
Resource-based lexical approach to TWEET-NORM task

Aproximación léxica basada en recursos para la tarea TWEET-NORM

Juan M. Cotelo Moya
Universidad de Sevilla

Avda. Reina Mercedes s/n.
41012 Sevilla
jcotelo@us.es

Fermín L. Cruz
Universidad de Sevilla

Avda. Reina Mercedes s/n.
41012 Sevilla
fcruz@us.es

Jose A. Troyano
Universidad de Sevilla

Avda. Reina Mercedes s/n.
41012 Sevilla
troyano@us.es

Abstract: This paper proposes a resource-based lexical approach for addressing the
TWEET-NORM task. The proposed system exposes a simple but extensible mod-
ular architecture in which each analysis module independently proposes correction
candidates for each OOV word. Each one of these analysis modules tries to address a
speci�c problem and each one works in a very di�erent way. The resources are used
as the main component for the OOV detection system and they works as support for
the validation and �ltering of candidates.
Keywords: Twitter, resources, modular architecture, candidates

Resumen: Este artículo propone una aproximación léxica basada en recursos para
abordar la tarea TWEET-NORM. El sistema presenta una arquitectura modular
sencilla pero extensible en la cual cada módulo de análisis propone candidatos para
cada palabra OOV de forma independiente. Cada uno de estos módulos de análisis
intenta abordar una problemática especí�ca y cada uno opera de forma muy distinta.
Los recursos se usan como base fundamental del sistema de detección de OOVs y
como apoyo para la validación y �ltrado de candidatos.
Palabras clave: Twitter, recursos, arquitectura modular, candidatos

1 Introduction and objectives

One of the most important challenges fac-
ing us today is how to process and analyze
the large amount of information on the In-
ternet, and especially social networking sites
like Twitter, where millions of people daily
express ideas and opinions on any topic of
interest. These texts, called tweets, are char-
acterized by having a short length (140 char-
acters) that is too small compared with the
size of traditional genres.

Consequently, users of these networks have
developed a new form of expression that in-
cludes SMS-style abbreviations, lexical vari-
ants, letters repetitions, use of emoticons, etc.
The result is that current NLP tools can have
problems to process and understand these
short and noisy texts unless they are normal-
ized �rst.

The TWEET-NORM lexical normaliza-
tion task proposes the automatic �cleansing�
of a set amount of tweets by identifying and
normalizing, abbreviations, words with re-
peated letters, and generally any out of the
vocabulary (OOV) words, regardless of syn-

tactic or stylistic variants.
Before doing any normalization process,

we previously did a characterization of the
existing phenomena, being easier trying to
address the underlying causes of OOVs. To
perform this characterization we used a previ-
ously collected dataset, composed of 3.1 mil-
lions of tweets related with the 2012 UEFA
European Football Championship.

The table 1 shows that characteriza-
tion and provides examples for each phe-
nomenon.The �gure 1 also shows the phe-
nomena ratio in a clearer way. It is observed
that most of errors �t into 5 major categories
and most of errors are associated with the fast
and informal writing in Twitter, usually done
from a mobile device.

The categories proposed for this task are
coarser than our characterization. Ortho-
graphic errors, Texting language and Charac-
ter reptitions �t into the Variation category,
Free In�ections and correct words �t into the
Correct category. Other Language and Ascii
Art would �t into NS/NC category.

The system proposed in this paper is based
on lexical approaches only and it is mainly



Phenomenon Ratio Examples
Ortographic errors 28% sacalo → sácalo, trapirar → transpirar, . . .
Texting Language 22% x2 → por dos, q → que, aro → claro, . . .
Character repetition 15% siiiiiiiii → si, quiiiiieeeeroooo → quiero, . . .
Ascii Art 14% « ¤ oO._.Oo . . .
Free in�ections 7% besote, gatino, bonico, . . .
Other errors 7% htt, asdafawecas, engoriles, . . .
Other Language 4% �ow, ftw, great, lol, . . .
Multiple phenomena 3% diass → días, artooo → rato, . . .

Table 1: Characterization of error phenomena commonly found in Twitter media

Figure 1: Ratio of characterized error phenomena commonly found in Twitter media

composed of three types of components:

• Resources: Lexicons and similar lan-
guage resources, including resources con-
taining speci�c knowledge of the media
used.

• Rules: Rules for handling common phe-
nomena found in this type of media as
excessive character repetition, acronyms
or homophonic errors.

• Lexical distance analysis: Traditional
lexical distance analysis for handling
common ortographic errors found on it.

In essence, our system works straightfor-
wardly: it examines each word at lexical
scope, determine if it is an OOV using the
knowledge, generate possible correction can-
didates and select the best one.

2 Architecture and components of

the system

The architechture of our system proposed for
this task is pretty straightforward. It is com-
posed by several main components:

• Preprocessing module

• OOV/IV detection module

• OOV analyzer modules

• Candidate generator module

• Candidate scoring and selection module

The �gure 2 shows all the process ex-
plained before and how the components are
interconnected in a single diagram.

The preprocessing module performs the
typical initial processing step done in lexical
analysis, generating a stream of tokens from
tweets taking into account things like hash-
tags and usernames, numerals, dates and pre-
serving emoticons during the splitting.



Figure 2: Architecture and processing steps of the proposed system

The detection module tries to determine
if a token is an OOV or not. This module
performs that detection using resources and
checking if a token belongs to any resource.
We used a set of lexicons, each one provid-
ing known forms used in Twitter, the Span-
ish language, well known emoticons or even
colloquial in�ections.

Given an OOV Token, an analyzer mod-
ule perform some �error guessing� process and
try to estimate corrections from it. The spe-
ci�c process varies for each analyzer. Every
analyzer provides some kind of basic scoring
providing some degree of con�dence for each
correction proposed. The analyzers used for
this task were the following:

• Tranformation rules: This analyzer
holds a collection of hand-crafted rules,
each one representing some kind of �well
de�ned� error and transforms that to-
ken into candidate of correction. It is
possible to generate more than a candi-
date due multiple rule matching, but the
number usually is limited to a few.

These rules are intended to address phe-
nomena that the edit distance module
does not correctly address like Charac-
ter Repetition or Texting Language. The

table 2 shows some example rules, using
Python's regular expressions.

• Edit distance: This module works
very similar to distance-based suggestion
scheme commonly found in spell check-
ers. The main di�erence is that it takes
into account multiple lexicons instead a
monolithic one.

• Language: This module tries to identify
whether language the OOV token actu-
ally belongs to.

Notice that the language analyzer module
does not actually perform any correction, be-
cause if the token comes from another lan-
guage only has to be marked not corrected.
This module uses a trigram language guessing
module Python 3 implementation (Phi-Long,
2012) as backend.

The candidate generation module asks for
candidates to each analyzer, performing a val-
idation and �ltering step, thus removing some
incorrectly generated candidates from trans-
formation rules according to validation rules
and used language resources. Also removes
duplicates.

The candidate selector module applies a
normalizing scoring function from the con-
�dence values provides for each candidates,



Matching Processing Example Phenomenon
�[ck]n$ con kn, cn, → con Texting Language
x([aeiouáéíóú]) ch\1 xaval, coxe → chaval, coche Texting Language
((\w)(\w))\1+(\2|\3)? \g<1> sisisisisisi, nonononono → si, no Character Repetition
�t[qk]m+$ te quiero mucho tkm, tqm → te quiero mucho Texing Language

Table 2: Extract of the transformation rules used in our system

sorts them and selects the best one.
The system generates a token stream from

the Tweet using the preprocessing module.
For each token, determines if a token is an
OOV or not using the detector module. If the
token is an IV, no further processing is done
because is a valid form. Otherwise, the to-
ken is an OOV, the candidate generator mod-
ule creates a tentative list using the analyzers
previously described. As �nal step, the can-
didate selector module selects the best candi-
date for correction.

3 Resources employed

We have used several lexicons for the detec-
tion and analyzing stages in our system. All
of them are in raw text format and one entry
per line.

The table 3 shows stats about all the lex-
icons used.

Lexicon Entries Description
Spanish 1250796 Common forms

from Span-
ish. Based on
LibreOffice

dictionaries.
Genre 40 Common forms re-

lated to Twitter.
Handcrafted.

Emoticons 320 Commonly used
emoticons. Hand-
crafted.

Table 3: Lexicons used for our proposed sys-
tem

For the transformation rule module, we
crafted a ruleset of 71 rules. The syntax used
in the ruleset �le vaguely resembles a CSV
format, being a rule per line and each line
holds information about the matching and
the transformation process.

The language detector module uses a tri-
gram character language model implementa-
tion as backend and uses dictionaries as back-
o� just in case of insu�cient data for lan-
guage estimation.

4 Settings and evaluation

The table 4 shows performance values of the
system against the provided corpus and ac-
tivating di�erent analyzer modules. It is ob-
served that the accuracy of the system im-
proves signi�cantly as more modules are ac-
tivated.

However, our implementation perfor-
mance is hindered due high di�erences be-
tween the preprocessing used to build the cor-
pus for this task and our detection and pre-
processing system. Our preprocessing mod-
ule leads to di�erent sets of OOVs to be con-
sidered, often leading to outputs that di�er
in length respect the ones provided with the
task. These discrepancies result in a high
rate of what the provided test script counts
as align errors.

Modules Accuracy Align Error
Distance module 0.2036 0.2526
Rule module 0.3307 0.3231
Distance + Rule 0.3905 0.2281
Full system 0.5053 0.1684

Table 4: System performance with di�erent
modules activated

It is worth mentioning that we used
threshold of k ≤ 2 for the edit distance mod-
ule because most of correct candidates are
within that threshold. Though is true that
selecting a higher k includes more candidates,
most of newly included candidates are not a
valid solution and usually they will have a low
con�dence score and will not be selected.

5 Conclusions and future work

We provide a resource-aided lexical solution
for the proposed task using an extensible
architecture made of independent modules.
Our system has much room for improvement
like adding a ngram segmenter, including con-
text during analysis or using automatic meth-
ods for improving the candidate scoring and
selection.



References

Han, Bo and Timothy Baldwin. 2011. Lex-
ical normalisation of short text messages:
makn sens a #twitter. In Proceedings of
the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Hu-
man Language Technologies - Volume 1,
HLT '11, pages 368�378, Stroudsburg, PA,
USA. Association for Computational Lin-
guistics.

Han, Bo, Paul Cook, and Timothy Baldwin.
2013. Lexical normalization for social me-
dia text. ACM Trans. Intell. Syst. Tech-
nol., 4(1):5:1�5:27, February.

Pennell, Deana and Yang Liu. 2011. A
character-level machine translation ap-
proach for normalization of sms abbrevi-
ations. In IJCNLP, pages 974�982.

Phi-Long. 2012. Python 3.3+ implementa-
tion of the language guessing module made
by Jacob R. Rideout for KDE.

Xue, Zhenzhen, Dawei Yin, Brian D Davison,
and BD Davison. 2011. Normalizing mi-
crotext. In Analyzing Microtext.


