and composition features supported by language workbenches, re-
quirements can have a rich structure, domain-specific extensions to (generic)
requirements can be defined, and custom traces or consistency checks can
be seamlessly integrated. The need to extend requirements engineering tools
in order to to properly express requirements was pointed out already almost
forty years ago in [1]. Today we can benefit from language workbenches that
support extensibility with very limited effort, supporting end user-friendly
notation such as tables or mathematical formulas.

– Deep integration of requirements with other artifacts: Various ways of inte-
grating implementation artifacts and requirements become technically sim-
ple. For example, traces to requirements can be attached to arbitrary ele-
ments in arbitrary implementation artifacts.

– Ability to query the requirements model: Relationships between requirements
and artifacts can be queried to find out, for example, which requirements are
related to failing tests or are not connected to implementing artifacts.

– Reduction of friction loss between tools: Since requirements are first class
citizens in the development tool, the same tooling is reused both for editing
and managing of requirements and implementation artifacts. This includes
version control and diff/merge.

2 mbeddr and MPS at a Glance

mbeddr4 is an open source project supporting embedded software development
based on incremental, modular domain-specific extension of C. It also supports
other languages, which is what we exploit in this paper. Fig. 1 shows an overview,
details are discussed in [10] and [11]. mbeddr builds on the JetBrains MPS lan-
guage workbench5, a tool that supports the definition, composition and inte-
grated use of general purpose or domain-specific languages. MPS uses a projec-
tional editor, which means that, although a syntax may look textual, it is not

4 http://mbeddr.com
5 http://jetbrains.com/mps



Fig. 1. The mbeddr stack rests on the MPS language workbench. The first language
layer contains an extensible version of C plus special support for logging/error reporting
and build system integration. On top of that, mbeddr introduces default C extensions.

represented as a sequence of characters which are transformed into an abstract
syntax tree (AST) by a parser. Instead, a user’s editing actions lead directly to
changes in the AST. Projection rules render a concrete syntax from the AST.
Consequently, MPS supports non-textual notations such as tables or mathe-
matical symbols, and it also supports wide-ranging language composition and
extension – no parser ambiguities can ever occur when combining languages.

mbeddr comes with an extensible implementation of the C99 programming
language. On top of that, mbeddr ships with a library of reusable extensions rel-
evant to embedded software. As a user writes a program, he can import language
extensions from the library and use them in his program. The main extensions
include test cases, interfaces and components, state machines, decision tables and
data types with physical units. For many of these extensions, mbeddr provides
an integration with static verification tools [8]. mbeddr also supports several
important aspects of the software engineering process: documentation, require-
ments and product line variability. These are implemented in a generic way to
make them reusable with any mbeddr-based language (we discuss aspects of the
requirements support in detail in the remainder of this paper). Finally, users can
build extensions to any of the existing languages or integrate additional DSLs.

3 Challenges and Solutions

In this section we describe a set of challenges in requirements engineering as well
as our approach to solving them in mbeddr. While not all of the solutions are
unique to mbeddr, the combination of features and their flexible extensibility is.

3.1 Requirements Versioned with Code

Challenge Traditionally, requirements are stored in a tool-specific database.
Other development artifacts are instead typically stored in version control sys-
tems (VCS) such as git, SVN or ClearCase. This leads to problems when trying
to keep requirements in sync with the implementation.

Solution In mbeddr, requirements are treated like any other artifact and
stored in MPS models (represented as XML files on the files system). This



Fig. 2. Top: Code and requirements are versioned in the same way, with the same tools.
Since the requirements have a rich structure, the diff shows the requirements model
elements that were changed, namely, the text, the responsible and effort. Bottom:
Example code implementing this requirement, plus a corresponding trace and the diff.

way, requirements and implementation artifacts are stored in the same VCS.
Diff/merge is supported for requirements in the same way as for any other arti-
fact (see Fig. 2). mbeddr is not the only tool that uses this approach: Requality6

and Yakindu7 use this approach as well.

To represent requirements, mbeddr provides a special language. Each require-
ment has an ID, a short description, an optional longer prose and additional
attributes. Requirements can also be nested. An example is shown in Fig. 4.

3.2 Traceability into Code

Challenge Tracing can be used to express the relationship between imple-
mentation artifacts and requirements: a program element has a pointer to one or
more requirements, expressing that this particular element is somehow related to
a requirement. By using different trace kinds, the nature of ”somehow related”
can be qualified. Trace kinds typically include implements or tests. Tracing is
supported by several requirements tools. For example, Reqtify8 supports tracing
into SCADE models and Yakindu supports tracing into various Eclipse-based ar-
tifacts, requiring specific tool adapters for each of them. Consistent element-level
tracing becomes a challenge, however, when working with different implementa-
tion languages, techniques and tools. The empirical study in [7] identifies this as
one of the major challenges in today’s use of model-driven engineering tools.

Solution In the context of mbeddr, a program is anything expressed with
any MPS-based (programming or modeling) language. This includes C and all
of mbeddr’s C extensions. Fig. 3 shows a piece of mbeddr program code. The
root element is a module, and it has an annotation that specifies to which re-
quirements modules we may want to trace from within that module. We can then
add a trace to any program element in that module (expressed in C and the state
machines extension), tracing to any requirement in the referenced requirements
module. There are four important characteristics of this implementation:

6 http://requality.ru
7 http://www.yakindu.de/requirements/
8 http://www.3ds.com/products-services/catia/portfolio/geensoft/reqtify/



Fig. 3. A C module with a set of constants, each with a trace to a single requirement.
Traces can be added to any program element expressed in any language.

Fig. 4. A calculation is a function embedded into a requirement. They include test cases
that allow ”business people” to play with the calculations. An interpreter evaluates
tests directly in the IDE for quick turnaround.

1. The trace is not an independent program element that is just ”geographically
close” to the program element it traces. Instead, the trace is a child of the
traced element. This means that, if you move, copy, cut or paste the element,
the trace moves with it.

2. Since MPS is a projectional editor, the program can also be shown without
the traces, if the user so desires.

3. The requirements trace is a well-typed program element that can be used in
analyses. For example, it is possible to find all program elements that have
traces to a particular requirement using MPS’ generic Find Usages facility.

4. The tracing facility is completely independent of the traced language. Pro-
gram elements defined in any (MPS-based) language can be traced. User-
defined languages with automatically work with the tracing mechanism.

Our tracing framework still requires users to manually establish and maintain the
traces according to the actual relationship between programs and requirements
(except in cases where artifacts are generated from higher-level artifacts, in which
case traces can be added automatically). However, the approach does solve the
technical challenges associated with ubiquitous tracing support. In particular,
the fact that referential integrity is automatically checked and that arbitrary
analyses can be built on top of the program/requirement/trace data, eases the
work of the developer.



3.3 Formal Business Logic in Requirements

Challenge In today’s practice, there is a big gap between requirements and
implementation artifacts: requirements are prose text, and developers are ex-
pected to understand the text and write implementation code that is faithful
to the requirements. This is inefficient, tedious and error prone. In many cases,
aspects of a system’s requirements are known to domain experts and require-
ments engineers in a structured/formal way. Examples include price calculations,
legal rules or control algorithms. It would be useful a tool were available that
is able to incorporate such structured/formal aspects into requirements – with
IDE support for the languages used to express these structured/formal aspects.
With today’s tools, this is hard to achieve, and the study in [7] identifies this as
another major challenge in today’s practice.

Solution mbeddr supports embedding structured/formal parts of the business
logic into requirements, and then use these parts directly in the implementation.
Fig. 4 shows two requirements. The first one defines a constant BASE POINTS

with the type int8 and the value 10. The second requirement defines a calcula-
tion PointsForATrackpoint. A calculation has a name, parameters, and a result
expression, which, in this case, uses a decision table (a representation of nested
if-statements). The calculation also references the BASE POINTS constant. Using
constants and calculations, business users can formally specify some important
business data and rules, while not having to deal with the actual implementation
of the overall system. To help with getting these data and rules correct, calcula-
tions also include test cases. These are evaluated directly in the IDE, using an
interpreter: users can directly ”play” with the calculations.

To increase the usefulness of the constants and calculations specified by busi-
ness users in requirements, these calculations should make their way into the code
directly. Fig. 5 shows a component, expressed in mbeddr’s component extension
to C that invokes a calculation (the green code). When this code is translated
to C, the expression in the calculation is translated into C and inlined.

The constants and the calculations are just examples of possible ”plug in”
languages into mbeddr’s requirements system. Any DSL, using a wide range of
business user-friendly notations, can be plugged into requirements.

Fig. 5. Implementation code can directly call calculation functions defined in require-
ments. In this case, a calculation is called from a component, expressed in the mbeddr’s
components C extension.



3.4 Verification and Validation

Challenge For each functional requirement there should be a suite of tests to
verify it. The functional coverage represents the degree to which all functional
requirements are covered through verification activities. Making sure that all
requirements are verified in the code is usually a manual process.

Solution The solution to this challenge combines language extensibility and
tracing. Language extensions that express test cases and domain-specific formal
verifications are available, and traces (with suitable kinds) are used to tie tests
and verifications back to the tested and verified requirements (Fig. 6, Fig. 7). The
deep integration of requirements and code also helps to identify inconsistencies or
underspecifications in requirements. This way, requirements can be implemented,
tested and verified iteratively, checked automatically and continuously.

Fig. 6. mbeddr supports the definition of test-cases as first class constructs. Entire test
cases, or parts thereof, can be traced to the requirements they cover.

Fig. 7. Similar to test cases, mbeddr supports the definition of verifications that model
the environment of the system and contain verification conditions. In this example, the
verification considers five steps, at each step the value of the event parameter is defined
nondeterministically and the event sent to the state machine is chosen nondeterminis-
tically. The two verification conditions are linked to the corresponding requirements.

3.5 Requirements Assessment

Challenge To answer questions like ”how many requirements were imple-
mented”, ”what are the quality assurance tasks for a certain requirement”, or
”how much effort has been spent on each requirement” one needs today to use
various different tools, because answering these questions often requires access to
the requirements, the traces as well as the implementation artifacts. This makes
answering these questions expensive, preventing team members from getting an
overview over the state of the project.



Solution mbeddr’s assessments provide a flexible way of answering questions
like the ones mentioned above. An assessment is a query over the integrated
model. The results are presented in a query-specific way. Users can navigate
from the result entries to various linked elements. A color code highlights results
that have been added in the most recent update. Fig. 8 shows an example.

Fig. 8. An assessment that shows information about work packages. Each row in the
result shows a work package, the total amount of hours planned for it, as well as
the implementation progress: the bar shows percent completed, and the color shows
whether the effort is below what has been planned, whether it is on a bad trend
(%effort > %completion) or whether the effort is above the budget.

4 Related Work

As mentioned in the introduction, Winkler and von Pilgrim [12] performed a lit-
erature review on traceability. They conclude that tracing is rarely used in prac-
tice and the most prominent problem leading to this is the lack of proper tool
support. Our approach provides a possible solution to this dilemma and could
therefore contribute to helping practitioners in adopting requirements traceabil-
ity, particularly, in contexts where the process requires it.

In [7], Kuhn et al. present an empirical study on the problems that currently
plague model-driven development in the industry. They have interviewed a num-
ber of developers from General Motors who use mainstream model-driven devel-
opment tools. Traceability between implementation artifacts (model, code) and
requirements is very important to all engineers interviewed in the study. Their
current tool-chain only provides document-to-document traceability, which is
not granular enough. Traceability is required on the level of model or program
elements, for any level of abstraction. mbeddr’s approach supports this issue.
The study also found that diffing between various versions of the same model is
insufficiently supported; mbeddr solves this problem as well. Finally, the study
finds that developers miss the ability to use problem-appropriate abstractions
and notations when describing systems. mbeddr’s extensibility solves this prob-
lem as well – for requirements, and for any other language in mbeddr.

Favaro et al. [5] present an approach to requirements engineering that has
some commonalities with ours. Like us, they have the goal to introduce struc-
tured, model-based requirements. Their approach relies on the use of a wiki
enriched by semantic links supporting navigation from the requirement to the
artifact (but not vice versa). They emphasize two points with which we strongly



agree: a) the importance of having an adaptable mechanism for requirements, de-
pending not only on the nature of the project but also on the kind of the require-
ment, with a lighter process for ”non-technical” requirements; b) the fact that
requirements and implementation artifacts are intrinsically integrated. mbeddr’s
approach provides tight integration between requirements and artifacts, as well
as the possibility to have both a flexible approach and specific IDE support for
any particular kind of formal language embedded into the requirements.

5 Discussion, Conclusions and Future Work

Discussion The tooling described in this paper solves some important chal-
lenges in requirements engineering. However, it is assumed that all artifacts
reside in MPS, which limits the applicability of the approach (an import/export
facility for requirements is provided, though). On the other hand, mbeddr demon-
strates the benefits of building tool suites on top of a language workbench like
MPS. In our opinion, this trade-off is worthwhile.

mbeddr allows us to scale the level of sophistication of the language used to
express requirements to the needs of the project. This way, small projects can
use a basic version of the language to express requirements in a very lightweight
form. For more demanding contexts, for example the development of complex
embedded systems, the tooling permits to plug-in domain-specific extensions of
the requirements language. The efforts of extending the requirements language
is limited (language extension efforts are discussed in [10]). Also, we have built a
set of extensions of the requirements language specific to a concrete development
project on the fly, as part of the project. The efforts were a few hours.

Since the mbeddr requirements tool looks like a ”programming IDE”, it may
appear to appeal mostly to programmers. However, in a recent project, the
product manager has expressed that he is very happy using it. Also, we are
currently in the process of introducing a similar tool to business users in the
insurance domain. In both cases, the ability to use domain-specific abstractions
and notations such as tables or formulas were cited as a major advantage.

Conclusion mbeddr’s core idea is discussed in [10]: building domain-specific
tools is not just about adapting a tool to a particular domain (e.g. automotive,
medical devices, user interfaces). It is rather more important to adapt to the
domain the languages, formalisms and data formats that underlie the tool. If this
is done based on a language workbench, the necessary efforts are limited, and
you get the tool adaptation essentially for free. This is because the actual tool,
JetBrains MPS, is essentially a very powerful editor for any kind of language.
In this paper, we have demonstrated this idea for requirements management.
All the benefits discussed in this paper involve only language engineering. No
tool aspects have been customized. End user feedback for this approach is very
encouraging.

Future Work There are two main areas for future work. First, we will add
reporting functionality, targeting requirements documents in HTML and La-
tex. The reports will include the diagrams, as well as trace reports. Second, a



colleague of ours is currently working on an MPS editor component that sup-
ports mixing free text (with text-like editing support) and instances of language
concepts. Integrating this editor with the requirements management tooling dis-
cussed in this paper will be extremely useful: for example, one could reference
other requirements from within the prose description of a particular requirement,
while making sure that this reference would take part in refactorings. In addition
we may experiment with integrating information retrieval techniques to suggest
possible traces between requirements and development artifacts, as suggested by
Hayes et al. in [6]. This would reduce the effort of establishing and maintaining
the traces.

Acknowledgements We thank the mbeddr and MPS teams for creating a
powerful platform that can accommodate the things described in this paper.

References

1. T. Bell, D. Bixler, and M. Dyer. An extendable approach to computer-aided soft-
ware requirements engineering. Software Engineering, IEEE Transactions on, SE-
3(1):49–60, 1977.

2. B. H. C. Cheng and J. M. Atlee. Research directions in requirements engineering.
In 2007 Future of Software Engineering, FOSE ’07, pages 285–303, Washington,
DC, USA, 2007. IEEE Computer Society.

3. J. M. C. de Gea, J. Nicols, J. L. F. Alemn, A. Toval, C. Ebert, and A. Vizcano.
Requirements engineering tools: Capabilities, survey and assessment. Information
and Software Technology, 2012.

4. B. Draxler. Bidirectional tracing of requirements in embedded software develop-
ment. Technical report, University of Satzburg, 2006.

5. J. Favaro, H.-P. de Koning, R. Schreiner, and X. Olive. Next generation require-
ments engineering. In Proc. 22nd Annual INCOSE International Symposium, 2012.

6. J. Hayes, A. Dekhtyar, and J. Osborne. Improving requirements tracing via in-
formation retrieval. In Requirements Engineering Conference, 2003. Proceedings.
11th IEEE International, pages 138–147, 2003.

7. A. Kuhn, G. Murphy, and C. Thompson. An exploratory study of forces and fric-
tions affecting large-scale model-driven development. In R. France, J. Kazmeier,
R. Breu, and C. Atkinson, editors, Model Driven Engineering Languages and Sys-
tems, volume 7590 of Lecture Notes in Computer Science. Springer, 2012.

8. D. Ratiu, M. Voelter, B. Schaetz, and B. Kolb. Language Engineering as Enabler
for Incrementally Defined Formal Analyses. In FORMSERA’12, 2012.

9. A. Talbot. An investigation into requirements engineering current practice and
capability in small and medium software development enterprises. Master’s thesis,
Auckland University of Technology, 2011.

10. M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: Instantiating a language
workbench in the embedded software domain. Journal of Automated Software
Engineering, 2013.

11. M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an Extensible C-based
Programming Language and IDE for Embedded Systems. In Proc. of the 3rd conf.
on Systems, programming, and applications: software for humanity, SPLASH ’12.

12. S. Winkler and J. Pilgrim. A survey of traceability in requirements engineering
and model-driven development. Software and Systems Modeling, 9:529–565, 2010.


