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PROBLEMS

Problems worthy
of attack

prove their worth
by hitting back.

in: Grooks by Piet Hein (1905-1996)



An Old Problem in Database Theory

Database theory research has been going on for more
than four decades.

Over the years, it has had numerous successes.

Yet, in spite of concerted attacks, some problems have
been “hitting back” and resisting solution.

This talk is about the

conjunctive query containment problem under bag
semantics,

an old, but persistent problem that remains open to date.
This problem was introduced exactly 20 years ago by
Surajit Chaudhuri and Moshe Y. Vardi.

This talk is dedicated to them.



Outline of the Talk

Background and motivation
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Query containment under bag semantics
2o Problem description
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Concluding remarks and outlook.



The Query Containment Problem

Let Q, and Q, be two database queries.

Q, € Q, means that for every database D, we have that
Q,(D) € Q,(D), where Q,(D) is the set of all tuples
returned by evaluating Q, on D.

The Query Containment Problem asks:
given two queries Q, and Q,, is Q, C Q,7

For boolean queries (“true” or “false), query
containment amounts to logical implication Q, F Q,,

which is a fundamental problem in logic.



The Query Containment Problem

Encountered in several different areas, including
= Query processing
guery equivalence reduces to query containment:
Q,=Q,ifandonly if Q, € Q, and Q, C Q,.

o Decision-support
Q, may be much easier to evaluate than Q..
If Q, C Q,, then
Q, provides a sound approximation to Q,.

Tight connections with constraint satisfaction (but this is
another talk).



Complexity of Query Containment

The Query Containment Problem:

Given queries Q4, Q,, is Q; C Q,?

In other words:

Is Q,(D) contained in Q,(D), for all databases D?

Note: Can’t just try every database D — infinitely many!

Trakhtenbrot’s Theorem (1949):
The set of finitely valid first-order sentences is undecidable.

Corollary: For first-order queries, the query containment
problem is undecidable.



Conjunctive Queries and their Extensions

Extensive study of the query containment problem
for conjunctive queries and their extensions.

Conjunctive queries: the most frequently asked queries
They are the SELECT-PROJECT-JOIN queries.

Unions of conjunctive queries.

Conjunctive queries with inequalities # and arithmetic
comparisons < and >.



Conjunctive Queries and Their Extensions

Conjunctive Query:
" Q(Xqye- X ): 324 3 Z 0Ky X0Z15-Z,),
where ¢ is a conjunction of atoms.
o Example:
TAUGHT-BY(x,y): dz(ENROLLS(x,z) A TEACHES(y,z))
Written as a logic rule:
TAUGHT-BY(x,y):- ENROLLS(x,z), TEACHES(y,z)
Union of Conjunctive Queries
o Example: Path of length at most 2:
Q((x,y): E(x,y) v 3 z(E(x,2) A E(z,y))
Conjunctive Query with #
o Example: At least two different paths of length 2:
Q(x,y): 3z Iw(E(x,z) A E(z,y) A E(X,w) A E(W,y) A Z # wW).



Complexity of Conjunctive Query Containment

Theorem: Chandra and Merlin — 1977
For conjunctive queries, the containment
problem is NP-complete.

Note:
o NP-hardness: reduction from 3-Colorability
o Membership in NP is not obvious.

It is a consequence of the following resuilt.
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Complexity of Conjunctive Query Containment

Theorem: Chandra and Merlin — 1977
For Boolean conjunctive queries Q, and Q,, the following are
equivalent:
" QCQ,.
® There is a homomorphism h : D[Q,] — D[Q,], where
D[Q;] is the canonical database of Q..

Example: Conjunctive query and canonical database
= Q:- E(x,y), E(y,2), E(z,x)
" D[Q] ={EX)Y), E(Y,Z2), E(Z)Y)}
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Unions of Conjunctive Queries

Theorem: Sagiv & Yannakakis - 1980
The query contaiment problem for unions of
conjunctive queries is NP-complete.

Note:

Clearly, this problem is NP-hard, since it is at least as
hard as conjunctive query containment.

Membership in NP is not obvious.

" |t is a consequence of the following result.
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Unions of Conjunctive Queries

Theorem: Sagiv & Yannakakis - 1980
For all conjunctive queries Q4, ..., Q,, Q'4,...,Q’

the following two statements are equivalent:
QuU..uQ,CcQ,uU..UQ,,.

For every i< n, there is j< m, such that Q. C Q..

Note:

The proof uses the Chandra-Merlin Theorem.
For membership in NP:

" we first guess n pairs (Qk, ) then
= we verify that for every i <n, the function hk IS a
homomorphism from D[Q’ k] to D[Q].
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Conjunctive Queries with Arith. Comparisons

Theorem: The query containment problem for
conjunctive queries with =, <, > is I,P-complete.

Klug — 1988: Membership in ILP.

Suffices to test containment on exponentially many
“canonical” databases.

van der Meyden — 1992:
[1,P-hardness, even for conjunctive queries with only =.
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The Complexity Class I1,P

o TL,P is a complexity class that is sandwiched between
NP and PSPACE, i.e.,

NP C TP C PSPACE.

o The prototypical I',P -complete problem is VASAT,
l.e., the restriction of QBF to formulas of the form
VX VX3 Yy -3y, 0.
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Complexity of Query Containment

Class of Queries

Complexity of Query
Containment

Conjunctive Queries

NP-complete
Chandra & Merlin — 1977

Unions of Conjunctive
Queries

NP-complete
Sagiv & Yannakakis - 1980

Conjunctive Queries with
=, S, 2

[1,P-complete
Klug 1988, van der Meyden -1992

First-Order (SQL) queries

Undecidable
Trakhtenbrot - 1949
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Complexity of Query Containment

So, the complexity of query containment for conjunctive
queries and their variants is well understood.

Caveat:

All preceding results assume set semantics, i.e.,
gueries take sets as inputs and return sets as output
(duplicates are eliminated).

DBMS, however, use bag semantics, since they return
bags (duplicates are not eliminated).
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A Real/ Conjunctive Query

Consider the following SQL query:

Table Employee has attributes salary, dept, ..

SELECT salary
FROM Employee
WHERE dept = ‘CS’

SQL keeps duplicates, because:
o Duplicates are important for aggregate queries.

o In general, bags can be more “efficient” than sets.
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Query Evaluation under Bag Semantics

Operation Multiplicity
Union m, + m,
Intersection min(m,, m,)
R,NR,

Product m,x m,

R; xR,

Projection and
Selection

Duplicates are
not eliminated

R,

>
o

WINDN
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Bag Semantics

Chaudhuri & Vardi — 1993
Optimization of Real Conjunctive Queries

Called for a re-examination of conjunctive-query
optimization under bag semantics.

In particular, they initiated the study of the containment
problem for conjunctive queries containment under bag
semantics.
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Bag Semantics vs. Set Semantics

For bags R, Ry:

R, Cpac R, if m(a,R,) < m(a,R,), for every tuple a.

QBAG(D) : Result of evaluating Q on (bag) database D.

Q, Cgac Q, if for every (bag) database D, we have that
QPAS(D) Cgag Q2°4C(D).

Fact:
Q1 —BAG QZ ImplleS Q1 C Q2
The converse does not always hold.
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Bag Semantics vs. Set Semantics

Fact: Q, C Q, does not imply that Q, Cgag Q2.

Example:
Q,(x) - P(x), T(x)
Q,(x) - P(x)

Q, € Q, (obvious from the definitions)

Q1 -¢—BAG QZ

Consider the (bag) instance D = {P(a), T(a), T(a)}. Then:
" QD) ={aa}

" Qy(D) = {a}, s0 Q(D) & Q,(D).
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Query Containment under Bag Semantics

Chaudhuri & Vardi - 1993 stated that:

Under bag semantics, the containment problem for
conjunctive queries is I'1,P-hard.

Problem:

o What is the exact complexity of the containment
problem for conjunctive queries under bag semantics?

o Is this problem decidable?
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Query Containment Under Bag Semantics

20 years have passed since the containment problem for
conjunctive queries under bag semantics was raised.

Several attacks to solve this problem have failed.

At least two flawed PhD theses on this problem have
been produced.

No proof of the claimed I1,P-hardness of this problem
has been provided.
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Query Containment Under Bag Semantics

The containment problem for conjunctive queries under
bag semantics remains open to date.

However, progress has been made towards the
containment problem under bag semantics for the two
main extensions of conjunctive queries:

o Unions of conjunctive queries
o Conjunctive queries with #
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Unions of Conjunctive Queries

Theorem: loannidis & Ramakrishnan — 1995
Under bag semantics, the containment problem for
unions of conjunctive queries is undecidable.

Hint of Proof:
Reduction from Hilbert’s 10th Problem.
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Hilbert's 10t Problem

Hilbert’s 10" Problem — 1900
(10t in Hilbert’s list of 23 problems)
Find an algorithm for the following problem:

Given a polynomial P(x,,...,X,) with integer coefficients,
does it have an all-integer solution?

Matiyasevich — 1971
a Hilbert’s 10t Problem is undecidable, hence no such
algorithm exists.
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Hilbert's 10t Problem

Fact: The following variant of Hilbert's 10th Problem is
undecidable:

o Given two polynomials p4(Xy4,...X,) and py(Xy,...X,) with
positive integer coefficients and no constant terms, is
it true that p, < p,?

In other words, is it true that p,(a,,...,a,) < p,(a;,-..a,),
for all positive integers a,,...,a,?

Thus, there is no algorithm for deciding questions like:
0 Is 3X44X,X5 + 2X,X5 < X6+ OX,X5?

28



Unions of Conjunctive Queries

Theorem: loannidis & Ramakrishnan — 1995
Under bag semantics, the containment problem for unions
of conjunctive queries is undecidable.

Hint of Proof:

Reduction from the previous variant of Hilbert’s 10th
Problem:

" Use joins of unary relations to encode monomials
(products of variables).

" Use unions to encode sums of monomials.
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Unions of Conjunctive Queries

Example: Consider the polynomial 3x,4X,X5 + 2X,X5
The monomial x,4x,X5 is encoded by the conjunctive query
P1(W).P4(W),P_ (W), P_(W), Py(w),P4(w).

The monomial x,x4 is encoded by the conjunctive query
Po(w),P5(w).

The polynomial 3x,4x,X; + 2X,X; Is encoded by the union
having:

= three copies of P,(w),P,(w),P(w), P1(W), P,(w),Ps(w)
and

" two copies of P,(w),P;(w).
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Complexity of Query Containment

Class of Queries

Complexity —
Set Semantics

Complexity —
Bag Semantics

Conjunctive NP-complete

qgueries CM - 1977

Unions of con;. NP-complete Undecidable
queries SY - 1980 IR - 1995
Conj. queries with |I1,P-complete

=, <, > vdM - 1992

First-order (SQL) |Undecidable Undecidable
queries Godel - 1931

31




Conjunctive Queries with #

Theorem: Jayram, K ..., Vee — 2006
Under bag semantics, the containment problem for
conjunctive queries with # is undecidable.

In fact, this problem is undecidable even if
the queries use only a single relation of arity 2;

the number of inequalities in the queries is at most some
fixed (albeit huge) constant.
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Conjunctive Queries with #

Proof ldea:
Reduction from a variant of Hilbert's10t Problem:

Given homogeneous polynomials

P.(Xq,-.-,X59) @Nd Py(X4,...,Xs5g)

both with integer coefficients and both of degree 5,
IS P (X1, X59) < (X4)° Po(Xy,....Xs9),

for all integers x;,...,X59?

33



Proof Idea (continued)

Given polynomials P, and P,

o Both with integer coefficients

o Both homogeneous, degree 5

o Both with at most n=59 variables

We want to find Q, and Q, such that

o Q, and Q, are conjunctive queries with inequalities #
0 Pi(Xq,.00y Xsg) < (X4)5 Py(Xyq,-. -,y Xsg)

for all integers x., ..., Xsq
if and only if
Q,(D) C_ Q,(D) for all (hag) databases D.

BAG
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Proof Outline:

Proof is carried out in three steps.

Step 1: Only consider DBs of a special form.

Show how to use conjunctive queries to encode polynomials and
reduce Hilbert’'s 10" Problem to conjunctive query containment
over databases of special form (no inequalities are used!)

Step 2: Arbitrary databases
Use inequalities # in the queries to achieve the following:

If a database D is of special form, then we are back to the
previous case.

If a database D is not of special form, then Q,(D) Cga.g Q,(D).

Step 3: Show that we only need a single relation of arity 2.
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Step 1: DBs of a Special Form - Example

Encode a homogeneous, 2-variable, degree 2
polynomial in which all coefficients are 1.

P(X1,X5) = X% + X;X5 + X?
DBs of special form:
" Ternary relation TERM consisting of
(X1, X1, Tq), (X1, X5, o), (X3, X5, T3)
all special DBs have precisely this table for TERM
= Binary relation VALUE

Table for VALUE varies to encode different values
for the variables x,, x..

Query Q :- TERM(u,,u,,t), VALUE(u,,v,), VALUE(u,,V.,)
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Step 1: DBs of a Special Form - Example

" P(X1,Xp) = X4+ XqXp + X357
X;=3,%X,=2, P(3,2) =32+ 3.2+ 22=19.
® Query Q :- TERM(u4,u,,t), VALUE(u,,v,), VALUE(u,,v,)
“ DB D of special form:
" TERM:  (X1,X4,Tq), (X4,X5,T3), (X2,X5,T3)
"= VALUE: (X;,1), (X;,2), (X;,3)
(Xa1), (X2,2)

Claim: P(3,2) = 19 = QBAG(D)
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Step 1: DBs of a Special Form - Example

" P(3,2)=32+32+22=19.
" Query Q :- TERM(uy,u,,t), VALUE(u,,v,), VALUE(u,,v,)
“ Dhas TERM: (X, X;,T), (X, X5, T5), (X5,X,,T3)
VALUE: (X;,1), (X{,2), (X{,3), (X5,1), (X,,2)
= QBAS(D) = 19, because:
"t—T,,u— X, u— X,. Hence:
v, — 1,2, 0or 3 and v,— 1 or 2, so we get 3 witnesses.
"t—T, u— X, u— X,. Hence:
v, — 1,2, or3and v,— 1 or 2, so we get 3-2 withesses.
"t =T, u— X, u,— X,. Hence:
v, — 1Tor2, and v,— 1 or 2, so we get 22 witnesses.
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Step 1: Complete Argument and Wrap-up

Previous technique only works if all coefficients are 1
For the complete argument:

o add a fixed table for every term to the DB;

o encode coefficients in the query;

o only table for VALUE can vary.

Summary:

o If the database has a special form, then we
can encode separately homogeneous polynomials

P, and P, by conjunctive queries Q, and Q..
o By varying table for VALUE, we vary the variable values.

o No #-constraints are used in this encoding; hence,
conjunctive query containment is undecidable, if restricted

to databases of the special form.
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Step 2: Arbitrary Databases

Idea:
Use inequalities # in the queries
to achieve the following:

f a database D is of special form, then we are
pack to the previous case.

f a database D is not of special form, then
Q,(D) Cgag Q,(D) necessarily.
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Step 2: Arbitrary Databases - Hint

1. Ensure that certain “facts” in special-form DBs appear
(else neither query is satisfied).

" This is done by adding a part of the canonical query of special-
form DBs as subgoals to each encoding query.

2. Modify special-form DBs by adding gadget tuples to TERM and
to VALUE.
= TERM: (X, Xy, Tq), (X0, X0, Ty), (X0, X0, T3), (T, T To)
= VALUE: (X,,1), (X,,2), (X,3), (X,,1), (X,,2), (To,T,)

3. Add extra subgoals to Q,, so that if D is not of special form, then
Q, “benefits” more than Q, and, as a result, Q,(D) Cgag Q,(D).
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‘ Step 2: Arbitrary Databases - Example

P1(X4,X3) = %42 + XXy + X)?

Poly,(u,,u,,t) - TERM(u,,u,,t), VALUE(u,,v,), VALUE(u,,v,)
the query encoding P, on special-form DBs.

" TERM: (X, X, T,), (X;,X,,T,), (X5,X,,T5), (To,To, Tp)

" VALUE: (X;,1), (X4,2), (X4,3), (X;,1), (X22), (T, To)

Q, :- Poly,(u,,u,,t)
Q, :- Poly,(uy, u,, t), Poly,(w,, w,, w), w# T, w#T,, w#T,

Fact:
= |If DB is of special form, then Q, gets no advantage, because

w — Ty, w, — Ty, w, — T, is the only possible assignment.
= If DB not of special form, say it has an extra fact (X,,X,,T’), then both Q,
and Q, can use it equally.
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Step 2: Arbitrary Databases — Wrap-up

Additional tricks are needed for the full construction.

Full construction uses seven different control gadgets.
o Additional complications when we encode coefficients.

o Inequalities # are used in both queries.

Number of inequalities # depends on size of special-form
DBs, not counting the facts in VALUE table.

o Hence, depends on degree of polynomials, # of
variables.

o Itis a huge constant (about 591°).
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Complexity of Query Containment

Class of Queries

Complexity —
Set Semantics

Complexity —
Bag Semantics

Conjunctive NP-complete Open
qgueries CM - 1977

Unions of con;. NP-complete Undecidable
queries SY - 1980 IR - 1995
Conj. queries with |I1,P-complete Undecidable
£, < > vdM - 1992 JKV - 2006
First-order (SQL) | Undecidable Undecidable

queries

Trakhtenbrot - 1949

44




Subsequent Developments

Some progress has been made towards identifying special
classes of conjunctive queries for which the containment
problem under bag semantics is decidable.

o Afrati, Damigos, Gergatsoulis — 2010
Projection-free conjunctive queries.

o Kopparty and Rossman — 2011
A large class of boolean conjunctive queries on graphs.
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The Containment Problem for Boolean Queries

Note:

For boolean conjunctive queries, the containment
problem under bag semantics is equivalent to the
Homomorphism Domination Problem.

The Homomorphism Domination Problem for graphs
Given two graphs G and H, is it true that
# Hom(G,T) < # Hom(H,T), for every graph T?
(where,
# Hom(G,T) = number of homomorphisms from Gto T
# Hom(H,T) = number of homomorphisms from Hto T.
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The Homomorphism Domination Problem

Theorem: Kopparty and Rossman -2011
There is an algorithm to decide, given a series-parallel
graph G and a chordal graph H, whether or not
# Hom(G,T) < # Hom(H,T), for all directed graphs T.
Equivalently,

The conjunctive query containment problem Q, Cg,g Q, is
decidable for boolean conjunctive queries Q, and Q, such

that the canonical database D[Q,] is a series-parallel graph
and the canonical database D[Q,] is a chordal graph.

Note:
Sophisticated proof using entropy and linear programming.

47



Concluding Remarks

Twenty years after it was first raised and in spite of
considerable efforts, the containment problem for
conjuctive queries under bag semantics remains open.

Let us hope that this problem will be settled some time
In the next ... twenty years.

But let us also recall another piece of wisdom by
Piet Hein.
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TT.T. %’3}{%

Put up in a place

where it is easy to see

the cryptic admonishment
T.T.T.

When you feel how depressingly

slowly you climb

it's well to remember that
Things Take Time.

in: Grooks by Peter Hein
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