
Simulation for all components, phases and life-cycles of
complex space systems

Fernand Quartier, Frédéric Manon

Spacebel, Technoparc 8, Rue Jean Bart, 31670 Labège, France
fernand.quartier@spacebel.be

Centre National d’Etudes Spatiales, 18, Avenue Edouard Belin, 31401 Toulouse, France
frederic.manon@cnes.fr

Abstract. This paper describes the use and evolution of discrete event simula-
tors and models throughout CNES, its various space system developments, dis-
ciplines and related life-cycles and teams. Simulators and models are built in
the first place to ensure that the organization improves it competences in a
number of key areas. It presents how a careful federation of means, know-how
and models using a bottom-up approach, will meet one day the top-down Sys-
tem of Systems approach.

Keywords: Discrete event simulators, life cycle, multi-disciplinary, functional
simulation, space systems

1 Introduction

In a large engineering enterprise, such as Centre National d’Etudes Spatiales
(CNES), there are many simulators used and developed. The most demanding is the
operational simulator as it has to be representative for a satellite as seen from the
ground and because it is used in many verification and qualification chains for control
centres, mission control centres and payload control centres. For those qualifications,
the real satellite is only used rarely as incurs very expensive operations with many
constraints, while introducing risks on damage and planning. Moreover, testing with
real satellites still has limited representativity and fault injection is even more cum-
bersome. Nowadays, the operational simulators fly many months before the satellite is
launched.

The significant efforts to develop such large operational simulators have not only
led to a better understanding of the problematic and to better technical solutions, as
described in subsequent sections. It equally triggered the awareness of the value of
models that contain part of the company’s memory and its patrimony and a means of
communication and specification of behaviour. The validation and qualification of
models takes often much more resources than the development itself, so that reuse is
much more rewarding than traditional reuse of software components. But most im-
portantly, models and simulators are creating some sort of biotope that allow improv-

Proceedings of the Posters Workshop at CSD&M 2013 167

ing key competences and facilitates cooperation between people having various ex-
pertise and project roles.

2 Operational Simulators

2.1 Main Requirements

Operational simulators have the following key requirements:

• From the point of view of operators, the simulator should be indistinguishable from
the real satellite

• Causality must be respected and all runs must be reproducible
• Failure, fault and reproducible noise injection without changing models
• Fine control and visibility on internals (introspection)
• Formal and automated procedures for model and simulator validation
• Save/restore of context to allow bypassing operational test lead-in times of several

days
• Perennity guarantees for 15+ years: Linux, mainstream PC’s, Open source versus

COTS, heritage/reuse of 15 years

2.2 Content and Performance Requirements

• Independent models in C, Fortran, Matlab, Scilab, object format (industrial secret).
• Start script based model instantiations and connection of model variables without

compilation (using naming database)
• Computer emulators are loaded with the production version of the ROM images

(1750, ERC32, LEON, …)
• Performance: minimum is guaranteed real-time, 3 to n times real-time for increased

productivity

Although the main content of an operational simulator revolves around its computer
simulator, many disciplines are present: on-board software, command and control,
guidance and attitude, mechanics, thermal, electric, power …

 As an example, the Pleiades operational simulator contains:

─ 200 models, model frequencies of 1 to 128 Hz
─ 7 processor emulators, globally up to 80 million of OBSW instructions/sec
─ Up to 200 events in scheduler
─ 10.000 events per simulated second

Its performance is:

─ minimum 2 times real-time
─ 10 times real-time preferred (possibly with models that support reduced repre-

sentativity)

Proceedings of the Posters Workshop at CSD&M 2013 168

Simulation for all components, phases and life-cycles of complex space systems

─ 100.000 events per executed second

The Argos study simulators contain 100.000 models and manage 200.000 events in
the scheduler. They run 5 to 500 times the real-time speed, executing 500.000 events
per second.

Large simulators tend to have separate specialized teams to

• Develop and validate models, covering various disciplines (mechanics, thermal,
power, dynamics, …)

• Configure, integrate and validate simulators for the specific needs
• Deploy simulators for use in the various operational chains and execute the needed

scenarios

2.3 Life Cycles

The life of a satellite simulator has many dimensions as can be seen in the pictures
below.

Fig. 1. Life cycles of a spacecraft

Proceedings of the Posters Workshop at CSD&M 2013 169

Simulation for all components, phases and life-cycles of complex space systems

Fig. 2. CNES main simulator needs during a spacecraft life cycle

Other dimensions along the project phases are:

• Instruments that range from simple acquisition subsystems to complex instruments,
such as GPS, star trackers, Gyros, …

• The several space platforms for the various product lines (mini-satellites, micro-
satellites)

• Within operational phases, different configurations of the simulators are used,
called variants. Typically, representativity and scope is reconfigured as to provide
optimal performance for the tests at hand.

All these dimensions need a well thought out approach for testing, validation, con-
figuration management and maintenance.

2.4 Integration with Other Components

Obviously, operational simulators need to have flexible interfaces to connect with
the control and operational centres. It must be possible to route those interfaces direct-
ly or via the receiving station, through real RF equipment or through Spacelink simu-
lators when representativity is paramount.

Co-simulation with other specialized simulators, such as Saber, is achieved through
the use of standard interfaces, such as HLA. In the long run, hardware-in-the-loop
will be needed for some components such as instruments and payloads.

Proceedings of the Posters Workshop at CSD&M 2013 170

Simulation for all components, phases and life-cycles of complex space systems

3 Towards Better Use and Continuity of Means.

The development of operational simulators is on a crossroad where many project
phases, disciplines, models and people come together. Nevertheless, it was observed
that the re-use of models, know-how and tools was far from optimal. So it was further
investigated.

3.1 Identified Problems and Barriers

The main identified problem is due to the partitioning barriers caused by the many
dimensions of the life cycles, project teams, disciplines, platforms.

Building a simple discrete event simulator is not that complex, so that there are
many such simulators developed throughout the company. As usually with software,
those simple simulators evolve quickly to more complete in-house products and test
environments. The more they evolve, the less the models tend to be reusable and the
more difficult it becomes to move to a common platform.

3.2 BASILES

To improve the situation, in a first phase, BASILES (BAncs SImulateurs et Logiciels
d’Etude de Satellite) has been created. It is a common simulation platform to promote
models and simulation reuse among space programs and among the different simula-
tors that are created during the lifecycle of a project. BASILES provides a methodology
and a standard for CNES simulators.

First of all, BASILES is a simulation framework to develop, configure and run simu-
lators. It allows representing complex systems using discrete event simulation. It con-
tains the simulation kernel in charge of time and events handling, logger service, inte-
grators, processor emulator management, distributed simulation handling, etc.

Concerning the development of a new simulator, BASILES features help to easily
develop prototypes with basic programming knowledge in a short period of time and
with a good level of accuracy. Models are simply configurable. Concerning the exe-
cution of a simulator, BASILES provides a great number of self-functionalities to inter-
act and introspect the models and simulation.

Finally, BASILES is also a model library in order to share and reuse models and
simulators among space programs.

In order to extend its user base, CNES accepts to attribute licenses of the product to
other industries, thereby stressing the system more to achieve quicker full maturity
and to expose the product to new user requirements and ideas.

3.3 SMP2

For several years now, the European Cooperation for Space Standardization (ECSS)
has taken the initiative to develop the SMP standard (Simulation Model Portability).
The aim of this standard is to allow models to be portable among different simulation

Proceedings of the Posters Workshop at CSD&M 2013 171

Simulation for all components, phases and life-cycles of complex space systems

infrastructures. Interfaces are specified by SMP independently of simulation infra-
structures.

BASILES evolved to the SMP standard and all new developments are SMP based.

3.4 Study Simulators

One of the other families of discrete events simulators is MACSIM, basically used
as study simulator, and having a large patrimony of existing models. Study simulators
tend to be developed starting with few and relatively basic models in an incremental
and iterative way: the developer improves or refines the model, runs it, validates it
and restart improving it. The MACSIM environment has been successfully integrated
in BASILES.

3.5 Hardware in the Loop

Ideally, many of the models should be replaceable by hardware equipment, alt-
hough this adds significant constraints. This allows using real equipment, to raise the
level of representativity and expose the used models to a broader range of environ-
ments.

Such operations have been successfully performed integrating real payloads with
the simulator via Mil 1553. The new Nosyca balloon flight computer has been inte-
grated with BASILES via a number of interfaces. In that case, BASILES became a test
bench, environment simulator and controller of the Nosyca flight computer.

3.6 Software Validation Facilities

BASILES has been augmented with non-intrusive flight software gdb debugging ca-
pabilities on the used processor emulators. That means that breakpoints can be set on
specific instructions or data accesses. When such a breakpoint is hit, the clock of the
processor and the simulator is frozen and the gdb interface is warned and normal de-
bugging can take place. All external BASILES interfaces remain functional and time
progress continues when the processor is released by the debugger.

3.7 Towards New Generation of Modular Real-time Benches

A demonstrator has been build that shows the distributed real-time capability of
modern systems. It runs BASILES simulators on different mainstream PC’s running
standard Linux connected via HLA. Measurements have shown that all simulators
were capable of generating output with a time precision and jitter that is better than 50
µseconds.

It is believed that test systems will become more modular and cheaper. In fact,
many of the typical test systems are based on huge acquisition and driving front-ends,
along with custom interfaces and uncommon processors and real-time RTOS with

Proceedings of the Posters Workshop at CSD&M 2013 172

Simulation for all components, phases and life-cycles of complex space systems

specialised drivers. Such complex equipment creates a major constraint on re-use,
maintenance and perennity.

For the Nosyca system, interfaces have been made using a series of small micro-
controllers such as the PIC32, complemented with the needed connectors and small
interface logic and shaping. These little 50€ low power boards (power via USB), with
a 20 cm2 footprint, contain a 80 MHZ CPU, significant memory and interface variety,
including Ethernet. Because the microcontrollers are dedicated to one single function,
they are simple, while in many cases, specific interface FPGA’s can be avoided as the
microcontroller can achieve a time resolution well below the µsecond. An approach
that uses multiple small systems is better manageable than huge complex and hierar-
chical systems.

3.8 Defining Simulator Strategy. at Day One of Each Project

From the many experiments and domains BASILES has been used in, it became
clear that a complete simulator planning is better studied by the very beginning of
each space related project. As has been shown in the Argos and SMAR project, a first
global system simulator allows for better dimensioning of many components of the
system and helps to create a common understanding of the project.

4 On-going Developments and R&D

4.1 Thematic

There are several R&D projects and investigations going concerning microscopic
traffic simulation (one model per car), Software Validation Facilities for Proba and
MTg, missile test planning, FDIT management, TDM space communication and im-
proved thermal simulation.

Indeed, precise thermal simulation used to be extremely processing hungry. CNES
is in the process of developing fast thermal simulation technology that will allow
simulating the thermal behaviour of major satellite components with a precision of a
couple of degrees.

4.2 Parallel Processing

Parallel processing of several processor simulators has been proven as an important
performance gain. Using the theory of “separability”, developed at CNES, we are in a
good starting point to engineer the parallelization. Currently, a methodology is being
developed to detect model dependencies and allow for parallelization by configura-
tion, without changing the models. This step can be taken when the normal non-
parallel simulator is validated.

Another form of parallel work under investigation is the running of a simulator in
parallel with the real system. The use would be twofold:

Proceedings of the Posters Workshop at CSD&M 2013 173

Simulation for all components, phases and life-cycles of complex space systems

• In a first phase, to dynamically validate (and improve) the simulator versus the real
system.

• In a second phase, to compare the real system against the simulator as to warn the
operator when something is out of limits. Obviously, such system could have a far
more refined warning capability than existing supervision systems.

A frequent context save of such systems would allow to jump backwards in time for
deeper investigation of out of limit behaviour and perform what-if scenarios based on
a saved context.

4.3 Processor Emulators

Processing emulators are the critical path in operational simulators, so significant
efforts are devoted to them.

Current emulators decode each instruction to be executed, which limit their speed
to around 70 MHz.

One trail concerns the dynamic translation or Just in Time compilation of flight
software. It has been demonstrated that such emulators have the capability to reach
500 MHz emulation capability.

Another trail concerns the emulation of multi-core processors exploiting the multi-
ple cores of the PC.

Another domain being investigated concerns the emulation of the space variant of
ARINC 653 (also called TSP and IMA). In IMA, application layers are isolated in
partitions that are time sliced by a hypervisor. Such partitions could probably simulat-
ed in parallel as by design, they have much fewer interdependencies.

Proceedings of the Posters Workshop at CSD&M 2013 174

Simulation for all components, phases and life-cycles of complex space systems

