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Abstract. Modern embedded systems present an ever increasing complexity and
model-driven engineering has been shown to be helpful in mitigating it. In our
previous works we exploited the power of model-driven engineering to develop a
round-trip approach for aiding the evaluation and assessment of extra-functional
properties preservation from models to code.
In addition, we showed how the round-trip approach could be employed to eval-
uate different deployment strategies, and the focus was on homogeneous CPU-
based platforms. Due to the fact that the assortment of target-platforms in the
embedded domain is inevitably shifting to heterogeneous solutions, our goal is to
broaden the scope of the round-trip approach towards mixed CPU-GPU config-
urations. In this work we focus on the modelling of heterogeneous deployment
and the enhancement of the current automatic code generator to synthesize code
targeting such heterogeneous configurations.
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1 Introduction

The complexity of embedded systems is increasing at high pace and therefore develop-
ment processes based on code-centric approaches tend to become highly complex and
error-prone thus demanding the adoption of more powerful and automated mechanisms.
Model-Driven Engineering (MDE) has been proven capable of reducing development
complexity through the ability of abstracting from details not needed at design level
and that are typical of code-centric approaches. More specifically, the focus shifts from
hand-written code to models by which the system can be early analysed and validated;
furthermore the application is meant to be automatically generated from them through
the employment of model transformation mechanisms.

Automating the code generation phase is a task considered inescapable in order to
make of MDE an eligible approach to substitute code-centric approaches, especially in
industry. Powerful code generation mechanisms can improve quality and maintainabil-
ity of the final application as well as enforce its consistency to the source models. In this
way, results from analysis performed at model level are more likely to be valid at code
level too (and the other way around). Development-wise, effective code generation can
positively affect time-to-market as well as overall costs and risks. Additionally, gen-
erated code is meant to achieve higher and more consistent quality than hand-written



code with respect to errors, maintainability and readability.
In [1] we proposed an automated round-trip engineering support for MDE of em-

bedded systems with focus on the preservation of extra-functional properties (EFPs).
The round-trip support is made of four core steps. The first step consists in modelling the
system through a structural design in terms of components, a behavioural description by
means of state-machines and action code, as well as a deployment model describing the
allocation of software components to operating system’s processes. Then, from the in-
formation contained in the design model, we automatically generate full functional code
to be run as a singleprocess1 application on singlecore CPU-based platforms. When the
application is generated, we monitor its execution on the target platform and measure
selected EFPs. Then gathered values are back-propagated to the design model and, after
their evaluation, the models can be manually tuned to generate more resource-efficient
code.

The round-trip support has been validated in industrial settings where the neces-
sity to extend the generation of code to account more complex platforms arose [2].
Therefore, we proposed and developed preliminary extensions in order to enable the
generation of multiprocess applications on CPUs, that we employed for deployment
assessment in [3]. Nevertheless, the expectation for embedded systems to be able to
process vast amounts of data, even in real-time, is spreading among several different
domains and a possible solution to make embedded systems fulfil this expectation is
the adoption of hardware technologies based on heterogeneous configurations [4]. A
common scenario is represented by mixed CPU-GPU configurations where, e.g., input
data comes into a CPU, which in turn may exploit one or more GPUs as coprocessors
for parallel processing of large blocks of data.

The crossover from homogeneous to heterogeneous platforms brings along new re-
search challenges ranging from modelling to coding of the embedded system. In our
case, while generally increasing performances of the resulting applications, the intro-
duction of heterogeneity adds additional complexity in modelling and generating the
application. In fact, since different processing units (e.g., CPUs and GPUs) usually
employ different formalisms and mechanisms for code execution, the design models
should contain the information needed by the generation process to map model entities
to code artefacts written in different target languages as well as to generate the commu-
nication code needed for the interaction between CPUs and GPUs.

Pursuing this direction, the contributions of this work are (i) the identification of
the modelling means to specify heterogeneous deployment especially regarding the al-
location of single component functions to GPU cores, and (ii) the extension of the code
synthesis to generate heterogeneous applications to be run on mixed CPU-GPU hetero-
geneous platforms. Moreover, we aim at maintaining a deployment-agnostic specifica-
tion of the functional characteristics of the systems, while modelling the platform and
deployment specific details as extra-functional annotations that drive the generation of
the heterogeneous application.

The remainder of the paper is organised as follows. Section 2 describes the scope
of the work and its contextual delimitation. The relation of our contribution to the state

1 We refer to process as an independent execution unit that only interacts with other processes
via interprocess communication mechanisms (managed by the operating system).



of the art is given in Section 3. Section 4 depicts the means we identified for modelling
heterogeneous allocation and deployment as well as for enabling the synthesis of appli-
cations to be run on mixed CPU-GPU platforms. The paper is concluded in Section 5
with a discussion of the means for the proposed solution as well as current limitations
and planned future work.

2 Context

In our work we employ the CHESS Modelling Language (CHESS-ML) [5], defined
within the CHESS project as a UML profile [6], including subsets of the MARTE [7]
and SysML profiles. The CHESS-ML is part of the CHESS framework2 which lever-
ages the Papyrus [8] Project [9], an open-source environment for editing Eclipse Mod-
eling Framework (EMF) models and particularly supporting UML and related profiles
such as SysML and MARTE, on the Eclipse platform. CHESS-ML allows the specifica-
tion of a system together with relevant EFPs such as predictability, dependability and se-
curity. Moreover, it supports a development methodology expressly based on separation
of concerns; distinct design views address distinct concerns. In addition, CHESS-ML
supports component-based development as prescribed by the UML Superstructure [10].

For the functional definition of the system in CHESS, UML component and com-
posite component diagrams are employed to model the structural aspects while state-
machines are used to express functional behaviour. Action Language for Foundational
UML (ALF) [11] is used to define the actual behaviour of the component operations
(also addressed in this paper as functions). In this way, we reach the necessary expres-
sive power to be able to generate the full implementation directly from the functional
models with no need for manual fine-tuning of the code after its generation. In compli-
ance with the principle of separation of concerns adopted in CHESS-ML, the functional
models are decorated with extra-functional information thereby ensuring that the defi-
nition of the functional entities is not altered.

The target languages are C++, for code portions running on CPU, and CUDA
C/C++ [12] for code portions to be deployed on GPU. The application is run on OSE,
a commercial and industrial real-time operating system developed by Enea [13], which
provides the concept of direct and asynchronous message passing for communication
and synchronisation between tasks. This allows tasks to run on different processors or
cores, utilising the same message-based communication model as on a single processor.
This programming model provides the advantage of avoiding the use of shared memory
among tasks. In OSE, the runnable real-time entity equivalent to a task is called process,
and the messages that are passed between processes are referred to as signals (thus, the
terms process and task in this paper can be considered synonyms).

3 Related Work

Overall, a number of different approaches have been proposed for the generation of
multicore systems, starting from different abstraction levels, such as in [14], [15], [16].

2 Download at http://www.math.unipd.it/˜azovi/CHESS/CHESS_3.2/.



Nevertheless, the input needed for these approaches is at a very low abstraction level
and the output is meant to complement elsewhere generated or already existing code
artefacts. In our solution the whole implementation is meant to be generated from the
design models in one single transformation process.

Different approaches aiming at achieving code generation for embedded systems
can be found in the literature but despite the numerous attempts, this still represents an
open research issue especially when it comes to the generation of code to be run on het-
erogeneous platforms. The most concrete attempt to heterogeneous code generation for
CPU-GPU configurations has been proposed by Rodrigues et al. in [17] where the au-
thors define a code generation process from UML–MARTE models to OpenCL. While
similar to ours in terms of the underlying idea, the approach proposed in this work as-
sumes a more detailed modelled platform information and it targets only GPU-related
code. In the approach we propose the aim is to provide an environment that allows
end-users to freely model systems and thereby allocate components and their functions
to either CPUs or GPUs leaving the burden of communication code between CPU and
GPU to the code generation process.

In [18] the authors aim at automating the task of determining the appropriate mem-
ory usage as well as the coding of data transfer between memories. This work could be
exploited in the next steps of our research work towards possible optimizations of the
code to be generated. Additionally, attempts to automatically generate C from CUDA
have also been proposed, as in [19, 20], and they could represent a useful guidance for
definition and implementation of our ALF to CUDA C/C++ transformation chain.

4 Modelling and Synthesizing the Heterogeneous Application

In this section we define the means we identified for modelling heterogeneous deploy-
ment and thereby enabling the generation of applications to be run on mixed CPU-GPU
platforms from the design models.

4.1 Modelling Heterogeneous Deployment

As previously mentioned, the functional definition of the system is modelled in CHESS-
ML by means of UML components as well as state-machines. Moreover ALF is lever-
aged to implement the actual behaviour of the components’ operations. Note that the
functional specification of the system is meant to remain deployment-agnostic, thus
leaving platform and deployment details to be modelled as extra-functional decorations
as described later in this section.

The first step to enhance the code generation from models to target heterogeneous
platforms is to identify the modelling means for those points of variability that cannot
be embedded in the transformation process. More specifically, while we already allow
the allocation of components to CPU cores via OSE processes, we want to enable the
modeller to define the allocation of single component functions to GPU cores as well.

In Fig. 1 we show a simplified version of the vision system from an Autonomous
Underwater Vehicle (AUV), focusing on functional definition and allocation to hard-
ware resources of components and functions. The system is represented by the compos-
ite component Vision System, containing components VisionManager impl



of type VisionManager, FrontCamera and BottomCamera of type Stereo-
Camera and representing the two camera systems of the AUV, and the Filter com-
ponent of type StereoMatcher. The components are allocated to different OSE pro-
cesses, i.e., Process A, Process B, Process C, Process D, of type OSE Pro-
cess and stereotyped with MARTE’s �MemoryPartition�. The processes are then
allocated to the two-cores CPU chip defined as MARTE’s �hwProcessor�.

The allocation is modelled by means of MARTE’s �allocated� (on allocated com-
ponents and resources) and �allocate� (dotted arrows between elements with alloca-
tion relationship). Moreover, the core ID on which the process is meant to be allocated
is specified through a MARTE’s �nfpConstraint� called Core ID. Let us suppose
that we want to allocate Filter’s function f sum() to the core with ID = 1 of the
GPU chip. This is done by:

– Modelling an �allocate� link between Filter and the �hwProcessor� GPU -
chip;

– Specifying the function (i.e., f sum() ) to be allocated to the GPU core through a
decoration of the �allocate� link with MARTE’s �assign�;

– Decorate the �allocate� with a �nfpConstraint� called Core ID for specify-
ing the core on which to allocate the function, a �nfpConstraint� called GridD
for the definition of the grid dimension, and a �nfpConstraint� called BlockN
for the definition of the thread block.

Note that, while in Fig. 1 all the details (functional, extra-functional and deployment)
are exposed in a single view, in the actual CHESS-ML model they are placed in sep-
arated views (i.e., functional, extra-functional, deployment) to enforce separation of
concerns.

4.2 Generating the Application

The generation process is constituted by a set of model transformations. Starting from
the CHESS-ML model of the system under development, we translate the structural
definition from component, composite component and state-machine diagrams through
a model-to-model transformation chain3. Regarding the translation of state-machines,
our approach resembles the state design pattern, as defined in [21], and considers the
component owning the state-machine as the context for the related states.

As prescribed in its specification [11], the execution semantics for ALF is specified
by a formal mapping to foundational UML (fUML) [22]. There are three prescribed
ways in which ALF execution semantics may be implemented [11], namely interpretive
execution, compilative execution and translational execution. In our code generation,
we provided a solution towards the translational execution of ALF, focusing on the
minimum conformance level (as defined in [11]), by means of model-to-model trans-
formations which are introduced in [23].

In the followings we describe the generation principles to achieve the needed com-
munication code to call functions allocated to GPUs (i.e., f sum() ) from functions allo-
cated to CPUs, as well as the code for f sum(), specified in the model in terms of ALF,
to CUDA C/C++ code. Let us suppose that the function caller() in FrontCamera

3 More details on the transformation process can be found in [1]; the complete description of
generation process and involved artefacts for multiprocess applications is currently under sub-
mission.



Fig. 1: Modelling of Heterogeneous Deployment in Papyrus



calls Filter’s f sum() which is allocated to the GPU core with Core ID = 1; the
code related to the two functions is depicted in the following ALF-like code snippet.

1 / / c a l l e r i n ALF− l i k e
2 p u b l i c c a l l e r ( i n p1 [ ] , i n p2 [ ] ) {
3 i n t N = 10000 ;
4 i n t r e s [N ] ;
5 F i l t e r . f sum ( p1 , p2 , N, r e s ) ;
6 }
7
8 / / f sum i n ALF− l i k e
9 p u b l i c f sum ( i n a [ ] , i n b [ ] , i n N, o u t r e s u l t [ ] ) {

10 i n t i = 0 ;
11 f o r ( i i n N )
12 r e s u l t [ i ] = a [ i ] + b [ i ] ;
13 }

Code 1.1: caller() and f sum() functions in ALF-like

As depicted in the code snippet, function f sum() computes the sum of the arrays given
as input parameters (in a[], in b[] ) and put the result in the output parameter array (out
result[] ); for simplicity reasons we statically define the arrays’ length as N. On the one
hand, the function caller() has to be generated as standard C++ function, and therefore
can be handled by the code generator in [1]. On the other hand, f sum(), which is de-
ployed on a GPU core, needs to be translated into CUDA C/C++ and communication
code has to be generated in order to allow caller() to call it.

The idea is to enhance the generation process to produce (i) communication code
whenever the code generator runs into a call (caller() ) to a function (f sum() ) allocated
to a GPU core, and (ii) the parallel code which corresponds to the sequential ALF code
defined for it (f sum() ). Code 1.2 depicts the generated C++ caller() function as well as
the generated CUDA C/C++ code in terms of the kernel f sum(), representing the trans-
lated body of f sum(), and f sum caller(), which represents the function implementing
the communication code needed to call the kernel.

1−−−−−−−− . cpp f i l e −−−−−−−−
2 / / c a l l e r i n C++ ( . cpp f i l e )
3 void c a l l e r ( i n t ∗p1 , i n t ∗p2 ){
4 i n t N = 10000 ;
5 i n t r e s [N ] ;
6 F i l t e r . f s u m c a l l e r ( p1 , p2 , N, r e s ) ;
7 }
8
9−−−−−−−− . cu f i l e −−−−−−−−

10 / / f sum ( ) i n CUDA C++
11 g l o b a l void f sum ( i n t ∗a , i n t ∗b , i n t ∗ r e s u l t , i n t N) {
12 / / d e t e r m i n e i n which t h r e a d we are
13 i n t i = t h r e a d I d x . x + ( b l o c k I d x . x ∗ blockDim . x ) ;
14 / / p a r a l l e l sum
15 i f ( i < N) r e s u l t [ i ] = a [ i ] + b [ i ] ;
16 }
17
18 / / f s u m c a l l e r t o e n a b l e c a l l s t o f sum ( )



19 void f s u m c a l l e r ( i n t ∗p1 , i n t ∗p2 , i n t N, i n t ∗ r e s )
20 {
21 / / p o i n t e r s t o d e v i c e p a r a m e t e r s
22 i n t ∗p1 d , ∗p2 d , ∗ r e s d ;
23 / / s i z e , i n b y t e s , o f each a r r a y
24 s i z e t b y t e s = N∗ s i z e o f ( i n t ) ;
25 / / a l l o c a t e memory f o r p a r a m e t e r s
26 cudaMal loc (&p1 d , b y t e s ) ;
27 cudaMal loc (&p2 d , b y t e s ) ;
28 cudaMal loc (& r e s d , b y t e s ) ;
29 / / copy h o s t memory t o d e v i c e memory
30 cudaMemcpyToSymbol ( p1 d , p1 , b y t e s ) ;
31 cudaMemcpyToSymbol ( p2 d , p2 , b y t e s ) ;
32 / / i n i t g r i d and b l o c k d i m e n s i o n s
33 dim3 dimGrid ( 2 ) ;
34 dim3 dimBlock ( 1 0 2 4 ) ;
35 / / s e l e c t GPU d e v i c e
36 c u d a S e t D e v i c e ( 1 ) ;
37 / / c a l l k e r n e l f u n c t i o n
38 f sum<<<dimGrid , dimBlock>>>(p1 d , p2 d , r e s d , N ) ;
39 / / copy d e v i c e memory t o h o s t memory
40 cudaMemcpyFromSymbol ( r e s , r e s d , b y t e s ) ;
41 / / d e a l l o c a t e
42 c u d a F r e e ( r e s d ) ;
43 c u d a F r e e ( p1 d ) ;
44 c u d a F r e e ( p2 d ) ;
45 }

Code 1.2: Generated Functions in C++ and CUDA C/C++

The following steps are performed to generate the kernel f sum() and the communi-
cation code for it to be called. Firstly, since the body of f sum() is defined in terms
of sequential computation, we parallelize it by substituting the iterating for loop with
a multithread parallel sum, in which each thread in the block sums the respective i-th
arrays element (lines 10-16). This step is currently meant to be provided only in a semi-
automatic fashion, hence requiring manual fine-tuning in more complex cases.

The next step is to create a communication function called f sum caller() (lines
18-45) which would be called by caller() and that provides the CUDA-related oper-
ations needed to call the kernel to f sum(). In order to do this, a pointer for each of
the parameters (both in and out) of f sum() is declared and given memory through the
cudaMalloc() API (lines 22-28). They will be used for exchanging data between
CPU and GPU via host and device memories. The pointers are then made to point to
the values carried by the parameters by copying host memory to device memory through
the cudaMemcpyToSymbol() API (lines 30-31).

As depicted in Fig. 1, the modeller defines the number of grid dimensions (i.e., 2) by
�nfpConstraint� GridD as well as the thread block (i.e., 1024) by �nfpConstraint�
BlockN as decorations of the allocation of f sum() on the GPU core with Core ID =
1. The generation process will locate this information in the model and use it to declare
the actual dimensions of both grid and block (lines 33-34); the GPU core’s ID is used



to assign the device to be used, through the cudaSetDevice(ID) API (line 36).
At this point we generate the call to the kernel f sum() using the CUDA-specific

syntax (line 38). When the computation is completed, we move the result hold in the
device memory back to the host memory through the cudaMemcpyFromSymbol()
API (line 40). Finally, we can release the allocated resources through the cudaFree()
API (lines 42-44) and end the parallel computation.

5 Discussion and Conclusion

The actual development of the proposed approach is carried out by (i) identifying the
means to model deployment on mixed CPU-GPU configurations, (ii) improving the
intermediate artefacts employed by the code generator, and described in [1], to host
CUDA-related information, (iii) defining model-to-model and model-to-text transfor-
mations to carry out the actual code generation. Currently, the actual parallelisation of
ALF code is only provided in a semi-automatic manner, thus able to translate rather
simple cases (e.g., for loops both simple and nested) of parallelizable code. Future en-
hancements of the approach will therefore focus on broadening the set of covered cases.
Nevertheless, as it can be noticed in the proposed example, in order to call f sum() from
caller() (less than 20 code lines together), we would have needed to manually code
more than 25 lines of communication code (per call). This gives a hint on the useful-
ness of automating the generation of communication code and therefore relieving the
end-user of an error-prone and time consuming burden. Moreover, once we will have
finalized the necessary information to model heterogeneous allocation (e.g., CoreID,
GridD, BlockN), we intend to produce custom stereotypes, concentrating constraints
and allocations in a single place, that would be folded into the CHESS-ML profile.

In this work we focused on the allocation of entire ALF functions to GPU cores
for parallel computation. Since ALF allows to specify possible parallelization at finer-
grained level, as for the statements block and for, through the parallel anno-
tation, we will introduce the possibility of allocating only such specific portions to
the GPU core. According to the fUML semantics [22], the presence of a parallel
annotation does not imply the implementation of actual parallelism on the execution
platform, therefore the deployment-independence of the system’s functional descrip-
tion would not be jeorpardised. The parallel annotation will in fact be taken into
account only if the owning function would be allocated to a GPU core, and in that
case, instead of computing the entire function in parallel, only the annotated statements
would.

Possible future directions could target the definition of (semi-)automatic allocation
of components to processes and functions to either CPU or GPU cores, in order to opti-
mize performance and/or to decrease communication overhead. In order to achieve this,
a first step would be the definition of a more detailed memory model, both in terms of
the actual hardware resource as well as the allocation of components and functions/s-
tatements to it. Moreover, enhancements of the monitoring features as well as the back-
propagation capabilities would be required for exploiting the round-trip approach in [1,
3]. Finally, it is important to remark that, even if applied in the context of CHESS-ML
as enhancement of the round-trip support, the solution described in this work does not



depend on any CHESS-specific stereotype, and that makes it more generally applicable
to approaches leveraging on UML, MARTE and ALF.
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