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Abstract. Modern in-vehicle infotainment systems comprise highly in-
teractive software components. The verification of the interfaces of such
components poses a major challenge for developers. In this work, we
present an approach for model-based verification of distributed infotain-
ment components. We define a layered reference model which specifies
the interaction between two components at syntactical and behavioral
level. The layers abstract from the used middleware so developers may
focus on the components’ actual interface behavior. Additionally, we de-
fine a model execution framework which enables the reuse of the ref-
erence model for verification of interface implementations. We demon-
strate the applicability of the approach using an industrial case study.
Our approach aims at reducing errors in the communication behavior
and increasing the overall product quality.

Keywords: automotive, infotainment, interface verification, model ex-
ecution

1 Introduction

The growing amount and the increasing interdependency of functions in modern
automobiles [6, 21] pose a major challenge for the software development. One of
the most rapidly evolving in-vehicle domains is the infotainment (see Figure 1).
Up to now this has led to various infotainment functionalities with many in-
terdependencies on different interconnected Electronic Control Units (ECUs).
Especially, the ongoing trend of integrating external services into the in-vehicle
infotainment increases the complexity of the interfaces of related ECUs. Such
services may come from connected consumer devices (e.g. smart phones) or from
the Internet (e.g. cloud services). Moreover, there is a movement in the automo-
tive industry towards the use of multi-vendor platforms (such as GENIVI [7]),
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Fig. 1: Infotainment and communication as innovation driver in today’s cars. [11]

where services of different suppliers and the OEM are integrated in a single hard-
ware platform using an IPC bus for the message exchange. For such integration
scenarios, the verification of software components and their interfaces is needed
to assure compatibility and enable a well-defined user experience and premium-
class quality. This can be difficult when third-party services are provided as
black-boxes, where only their communication can be monitored.

Within the automotive application development, model-based approaches
have been applied successfully over time [3]. Model-based techniques used during
the design and integration phase of new infotainment applications play also a
major role in the process of validation and verification [19]. In the infotainment
domain the verification of application interfaces is complex, due to the interac-
tive and fast evolving nature of this domain. Traditionally constituting a not
safety critical domain, it comprises very diverse and multifaceted interactions,
reaching from rich media information exchange to single control interactions.

We identified the following items as most defining challenges for the verifica-
tion of infotainment interfaces with respect to their communication:

1. Abstraction: Middlewares define their own protocols and interface descrip-
tion languages. The modeling approach should abstract from these technical
details so developers may focus on the components’ actual interface behavior.

2. Parallel interactions: Manifold software-based features are assembled and
executed in parallel with interfaces partially interdependent. The many po-
tential system states and interactions are very difficult to capture.

3. Synchronization (Initialization): The parallel interactions make it hard
to identify the actual communication state. Anyway, the verification mecha-
nism needs to be able to assume this state for carrying out the verification.

4. Timeouts: Infotainment is not a safety-critical domain, but the meeting of
timing requirements is essential for orchestration of interactive components.

5. Error detection: The verification should reliably detect an abnormal op-
eration and encircle the actual fault leading to the erroneous functionality.

6. Executable interface specification: Especially with complex infotain-
ment systems manual verification is a tedious and error-prone task. Auto-
matic verification requires input for the interpretation by a machine. For
model-based specifications this can be achieved with executable semantics.



Within this paper, we focus on an approach for model-based verification of the
communication behavior of distributed infotainment components considering the
above characteristics. Special emphasis is put on the design and reuse of so-called
reference models from the specification phase for the verification. Therefore, a
concept for the verification of infotainment components’ interfaces by using ex-
ecutable reference models is presented. The main goals are to reduce the verifi-
cation costs while preserving or even increasing the product quality.

The contribution of our work is twofold. First, we define a layered reference
model which is used to specify the interaction between components at syntactical
and behavioral level. Thereby we take into account that interfaces are usually
defined at syntactical level in an existing proprietary language. We seamlessly
integrate those middleware dependent specifications in our modeling approach.
In addition, we define a framework for executing such reference models. This
enables us to reuse the models defined for specification in a verification process.

The remainder of this paper is organized as follows: In Section 2, we give a
brief overview of related work. Afterwards, Section 3 outlines our approach for
the model-based verification of infotainment interfaces using reference models.
In Section 4, we present the software architecture and execution semantics used
to enable the verification of component interfaces in the infotainment domain.
In Section 5 our approach is demonstrated using an industrial case study. We
conclude the paper in Section 6.

2 Related Work

Model-based development of application interfaces is widely applied in the au-
tomotive domain. For instance, MATLAB/Simulink [23] are generally utilized
solutions for modeling and testing embedded systems. However the main focus
of this tool chain is the development of continuous systems or software func-
tions. Instead one major challenge in the automotive infotainment domain is the
event-driven, state-based characteristic of the interactive systems. In the con-
text of infotainment systems, models today are commonly created on the basis
of UML [17]. There are already frameworks available complementing UML case
tools with interfaces to a physical network bus, e.g. MODENA [12] for the MOST
(Media Oriented Systems Transport) bus [15], which generally also enables the
testing of communication interfaces of infotainment components [14]. However,
for upcoming multi-vendor platforms (e.g. GENIVI) using novel communication
mechanisms no such framework is available today.

Infotainment components are usually implemented by different parties based
on a specification given by the car manufacturer. Specifications are written in
natural language and enriched with software models. In today’s automotive soft-
ware engineering, the specification models are often only used as visual represen-
tation of specific aspects. We aim at maximizing the automation of verification
processes using these specification models. Current verification methods rely on
sequence-based tests [2]. However, by specifying single test sequences the view
on the complex interactions and the system states of the components is very lim-



ited. Other approaches (e.g. [1]) include the manual design of test models, which
are used for automated generation of test cases. A major drawback of all these
approaches is the significant overhead for modeling the complex (infotainment)
test models or numerous test cases during the development. Moreover, testing
usually involves an oracle [22] to determine the expected outcome of test cases.
If created manually, the task grows tedious with a large number of tests.

An automated test oracle can be provided by execution of the specification
models. Further, the possibility to simulate and observe the reactions of a model
to a given sequence of events helps to understand the specified mechanisms. The
frameworks Pópulo [5] and Moliz [13] are two academic examples for UML model
execution. Both use class diagrams to declare classes and operations. The behav-
ior of latter can be defined with activities. Pópulo uses the UML action semantics
and stereotypes in the UML activity diagram. Moliz is based on Semantics of a
Foundational Subset for Executable UML Models (fUML) [18], a subset of UML
with execution semantics. UML Model Debugger (UMD) [4] enables execution
of activity and state diagrams, but uses Java code to specify actions. Similar the
case tool Rational Rhapsody [10] allows the user to enter code for actions but uses
its own semantics for execution of state diagrams [9]. A different approach is to
design a model language specifically for execution of state-based behavior. State
Chart XML (SCXML) [24] is a general-purpose event-based state machine lan-
guage that is based on semantics of Harel statecharts [8]. Harel statecharts were
also adopted in UML state machines, but SCXML includes execution semantics
that allow running the model, e.g. for a simulation [16].

In this paper, we introduce an applicable approach for the verification of com-
munication interfaces in the automotive infotainment domain. We exploit exe-
cutable reference models created during the specification phase of infotainment
components for the verification of implementations in the integration phase.

3 Model-based Verification of Interfaces

We address the challenges of interface verification in automotive infotainment
systems by using layered interface specifications. A so-called layered reference
model is manually derived from the requirements. It describes the communica-
tion between two components including all involved interfaces and behavioral
interactions. Figure 2 shows the different layers of the reference model.

The interface definition model describes the artifacts (e.g., broadcasts, meth-
ods, types) of the involved interfaces on a syntactical level. This layer uses the
proprietary interface description language usually provided by a middleware
technology. By changing this layer, the model can be adapted to the utilized
target middleware. Figure 3a shows an example interface definition model for
automotive infotainment components.

The event definition model bridges the gap between the middleware de-
pendent interface definition model and the middleware independent behavioral
model. The modeler specifies the invocation of an interface artifact using an event
definition and refines this event with a constraint. A constraint is defined by ba-
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Fig. 2: The layered reference model describing a communication relation.

interface simple {

version {

major 1

minor 0

}

method message {

out {

Int8 id

}

}

}

(a) interface
definition

interface simple {

CallEvent request {

methodRef message

}

ResponseEvent replyOne {

methodRef message

constraint {id == 1}

}

ResponseEvent replyTwo {

methodRef message

constraint {id == 2}

}

}

(b) event definition

«communicationViewModel»
Example_Communication

initial

independent

wait1 wait2

timed
B->A::replyTwo

A->B::request

::Timeout

B->A::replyOne

A->B::request

::Timeout

B->A::replyOne B->A::replyTwo

Max:q20

(c) behavioral model

Fig. 3: Exemplary reference model.

sic arithmetic and logical expressions using the parameters which correspond to
the interface artifact. The specified events are used in the behavioral model as
triggers for transitions. Therefore, only events needed in the behavioral models
need to be defined. An example of our textual language for this task is shown in
Figure 3b. It may be adapted to other target interface definition models.

In order to model the ordering of events in a communication relation between
two components we use stereotyped UML state machines [17]. State machines
are currently widely applied for behavioral modeling in the automotive domain.
We do not use all concepts provided by the formalism but restrict the expressive
power with an UML Profile. Figure 3c shows an exemplary behavioral model for
the communication between two components. A state in our model is not the
status of single components; rather it represents their common communication
state. A state can be annotated with a timeout event which defines the maximum
duration the state may be active. When the state has been active for the spec-
ified amount of time, the corresponding timeout event is emitted. This allows
specifying timing requirements in the model (i.e. deadlines and cyclic events).

In UML state machines transitions are defined with trigger and guard. In our
experience with real models, the guard conditions are a powerful concept but
might become complex pieces of program code. Therefore, we allow the guard



condition to be specified using the constraints of the event model only. Triggers
may reference an event of the event model or a timeout of the behavioral model.
The sender and the receiver of the event are also annotated on the transition.

The limited number of elements without nested code snippets prevents the
use of ambiguous concepts and facilitates a precise description of the communi-
cation relationships. The approach is precise enough for direct code generation
of an executable state chart for a specific middleware. We could already show
the applicability with a subset of this model for adapter-code generation in [20].
In this work, we extended the approach with timing, and parallel and partially
interdependent communication. Parallel behavior is modeled by states with par-
allel regions. A join element can be used to coordinate the exit of those regions.

4 Execution Framework for Reference Models

In this section, we introduce our execution framework for reference models used
for the verification of interfaces in automotive infotainment systems. The frame-
work monitors the component interaction and reports failures (see Figure 4).

model execution framework communication
stream

(e.g., live or recorded trace)
event decoder

message

execution semantics

eventfailure logger synchronizer

behavioral model

event definition 
model

interface definition 
model

message 1

message 2

message 3

...

unexpected

sync

Fig. 4: Execution framework for reference models.

With the information from the interface and event models, the event decoder
maps incoming messages to events and discards messages not relevant for the
reference model. The behavioral model gets triggered by the resulting event
stream. Every event which is not consumed by the model in a specific state will
be logged. If such a failure in the communication stream is detected, the current
state of the communication is unclear and the active state in the behavioral
model has to be determined by the Synchronizer using the next messages.

For executing the reference models, we use open and standardized semantics.
fUML defines execution semantics for a subset of UML, but this subset does not
include state machines. Therefore, we use SCXML, which provides well-defined
semantics for executable state machines. SCXML is not based on UML state ma-
chines but it is sufficiently similar. Most of the modeling elements and concepts
in our behavioral models can be mapped straight forward to SCXML: initial
nodes, transitions, states with regions for nesting as well as parallel behavior.



Special treatment is only needed for the join element, which is not available in
SCXML. To compensate for this discrepancy in the mapping, we redirect tran-
sitions targeting the join to a new final state in each region. The join’s outgoing
transition is connected to the parallel state as source, and triggers when all final
states have been entered.

In SCXML our error semantics can be modeled by containing the original
state machine in a state, where a single transition leads to the error state. This
transition’s trigger is set to match any event. As transitions of inner states pre-
cede those of outer states in SCXML, the error transition fires only if the event is
not consumed by the original state machine. We implemented a straightforward
type of Synchronizer with transitions for all unique events to their correspond-
ing target states. A more detailed description of the synchronization mechanism
is beyond the scope of this paper. This mapping grants execution, error check-
ing, and synchronization semantics to the proposed modeling approach enabling
detection of the following failures:

– missing messages,
– additional messages,
– malformed messages, and
– timing violations

Thereby, our reference models together with the execution framework can be
used to verify interfaces of infotainment components.

5 Application in an Automotive Use Case

In this section we show the application of our approach using an automotive
example. An automotive infotainment ECU implements many functions which
communicate with other ECU’s using the in-car network. This includes read-
ing and setting values. This communication with the hardware services is often
realized using a gateway component with respective software proxies. In the fol-
lowing, we introduce a fictive parking assistant (ParkA) software proxy. This
service is used for producing a top-view of the car showing the surrounding
obstacles. The ParkA component provides a reliable link in order to obtain up-
to-date sensor values. In this case the reference model describes the inter-process
communication inside the infotainment ECU between a Client (e.g. a surround
view) and the ParkA-service.

Figure 5a shows the syntactical interface of the ParkA component. The inter-
face provides methods for startup, shutdown and resolution settings. The ParkA
service sends the sensor values using the broadcast sensorValues. Figure 5b
shows the respective event definitions for the ParkA interface. In this model we
specify concrete occurrences of broadcasts, method calls or responses.

In addition to the syntactical interface and events we define the protocol for
a specification-conformant interaction with a ParkA service. Figure 5c shows
the behavioral model. To initiate communication, the client has to invoke the
startUp-Method. If successful (startUp_response_OK), the client is connected



interface ParkA{

method startUp{

in{Resolution res}

out{AM_Error returnValue} }

broadcast sensorValues {

out{

Int32[] front_lmr

Int32[] rear_lmr

Resolution res } }

enumeration Resolution{ cm mm }

enumeration AM_Error{ OK ERROR }

... }

(a) ParkA interface definition excerpt.

Interface ParkA {

CallEvent startUp {

methodRef startUp }

ResponseEvent startUp_response_OK {

methodRef startUp

constraint {returnValue == OK} }

ResponseEvent startUp_response_ERROR {

methodRef startUp

constraint {returnValue != OK} }

BroadcastEvent sensorValues {

methodRef sensorValues }

... }

(b) ParkA event definition excerpt.
«communicationViewModel»
Client_ParkA_Communication

initial starting

working

sendingValues
setRes

setResSent

shutdown

shutdownSent

ParkA:>Client::startUp_response_ERROR
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ParkA:>Client::sensorValues
ParkA:>Client::setResolution_response

ParkA:>Client::shutDown_response_OK

ParkA:>Client::shutDown_response_ERROR

Client:>ParkA::startUp

Client:>ParkA::setResolution

ParkA:>Client::startUp_response_OK

unexpectedEvent

startUpvvv

startUp_response_OKvy8

sensorValuesvy5

sensorValuesvfv
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(c) ParkA behavioral model and example trace.

Fig. 5: Reference model for the communication between the ParkA component
and a client. Additionally the decoded input communication stream is shown.

and the service starts sending cyclic sensor values using the sensorValues-
broadcast. The time between two of these broadcasts should not be longer than
20ms (Max: 20). At any time in the working-state the client may change the
resolution of the sensor values using the setResolution-method or shut down
the service using the shutDown-method. This is described using a parallel region.

We show an example for a communication trace in Figure 5c. Each line de-
fines an event number, the timestamp of the event and the already decoded
message as string. In this example we annotate the transitions of the behav-
ioral model with the order in which the trace is executed. The ParkA service
starts sending sensor values immediately after the startUp method call. This
is a deviation from the specified behavior and causes the behavior model to
trigger the unexpectedEvent-transition. The failure gets logged and the next
event (sensorValues) is used for synchronization. The next failure is detected
at message number 7. The timeout in state sendingValues elapses and fires the
timeout_sendingValues-event. This event does not trigger any transition in the



active state and will be handled by the unexpectedEvent-transition. Synchro-
nization is done after receiving the next sensorValues-broadcast. The trace
completes without further failures. Other unique events have transitions from
the Synchronizer into the behavior model, too, which are not shown for clarity.

The case-study illustrates how we address the challenges for the verification
of automotive infotainment interfaces introduced in Section 1:

1. The event model abstracts from technical details, thus allowing for a clear
behavioral model.

2. All potential system states of parallel and partially interdependent compo-
nents can be captured by using parallel regions and multiple interfaces in
the reference model.

3. Using unique messages the presented reference model can be (re-)synchro-
nized to the tested components for initialization or after the model detected
a message not conforming to the modeled behavior.

4. The synchronization mechanism allows to detect timeouts during the verifi-
cation (e.g. when a message is not delivered in time) by treating timeouts of
states like other events.

5. Reliable error detection is provided by the logged failures, which can later
be evaluated by the developer, in order to verify, if the deviant behavior of
the implemented interface is identified as a definite error or not.

6. The presented execution framework enables running the reference models in
parallel to the components for verification.

Thereby, our approach enables the verification of infotainment components’
interfaces by detecting failures within the communication behavior using exe-
cutable reference models.

6 Conclusions & Future Work

In this work, we outlined the major characteristics and challenges for the verifi-
cation of communication interfaces in in-vehicle infotainment systems. Moreover,
we have introduced an approach for the verification of interfaces which addresses
these challenges by using reference models created during the specification phase.
We showed the applicability of our approach by an example of a parking assis-
tant proxy component. Our approach allows exploiting the effort once spent for
a model-based specification in the integration phase, by verifying the quality of
the implemented components.

Future emphasis will be laid on the enhancement of the proposed method-
ology for complex data-depending models. Furthermore, reusing the reference
models for so-called restbus simulation with real ECUs will be investigated in
future work.
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