
Model-Based Interchange Formats:
a Generic Set of Tools for Validating Structured

Data against a Knowledge Base
	

Pascal Rivière1, Olivier Rosec2

1Head of Methodology Dept.
2Head of Social Data Interchange Unit

(within the Methodology Dept.)
	

Caisse nationale d’assurance vieillesse (Cnav)
110 – 112 avenue de Flandre F-75019 Paris	 	

	

Abstract -A Opting for a model-based approach to develop a set of tools
for validating structured data concentrated at the beginning on the generic
control engine which would read a knowledge base containing rules. But
to attain this goal, one had to develop a Model Editor which over time
evolved into a full-fledged Integrated Development Environment (IDE)
for the modeling of structured data formats, the specification of their
validating rules and the generation of the knowledge base.

	

A) Introduction

In this era of fine-grain interactions between complex systems across distributed
architectures, file processing has acquired a somewhat quaint flavor. But even
nowadays there is no other way to transmit complex data from one system to another.

Difficulties are many at all stages:

• Defining the interchange format between partners is not easy;
• Ensuring the actual files meet the quality standards expected in production

means multiplying control rules;
• Defining the architecture, protocols and syntax for file processing platforms

adds yet another dimension to the conundrum.

This paper is about the search for a generic approach covering the first two points.

Proceedings of the Posters Workshop at CSD&M 2013 127

B) Problem Domain: Rationalizing the Social Data Collection
Format
	
In France social protection is split up in several schemes administered by different
agencies. Over the course of time each agency has discovered the hard way that it is
less costly to acquire data about the future claimants of benefits in a steady stream, at
the source, directly from the payroll system, rather than on an ad-hoc case per case
basis, from the claimant.

Thus all agencies which pay out old age pensions on the basis of contributions paid
along one’s working life have turned to collecting the data about employees’ pay on a
yearly basis, instead of collecting it from the faded pay slips of a lifetime when the
employee claims his or her pension.

Social data, as a broad term covering pay-related data, also serves to test whether an
employee is entitled to this or that benefit, be it a sickness benefit or an
unemployment benefit.

Other services outside the social protection sphere have been interested as well: the
Inland Revenue, the National Office of Statistics want to use that kind of “big data”
either for sending out tax forms pre-printed with income returns or to conduct
surveys.

Initially the data collection process relied on paper forms. The paper forms merged
into a single one, and as the process went digital during the 1980s, that huge form
gave birth to a file format. The interchange medium switched from tapes and diskettes
to the Web around year 2000. Today, more than one million employers send files at
the beginning of each year.

The success of that particular community has attracted more and more partners,
because once a reliable channel for the transmission of data from payroll systems to
the information systems of public services has been found, it is far easier to plug into
it than to set up a brand new one from scratch.

A new standards body was set up in 2008 to organize the process of collecting
requirements beyond the original community of partners. But the standards body has
no leverage whatsoever on the data collection process: the data is in fact distributed
over a series of platforms. It cascades through a complex splitting and filtering
process so that each administration gets the data relevant to its business purposes and
just that. And some partners insist on running their own platform.

C) The Interchange Format as a Maintenance Nightmare
	
The interchange format is represented as a hierarchy of data blocks governed by
an alphanumeric naming scheme.

Proceedings of the Posters Workshop at CSD&M 2013 128

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

At file level, data elements are physically represented on a key-value basis, the key
being the identifier of the data element according to the naming scheme. There is no
physical notation of data element blocks. The naming scheme enforces the model
organization within the flat file format.

Separators and an end of line character are other precisions given in the file format
specification, as well as the character encoding, with restrictions for particular data
elements.

There is no typing other than alphanumeric, numeric, date. Typing can be further
refined by regular expressions and minimum and maximum lengths. Some data
elements have to belong to a list of values defined as an enumeration or carried by an
external referential.

Control rules, written out in natural language, describe consistency checks between
data elements: co-occurrence, comparison tests enforce semantic validity at file level.

Yearly Change Requests : the Maintenance Challenge

Each year nearly one thousand change requests are introduced by partners because of:

• changes in legislation;
• “patches” to solve production issues arisen during the last data collection

campaign.

The national agency in charge of the format must then update the file specification
and each team must update the corresponding application code on their data-
processing platform.

The frequency of change requests has created a maintenance challenge which is
further aggravated by the following facts:

• The specification is considered as a document to be discussed during
countless proof-reading sessions;

• The focus, instead on being on concepts, is on implementation details.
There is no proper conceptual data model independent of the file format.
There are only broad rules governing the organization of data blocks
carrying data elements along several axes:

o A semantic axis along which one finds in succession the description
of the party sending the file, of the employer, the employee and
the business data for this employee;

Proceedings of the Posters Workshop at CSD&M 2013 129

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

o A temporal axis which governs the insertion of working periods for
an employee within the timeframe carried by the file: month,
quarter, year;

o An “ownership” axis because business data is split between
“common” business data received by all partners and business data
specified by and “belonging” to a particular partner.

Administering the format specification along those three axes gives birth to one of
those combinatory explosions which go hand in hand with a requirements elicitation
process chugging along contentedly in chronic happy-hour mode. The maintenance
challenge turns into a nightmare.

The Stand for a Generic Model-Based Approach

The national agency in charge of the file format and historically responsible for the
main file processing platform got fed up with:

• The absurdity of writing specific hand-crafted code which had to be thrown away
each year as the file format specification evolved;

• Squabbles between developing teams over the interpretation of this or that rule;
• The slow turnaround time when a control program had to be patched.

It made a stand in favor of a generic approach and took a step further the breakaway
from a mere paper specification. From a single referential which would represent
the file format, one should be able to generate:

• The documentation for implementing it across the community;
• A knowledge base.

The knowledge base would be read by a generic engine which would execute all
rules. The engine would remain the same over the years. Only the knowledge base
would change.

The whole specification would become machine executable. A team would take care
of the modeling which would produce both documentation and knowledge base. No
more code, no more developers. But first one had to jump over a few hurdles.

D) “Abstract Implementation”: Domain-Specific Languages
	
To enable the design and development of a suite of tools addressing the needs of the
modeling team in charge of the file documentation and knowledge base, first one had
to lay the foundations:

• Meta-models for the file format and deliverables;

Proceedings of the Posters Workshop at CSD&M 2013 130

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

• And transformation strategies to be applied to the single referential persisting the
models, to generate the deliverables.

The software solution has been designed on the basis of a Domain-Specific Language.

“A DSL is a programming language tailored specifically to an application domain:
rather than being for a general purpose, it captures precisely the domain's semantics.
(...) DSLs allow the concise description of an application's logic reducing the
semantic distance between the problem and the program.” [Spinellis, 2000].

Each time we can, we will use Spinellis’s taxonomy of patterns in the remainder of
this paper to explain the way a DSL supports the software process which is being
described.

The priority for the problem domain was to design the data model from which
interchange formats would be built. The model articulates three libraries:

• A Structures library describing data blocks composed of data elements;
• A Data types library describing the types for data elements;
• A Messages library describing each interchange format as a hierarchy of data

blocks.

The three libraries persist the current data interchange format modeled with the help
of the meta-model. This corresponds to the data structure representation creational
pattern [Spinellis, 2000].

Data block properties include:

• An identifier composed according to the naming scheme;
• A functional name;
• A description;
• A multiplicity (there can be 0, 1 or N instances of each block).

Data element properties include:

• An identifier composed according to the naming scheme;
• A functional name;
• A description;
• A usage (each data element can be within a certain block mandatory, conditional,

optional, or forbidden).

Proceedings of the Posters Workshop at CSD&M 2013 131

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

Rules are attached to data elements. Block level rules are attached to the first data
element in the block. Rules properties include:

• An identifier;
• An execution context;
• A message to be returned to the user in case the rule is triggered and not satisfied;
• The rule in natural language.

Semantic rules have been represented by a textual DSL which was first specified in
EBNF. The rules are written as mathematical propositions enforcing first-order
predicate logic. They can include existential or universal quantifiers. Semantic
rules are written using the fully qualified identifiers for the data elements. Thus they
are easily read and debugged.

Semantic rules can call macros and aliases. Both can be used as shorthand to simplify
a complex rule: for example, does this employee belong to the public sector and if it is
true then execute B and if not execute C. Semantic rules can be extended by
functions mapped to the function prototype of an executable language.

Documentation has been modeled too. A file format specification is a document
consisting of:

• Resources which are references to static document or spreadsheet formats;
• Templates for exploring the referential, through a reporting engine which will

bring back the selected objects: messages, data blocks with their elements and
types and rules.

The DSL which federates the resources and parameters for documentation generation
illustrates the system front-end DSL pattern [Spinellis, 2000].

E) “Concrete Implementation”: The Eclipse Modeling Framework
	
EMF’s main “selling point” (it is for the most part open source and free) is that it is
built on top of the Eclipse platform. The Eclipse platform is in itself an asset,
providing countless mechanisms and wizards for managing projects, writing,
compiling and debugging code, managing code libraries and source repositories,
tracing file change. It plugs into most source control and ticketing tools.

EMF started according to the literature [Merks, Gronback, 2009] as a reaction against
the profuseness of the Unified Modeling Language. A subset of UML constructs
called Ecore articulates the minimum set of components to build models from
EElements, EClasses, EAttributes etc.

Proceedings of the Posters Workshop at CSD&M 2013 132

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

EMF enables one to build such a model, from scratch through the appropriate editor,
or through the transformation of:

• A UML model;
• Annotated Java code;
• XML Schema.

The Model Editor

With EMF one can build quickly an editor to manipulate business models. A powerful
API helps enforce Model View Controller (MVC) and command stack mechanisms.
Models can be persisted as resources in an XMI style syntax. Various template en-
gines are available for model to model or model to text transformations.

These transformations combine the source-to-source transformation creational pattern
and the pipeline behavioral pattern [Spinellis, 2000].

Over three years the File Format Editor has gone through many different versions as
models were refined and deliverables tuned to the needs of the user community.

Model resources have been organized into a model bundle within which a catalog file
points to all resources such as the three aforementioned libraries.

The same models go into the making of the knowledge base which is compiled as a
Java project and organized in directories read by the control engine as it goes through
its different processing stages.

Automatic generation reduces turnaround time to deliver a new knowledge base to
one hour, including non-regression tests which have been automated (test files reports
are parsed to compare the obtained result with the expected result), once for instance a
rule has been patched.

The Three Representations of a File Format

The file format is modeled in the Editor through a graphical user interface.

The seminal decision was to represent the file formats in XML Schema in the
knowledge base. All other decisions hinge on that choice.

XML Schema is a cheap and common way of structuring data. It offers strong typing.
An XML instance can be parsed and validated against the schema it purports to re-
spect.

But the actual files remain true to the legacy flat key-value format.

Proceedings of the Posters Workshop at CSD&M 2013 133

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

Figure	 1	 shows	 side	 by	 side	 the	 model	 as	 seen	 through	 the	 editor,	 an	 instance	 of	 the	 flat	 file	
legacy	 format,	 and	 its	 XML	 conversion.	

The Validating Engine and its Processing Stages

The generic control engine processes a file in three stages:

• Conversion from the flat key-value legacy format to a hierarchical XML
instance;

• Syntactical control, by validating the instance XML file against the XML
Schemas;

• Semantic control, by firing one after the other the rules attached to data
elements.

The control logic is static. There is no interface to live databases to check the
existence or the status of the value of a data element. Only the knowledge base will be
read.

The Three Representations of a Semantic Rule

XML Schema offers no easy way to enforce consistency constraints between data
nodes. One has to write specific code. But specificity was not the order of the day.
Hence the decision to implement the textual DSL described earlier in the paper.

Proceedings of the Posters Workshop at CSD&M 2013 134

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

S21.G00.40.009/CCH-‐12
The	 job	 contract	 number	 must	 be	 unique	 for	 a	 given	 employer	 and	 employee
DSL
every	 x:S21.G00.40,y:S21.G00.40	 satisfies	 ((($x!=$y)	 and	 is_present($x:S21.G00.40.009)	 and	 is_present($y:S21.G00.40.009))	 =>	
($x:S21.G00.40.009	 !=	 $y:S21.G00.40.009))
Java
public	 IRuleResult	 run(ISousGroupe	 context)
{
S21_G00_30	 ctxt	 =	 (S21_G00_30)context;

S21_G00_30	 var_root	 =	 ctxt;

Iterable	 s21_G00_40	 =	 ctxt	 ==	 null	 ?	 Collections.EMPTY_LIST	 :	 Iterables.filter(Iterables.concat(new	 Iterable[]	 {	 ctxt.getS21_G00_40()	 }),	
Predicates.notNull());

Iterable	 _s21_G00_40	 =	 ctxt	 ==	 null	 ?	 Collections.EMPTY_LIST	 :	 Iterables.filter(Iterables.concat(new	 Iterable[]	 {	 ctxt.getS21_G00_40()	 }),	
Predicates.notNull());

Iterable	 s21_G00_40_009	 =	 Iterables.filter(Iterables.concat(new	 Iterable[]	 {	
Iterables.transform(_s21_G00_40,	
new	 Function()
{
public	 S21_G00_40_009	 apply(S21_G00_40	 arg0)	 {
return	 arg0.getS21_G00_40_009();
}
})	 }),	 Predicates.notNull());

IRuleResult	 ruleResult	 =	 null;
Boolean	 result	 =	 Boolean.valueOf(false);

result	 =	
Boolean.valueOf(Operators.every(s21_G00_40,	 new	 Predicate(s21_G00_40)
{
public	 boolean	 apply(S21_G00_40	 var_x)	 {
boolean	 result	 =	
Operators.every(this.val$s21_G00_40,	 new	 Predicate(var_x)
{
public	 boolean	 apply(S21_G00_40	 var_y)	 {
boolean	 result	 =	
(this.val$var_x	 !=	 var_y)	 &&	
(ExternalFunctions.is_present(RuleS21_G00_40_009_CCH_12.this.s21_G00_40_009From(this.val$var_x)))	 &&	
(ExternalFunctions.is_present(RuleS21_G00_40_009_CCH_12.this.s21_G00_40_009From(var_y)))	 ?	
Operators.neq(RuleS21_G00_40_009_CCH_12.this.s21_G00_40_009From(this.val$var_x),	

RuleS21_G00_40_009_CCH_12.this.s21_G00_40_009From(var_y))	 :	 true;
return	 result;
}
});
return	 result;
}
}));

	

Figure	 2	 shows	 the	 transcription	 of	 a	 rule	 from	 the	 paper	 specification	 to	 its	 code	 implementa-‐
tion	 in	 the	 knowledge	 base	 (Java	 code	 excerpt	 here),	 obtained	 from	 a	 parsing	 of	 the	 textual	

DSL.	

Proceedings of the Posters Workshop at CSD&M 2013 135

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

Another problem dogging the processing of big XML files is memory management
which opens up on the usual alternative: event-driven parsing (SAX) or document
loading (DOM). In the time-honored way of hand-crafting control code, one positions
control rules involving variables belonging to data blocks stretching across the whole
file when the last necessary variable will have been read and stored.

The original vision wanted to dispense with the turnaround time associated with hand-
crafted code. So the parser which transforms textual DSL had to transform it into
machine executable code supporting:

• The test logic which would return a Boolean;
• The data addressing mechanism;
• And ultimately a memory-management mechanism.

A semantic validation API in Java covers all three issues, and more specifically
memory-management through a twin set of utility classes loading and unloading vari-
ables as the engine fires rule after rule to check a file, however big it may be. The API
rests on the convention that data elements always have the same address, the one they
have in the “covering message” which is a superset of all messages within the model.

Hosting a semantic rule API in Java corresponds to the piggyback structural pattern
[Spinellis, 2000].

F) The Validating Engine in Real Life
	
One should speak less in terms of an implementation gap and more in terms of a
consistent way of dealing with the issues which arose in the course of the project and
which had to be solved on the spur of the moment as the product neared roll-out time
in late 2012.

The Project Cycle
	
If one adopts the Y shape used to describe the fusion of the upper branches carrying
business requirements and system-level frameworks into an end-product, one should
say that the work cycle, instead of trickling down the Y, more or less pulsated in
radiating circles from the middle of the Y, as, from version to version, the set of
implemented functionalities and the range of transformation strategies and
frameworks used to develop the product expanded from the original nucleus.

But there are issues associated with deployment which can be addressed only with the
help of real user and qualification team feedback. This feedback accounts for the A
shape superimposed on the Y shape. The A shape denotes:

• Deployment issues such as performance, ease of integration;

Proceedings of the Posters Workshop at CSD&M 2013 136

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

• Usability in terms of user-friendliness, which means reducing the distance
between the original file and the converted file processed by the control
engine, by keeping as attributes:

o the original value of certain data elements transformed from the
legacy string format to comply with one of XML Schema’s built-in
datatypes (for example, dates);

o the line number of the data element in the original file.

business	
requirements

product

tools	 and	
frameworks

user-‐oriented	
improvements

production	 grade
performance	

	

Figure	 3	 superimposes	 the	 Y	 (development)	 and	 A	 (production	 and	 user	 feedback)	 cycles	

Stateless Mode and Report Stream Related Issues
	
Processing files in a production environment means processing gracefully even badly
damaged files, to return a user oriented report and not just a log trace. And the user
community wants validation reports to be exhaustive to understand what was wrong
with the file and the system it comes from. The control engine is stateless and goes
from one stage to another even if errors were detected at an earlier stage. But errors at
an early stage provoke errors at later stages: the report gets more and more confusing
for the user.
It might prove more efficient in the future to stop processing files at a certain stage.
This could mean redesigning the report stream which is open and closed at each stage
(intermediate reports are then merged into a full report). A continuous report stream
could be a better solution and would provide the interface necessary to stop file
processing before the user report loses all relevancy.
G) Return on investment
	

Proceedings of the Posters Workshop at CSD&M 2013 137

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

Originally the suite of tools was developed to support the Norme pour la
Dématérialisation des Déclarations de Données Sociales (N4DS: 800 data
elements, 600 semantic rules). It now supports the Déclaration Sociale Nominative
(DSN: 400 data elements, 120 semantic rules) as well, with no fork in the code of
both Editor and Engine. Since the roll-out of the first DSN validating component,
numerous releases have been made, including several emergency knowledge base
patches within half a day. This would have been impossible with hand-crafted code.

References

Diomidis Spinellis, « Notable Design Patterns for Domain-Specific Languages »,
Journal of Systems and Software, vol. 56, no 1, 2001, p. 91-99

Dave Steinberg, Frank Budinski, Marcela Paternostro, Ed Merks, “EMF Eclipse
Modeling Framework”, Addison-Wesley, Pearson Education, 2009.

Richard C Gronback, “Eclipse Modeling Project, a Domain-Specific Language (DSL)
Toolkit”, Addison-Wesley, Pearson Education, 2009.

Proceedings of the Posters Workshop at CSD&M 2013 138

Model-Based Interchange Formats: a Generic Set of Tools for Validating Structured Data against a Knowledge Base

