
The Query Containment Problem:
Set Semantics vs. Bag Semantics

Phokion G. Kolaitis

University of California Santa Cruz  

&

IBM Research - Almaden



2

PROBLEMS

Problems worthy 

of attack           

prove their worth  

by hitting back.

in: Grooks by Piet Hein (1905-1996)
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An Old Problem in Database Theory

� Database theory research has been going on for more 
than four decades.

� Over the years, it has had numerous successes.

� Yet, in spite of concerted attacks, some problems have 
been “hitting back” and resisting solution.

� This talk is about the

conjunctive query containment problem under bag 
semantics,

an old, but persistent problem that remains open to date.

� This problem was introduced exactly 20 years ago by 

Surajit Chaudhuri and Moshe Y. Vardi. 

� This talk is dedicated to them.
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Outline of the Talk

� Background and motivation

� Query containment under set semantics

� Query containment under bag semantics

� Problem description 

� Partial progress to date

� Concluding remarks and outlook.
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The Query Containment Problem

Let Q1 and Q2 be two database queries.

� Q1 ⊆ Q2 means that for every database D, we have that 

Q1(D) ⊆ Q2(D), where Qi(D) is the set of all tuples

returned by evaluating Qi on D.

� The Query Containment Problem asks: 
given two queries Q1 and Q2, is Q1 ⊆ Q2?

� For boolean queries (“true” or “false), query 
containment amounts to logical implication Q1 � Q2, 

which is a fundamental problem in logic.
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The Query Containment Problem

� Encountered in several different areas, including

� Query processing

query equivalence reduces to query containment:

Q1 ≡ Q2 if and only if Q1 ⊆ Q2 and Q2 ⊆ Q1.

� Decision-support

� Q1 may be much easier to evaluate than Q2.

� If Q1 ⊆ Q2, then

Q1 provides a sound approximation to Q2. 

� Tight connections with constraint satisfaction (but this is 
another talk).
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Complexity of Query Containment

The Query Containment Problem:

Given queries Q1, Q2, is Q1 ⊆ Q2?  

In other words:

Is Q1(D) contained in Q2(D), for all databases D?

Note: Can’t just try every database D – infinitely many!

Trakhtenbrot’s Theorem (1949):

The set of finitely valid first-order sentences is undecidable.

Corollary: For first-order queries, the query containment 

problem is undecidable.
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Conjunctive Queries and their Extensions

Extensive study of the query containment problem 

for conjunctive queries and their extensions.

� Conjunctive queries: the most frequently asked queries

They are the SELECT-PROJECT-JOIN queries.

� Unions of conjunctive queries.

� Conjunctive queries with inequalities ≠≠≠≠ and arithmetic 
comparisons ≤ and ≥.
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Conjunctive Queries and Their Extensions

� Conjunctive Query:

� Q(x1,C,xk):  ∃ z1 C∃ zm ϕ(x1,C,xk,z1,..zm),

where ϕ is a conjunction of atoms.

� Example: 
TAUGHT-BY(x,y):   ∃ z(ENROLLS(x,z) Æ TEACHES(y,z))

Written as a logic rule:

TAUGHT-BY(x,y):- ENROLLS(x,z), TEACHES(y,z)

� Union of Conjunctive Queries

� Example: Path of length at most 2:
Q(x,y):   E(x,y) Ç ∃ z(E(x,z) Æ E(z,y))

� Conjunctive Query with ≠

� Example: At least two different paths of length 2:
Q(x,y):  ∃ z ∃ w(E(x,z) Æ E(z,y) Æ E(x,w) Æ E(w,y) Æ z ≠ w).
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Complexity of Conjunctive Query Containment

� Theorem: Chandra and Merlin – 1977

For conjunctive queries, the containment

problem is NP-complete.

� Note:

� NP-hardness: reduction from 3-Colorability

� Membership in NP is not obvious.

It is a consequence of the following result.



11

Complexity of Conjunctive Query Containment

Theorem: Chandra and Merlin – 1977

For Boolean conjunctive queries Q1 and Q2, the following are 

equivalent:

� Q1 ⊆ Q2.

� There is a homomorphism h : D[Q2] →→→→ D[Q1], where 

D[Qi] is the canonical database of Qi.

Example: Conjunctive query and canonical database

� Q:- E(x,y), E(y,z), E(z,x)

� D[Q] = { E(X,Y), E(Y,Z), E(Z,Y) }
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Unions of Conjunctive Queries

Theorem: Sagiv & Yannakakis - 1980

The query contaiment problem for unions of

conjunctive queries is NP-complete.

Note:  

� Clearly, this problem is NP-hard, since it is at least as 

hard as conjunctive query containment.

� Membership in NP is not obvious. 

� It is a consequence of the following result.
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Unions of Conjunctive Queries

Theorem: Sagiv & Yannakakis - 1980

For all conjunctive queries Q1, C, Qn, Q’1,C,Q’m,

the following two statements are equivalent:
� Q1∪ C∪ Qn ⊆ Q’1 ∪ C∪ Q’m.

� For every i≤ n, there is j≤ m, such that Qi⊆ Q’j.

Note: 

� The proof uses the Chandra-Merlin Theorem.

� For membership in NP:

� we first guess n pairs (Q’ki
, hki

); then  
� we verify that for every i ≤ n, the function hki

is a 

homomorphism from D[Q’ki
] to D[Qi].
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Conjunctive Queries with Arith. Comparisons

Theorem: The query containment problem for

conjunctive queries with ≠≠≠≠ , ≤, ≥ is Π2
p-complete.

� Klug – 1988: Membership in Π2
p.

Suffices to test containment on exponentially many 

“canonical” databases.

� van der Meyden – 1992: 

Π2
p-hardness, even for conjunctive queries with only ≠≠≠≠....
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The Complexity Class Π2
p

� Π2
p is a complexity class that is sandwiched between 

NP and PSPACE, i.e.,

NP ⊆ Π2
p ⊆ PSPACE.

� The prototypical Π2
p -complete problem is ∀∃SAT, 

i.e., the restriction of QBF to formulas of the form 

∀ x1C∀ xm∃ y1 C∃ yn ϕ.
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Complexity of Query Containment

Undecidable

Trakhtenbrot - 1949

First-Order (SQL) queries

Π2
p-complete

Klug 1988, van der Meyden -1992

Conjunctive Queries with 

≠≠≠≠ , ≤, ≥

NP-complete

Sagiv & Yannakakis - 1980

Unions of Conjunctive 

Queries

NP-complete

Chandra & Merlin – 1977

Conjunctive Queries

Complexity of Query 

Containment

Class of Queries
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Complexity of Query Containment

� So, the complexity of query containment for conjunctive 

queries and their variants is well understood.

Caveat: 

� All preceding results assume set semantics, i.e., 

queries take sets as inputs and return sets as output 

(duplicates are eliminated).

� DBMS, however, use bag semantics, since they return 

bags (duplicates are not eliminated).
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A Real Conjunctive Query

� Consider the following SQL query:

Table Employee has attributes salary, dept, …

SELECT salary

FROM Employee

WHERE dept = ‘CS’

� SQL keeps duplicates, because:

� Duplicates are important for aggregate queries.

� In general, bags can be more “efficient” than sets.
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Query Evaluation under Bag Semantics

Duplicates are 

not eliminated

Projection and 

Selection

m1× m2Product 

R1 × R2

min(m1, m2)Intersection 

R1  R2

m1 + m2Union 

R1 ∪ R2

MultiplicityOperation
� R1 A   B

1   2

1   2 

2   3

� R2 B  C

2  4

2  5

� (R1 ⋈R2) A  B  C    

1   2  4

1   2  4

1   2  5

1   2  5
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Bag Semantics

Chaudhuri & Vardi – 1993

Optimization of Real Conjunctive Queries

� Called for a re-examination of conjunctive-query 

optimization under bag semantics.

� In particular, they initiated the study of the containment 

problem for conjunctive queries containment under bag 

semantics.
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Bag Semantics vs. Set Semantics

� For bags R1, R2:

R1 ⊆BAG R2 if m(a,R1) ≤ m(a,R2), for every tuple a.

� QBAG(D) : Result of evaluating Q on (bag) database D.

� Q1 ⊆BAG Q2 if for every (bag) database D, we have that 

Q1
BAG(D) ⊆BAG Q2

BAG(D).

Fact: 

� Q1 ⊆BAG Q2 implies Q1 ⊆ Q2.

� The converse does not always hold.
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Bag Semantics vs. Set Semantics

Fact: Q1 ⊆ Q2 does not imply that Q1 ⊆BAG Q2 .

Example:

� Q1(x) :- P(x), T(x)

� Q2(x) :- P(x)

� Q1 ⊆ Q2 (obvious from the definitions)

� Q1 ⊈BAG Q2

� Consider the (bag) instance D = {P(a), T(a), T(a)}. Then:

� Q1(D) = {a,a}

� Q2(D) = {a}, so Q1(D) ⊈ Q2(D).
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Query Containment under Bag Semantics

� Chaudhuri & Vardi - 1993 stated that:

Under bag semantics, the containment problem for 

conjunctive queries is Π2
p-hard.

� Problem:

� What is the exact complexity of the containment 

problem for conjunctive queries under bag semantics?

� Is this problem decidable?
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Query Containment Under Bag Semantics

� 20 years have passed since the containment problem for 

conjunctive queries under bag semantics was raised.

� Several attacks to solve this problem have failed.

� At least two flawed PhD theses on this problem have 

been produced.

� No proof of the claimed Π2
p-hardness of this problem 

has been provided.
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Query Containment Under Bag Semantics

� The containment problem for conjunctive queries under 

bag semantics remains open to date.

� However, progress has been made towards the 

containment problem under bag semantics for the two 

main extensions of conjunctive queries:

� Unions of conjunctive queries

� Conjunctive queries with ≠
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Unions of Conjunctive Queries

Theorem: Ioannidis & Ramakrishnan – 1995

Under bag semantics, the containment problem for

unions of conjunctive queries is undecidable. 

Hint of Proof:

Reduction from Hilbert’s 10th Problem.
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Hilbert’s 10th Problem

� Hilbert’s 10th Problem – 1900  

(10th in Hilbert’s list of 23 problems)

Find an algorithm for the following problem:

Given a polynomial P(x1,...,xn) with integer coefficients, 

does it have an all-integer solution?

� Matiyasevich – 1971

� Hilbert’s 10th Problem is undecidable, hence no such 

algorithm exists. 
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Hilbert’s 10th Problem

� Fact: The following variant of Hilbert’s 10th Problem is 

undecidable:

� Given two polynomials p1(x1,Cxn) and p2(x1,Cxn) with 

positive integer coefficients and no constant terms, is 
it true that p1 ≤ p2? 

In other words, is it true that p1(a1,C,an) ≤ p2(a1,Can), 

for all positive integers a1,C,an?

� Thus, there is no algorithm for deciding questions like:

� Is  3x1
4x2x3 + 2x2x3 ≤ x1

6 + 5x2x3
?
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Unions of Conjunctive Queries

Theorem: Ioannidis & Ramakrishnan – 1995

Under bag semantics, the containment problem for unions

of conjunctive queries is undecidable.

Hint of Proof:  

� Reduction from the previous variant of Hilbert’s 10th

Problem:

� Use joins of unary relations to encode monomials 

(products of variables).

� Use unions to encode sums of monomials. 
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Unions of Conjunctive Queries

Example: Consider the polynomial 3x1
4x2x3 + 2x2x3

� The monomial x1
4x2x3 is encoded by the conjunctive query

P1(w),P1(w),P
1
(w), P

1
(w), P2(w),P3(w).

� The monomial x2x3 is encoded by the conjunctive query 
P2(w),P3(w).

� The polynomial 3x1
4x2x3 + 2x2x3 is encoded by the union 

having:

� three copies of P1(w),P1(w),P1(w), P
1
(w), P2(w),P3(w)   

and 

� two copies of P2(w),P3(w).
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Complexity of Query Containment

UndecidableUndecidable

Gödel - 1931

First-order (SQL) 

queries

Π2
p-complete

vdM - 1992

Conj. queries with 

≠≠≠≠ , ≤, ≥

Undecidable

IR - 1995

NP-complete

SY - 1980

Unions of conj. 

queries 

NP-complete

CM – 1977

Conjunctive 

queries

Complexity –

Bag Semantics

Complexity –

Set Semantics

Class of Queries
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Conjunctive Queries with ≠

Theorem: Jayram, K C, Vee – 2006

Under bag semantics, the containment problem for

conjunctive queries with ≠ is undecidable.

In fact, this problem is undecidable even if

� the queries use only a single relation of arity 2;

� the number of inequalities in the queries is at most some 

fixed (albeit huge) constant. 
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Conjunctive Queries with ≠

Proof Idea: 

Reduction from a variant of Hilbert’s10th  Problem:

Given homogeneous polynomials 

P1(x1,C,x59) and P2(x1,C,x59)

both with integer coefficients and both of degree 5,

is P1(x1,C,x59)  ≤ (x1)
5 P2(x1,C,x59), 

for all integers x1,C,x59?
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Proof Idea (continued)

� Given polynomials P1 and P2

� Both with integer coefficients

� Both homogeneous, degree 5

� Both with at most n=59 variables

� We want to find Q1 and Q2 such that

� Q1 and Q2 are conjunctive queries with inequalities ≠

� P1(x1,C, x59)  ≤ (x1)5 P2(x1,C, x59) 

for all integers x1, C, x59

if and only if

Q1(D) ⊆
BAG

Q2(D) for all (bag) databases D.
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Proof Outline: 

Proof is carried out in three steps.

Step 1: Only consider DBs of a special form.

Show how to use conjunctive queries to encode polynomials and

reduce Hilbert’s 10th Problem to conjunctive query containment 

over databases of special form (no inequalities are used!)

Step  2: Arbitrary databases

Use inequalities ≠ in the queries to achieve the following:

� If a database D is of special form, then we are back to the 
previous case.

� If a database D is not of special form, then Q1(D) ⊆BAG Q2(D). 

� Step 3: Show that we only need a single relation of arity 2.
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Step 1: DBs of a Special Form - Example

� Encode a homogeneous, 2-variable, degree 2 

polynomial in which all coefficients are 1.

P(x1,x2) = x1
2 + x1x2 + x2

2

� DBs of special form:

� Ternary relation TERM consisting of 

� (X1,X1,T1), (X1,X2,T2), (X2,X2,T3)

all special DBs have precisely this table for TERM

� Binary relation VALUE 

� Table for VALUE varies to encode different values 

for the variables x1, x2.

� Query Q :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)
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Step 1: DBs of a Special Form - Example

� P(x1,x2) = x1
2 + x1x2 + x2

2

x1 = 3, x2 = 2,  P(3,2) = 32 + 3·2 + 22 = 19.

� Query Q :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)

� DB D of special form:

� TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3)

� VALUE:   (X1,1),  (X1,2),  (X1,3)

(X2,1),  (X2,2)

Claim: P(3,2) = 19 = QBAG(D)
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Step 1: DBs of a Special Form - Example

� P(3,2) = 32 + 3·2 + 22 = 19.

� Query Q :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)

� D has   TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3)

VALUE:    (X1,1),  (X1,2),  (X1,3), (X2,1),  (X2,2) 

� QBAG(D) = 19, because:

� t → T1, u1→ X1, u2→ X1. Hence:

v1 → 1,2, or 3 and v2→ 1 or 2, so we get 32 witnesses.

� t → T2, u1→ X1, u2→ X2.  Hence:

v1 → 1,2, or 3 and v2→ 1 or 2, so we get 3·2 witnesses.

� t → T3, u1→ X2, u2→ X2. Hence:

v1 → 1 or 2,  and v2→ 1 or 2, so we get 22 witnesses.
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Step 1: Complete Argument and Wrap-up

� Previous technique only works if all coefficients are 1

� For the complete argument:

� add a fixed table for every term to the DB;

� encode coefficients in the query;

� only table for VALUE can vary.

� Summary: 

� If the database has a special form, then we 
can encode separately homogeneous polynomials 

P1 and P2 by conjunctive queries Q1 and Q2.

� By varying table for VALUE, we vary the variable values.

� No ≠-constraints are used in this encoding; hence, 
conjunctive query containment is undecidable, if restricted 
to databases of the special form.
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Step 2: Arbitrary Databases

Idea:

Use inequalities ≠ in the queries

to achieve the following:

� If a database D is of special form, then we are 

back to the previous case.

� If a database D is not of special form, then
Q1(D) ⊆BAG Q2(D) necessarily.
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Step 2: Arbitrary Databases - Hint

1. Ensure that certain “facts” in special-form DBs appear 

(else neither query is satisfied).

� This is done by adding a part of the canonical query of special-
form DBs as subgoals to each encoding query.

2. Modify special-form DBs by adding  gadget tuples to TERM and 

to VALUE.

� TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3), (T0,T0,T0)

� VALUE:   (X1,1),  (X1,2),  (X1,3), (X2,1),  (X2,2) , (T0,T0)

3. Add extra subgoals to Q2, so that if D is not of special form, then

Q2 “benefits” more than Q1 and, as a result,  Q1(D) ⊆BAG Q2(D).
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Step 2: Arbitrary Databases - Example

� P1(x1,x2) = x1
2 + x1x2 + x2

2

� Poly1(u1,u2,t) :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)

the query encoding P1 on special-form DBs.

� TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3), (T0,T0,T0)

� VALUE:   (X1,1),  (X1,2),  (X1,3), (X2,1),  (X2,2), (T0, T0)

� Q1 :- Poly1(u1,u2,t)

� Q2 :- Poly2(u1, u2, t), Poly1(w1, w2, w), w ≠ T1, w ≠ T2, w ≠ T3

Fact: 

� If DB is of special form, then Q2 gets no advantage, because 

w → T0, w1 → T0, w2 → T0 is the only possible assignment.

� If DB not of special form, say it has an extra fact (X2,X1,T’), then both Q1
and Q2 can use it equally.
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Step 2:  Arbitrary Databases – Wrap-up

� Additional tricks are needed for the full construction.

� Full construction uses seven different control gadgets. 

� Additional complications when we encode coefficients.

� Inequalities ≠ are used in both queries.

� Number of inequalities ≠ depends on size of special-form 
DBs, not counting the facts in VALUE table.

� Hence, depends on degree of polynomials, # of 
variables.

� It is a huge constant (about 5910). 
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Complexity of Query Containment

UndecidableUndecidable

Trakhtenbrot - 1949

First-order (SQL) 

queries

Undecidable

JKV - 2006

Π2
p-complete

vdM - 1992

Conj. queries with 

≠≠≠≠ , ≤, ≥

Undecidable

IR - 1995

NP-complete

SY - 1980

Unions of conj. 

queries 

OpenNP-complete

CM – 1977

Conjunctive 

queries

Complexity –

Bag Semantics

Complexity –

Set Semantics

Class of Queries
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Subsequent Developments

� Some progress has been made towards identifying special 

classes of conjunctive queries for which the containment 

problem under bag semantics is decidable.

� Afrati, Damigos, Gergatsoulis – 2010

� Projection-free conjunctive queries.

� Kopparty and Rossman – 2011

� A large class of boolean conjunctive queries on graphs.
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The Containment Problem for Boolean Queries

� Note:

For boolean conjunctive queries, the containment 

problem under bag semantics is equivalent to the 

Homomorphism Domination Problem.

� The Homomorphism Domination Problem for graphs

Given two graphs G and H, is it true that 

# Hom(G,T)  ≤ # Hom(H,T),  for every graph T?

(where,

� # Hom(G,T)  =  number of homomorphisms from G to T 

� # Hom(H,T)  =  number of homomorphisms from H to T.
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The Homomorphism Domination Problem 

Theorem: Kopparty and Rossman -2011

� There is an algorithm to decide, given a series-parallel

graph G and a chordal graph H, whether or not

# Hom(G,T) ≤ # Hom(H,T), for all directed graphs T.

Equivalently,

� The conjunctive query containment problem Q1 ⊆BAG Q2 is 
decidable for boolean conjunctive queries Q1 and Q2 such 
that the canonical database D[Q1] is a series-parallel graph 
and the canonical database D[Q2] is a chordal graph.

Note:

Sophisticated proof using entropy and linear programming.
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Concluding Remarks

� Twenty years after it was first raised and in spite of 

considerable efforts, the containment problem for 

conjuctive queries under bag semantics remains open.

� Let us hope that this problem will be settled some time 

in the next C twenty years.

� But let us also recall another piece of wisdom by 

Piet Hein.
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T.T.T.

Put up in a place

where it is easy to see

the cryptic admonishment

T.T.T.

When you feel how depressingly

slowly you climb

it’s well to remember that

Things Take Time.

in: Grooks by Peter Hein


