
Datalog in Time and Space, Synchronously

Matteo Interlandi, Letizia Tanca, and Sonia Bergamaschi

Università degli Studi di Modena and Reggio Emilia,
{matteo.interlandi,sonia.bergamaschi}@unimore.it

Politecnico di Milano,
tanca@elet.polimi.it

Abstract. Motivated by recent developments of Datalog-based languages
for highly distributed systems [9], in this paper we introduce a version
of Datalog¬ specifically tailored for distributed programming [2] in syn-
chronous settings, along with its operational and declarative semantics.

1 Introduction

Nowadays we are living the “end of the Moore’s law as we know it”: increasing
performance cannot be achieved just by increasing hardware speed; instead, con-
current and parallel computation must be exploited. Thus, in the last few years
new paradigms such as cloud computing, frameworks like MapReduce [7], and
systems like NoSQL databases, are put at work to help programmers in devel-
oping scalable applications which exploit distributed systems. We are however
aware that limitations still exist in the current literature concerning the formal
models needed by the above discussed new trends. Our aim is then to develop
new techniques that can be employed to solve the challenges of today’s highly
distributed systems.

We think that Datalog is in a very favorable position to provide an impor-
tant contribution to the development of the aforementioned technologies: (i) its
intrinsically (embarrassingly) parallel nature provides a firm basis to develop
more complex languages for modern parallel and distributed applications [6, 5];
(ii) its solid logical foundation provides the theoretical background that permits
to formally specify and analyze complex distributed systems [9, 3].

In particular, the role of our present work is to define what a synchronous
distributed system is and to provide the semantics for such kind of systems
for a version of Datalog specifically tailored for distributed programming [2].
Albeit asynchronous systems are highly preferable today to synchronous systems,
the latter are still very convenient because programs do not have to deal with
much uncertainty, thus, once designed for such an ideal model, they can be
refined to work in more realistic settings. Our work, in particular, proceeds of
our previous work [11], and is motivated by the following two use-cases: (i) active
deductive databases [13] have been developed in centralized settings in which
updates must be issued to a unique central database: our aim is to enhance this
model, developing the semantics of synchronous networks of partitioned and/or
replicated databases; (ii) in the Massive Parallel (MP) model introduced in
[10], computation proceeds by steps that are performed in parallel by clusters



2 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

of machines on which the same program is running. This model actually is a
particular instantiation of a synchronous system. In addition, the MP model
is strictly related to the MapReduce model (MR)[10]. As a consequence, by
developing a semantics for synchronous systems we would be able to seamlessly
embed in our framework both the MP and the MR computation models.

The paper is organized as follows: in Section 2 we introduce some prelimi-
naries on Datalog¬ST , i.e., Datalog¬ augmented with a notion of time and space.
In Section 3 we describe what a synchronous distributed systems is, and give an
idea of the operational and declarative semantics of Datalog¬ST in such timing
model. 1

2 Preliminaries

In the following we define a distributed system to be a non-empty finite set of fully
and reliably connected node identifiers L = {1, . . . , n}. A Datalog¬TS program Π
is composed by a set of rules, each having one of the following two forms:

H(w̄, t)← B1(ū1, t), . . . , Bn(ūn, t), S1(@l1, v̄1, t), . . . , Sm(@lm, v̄m, t), (1)

time(t).

H(w̄, t′)← B1(ū1, t), . . . , Bn(ūn, t), S1(@l1, v̄1, t), . . . , Sm(@lm, v̄m, t), (2)

time(t), succ(t, t′).

where H, Bi and Sj , with 0 ≤ i ≤ n, 0 ≤ j ≤ m, are taken from the set relname
of relation (names), and (w̄), (ūi), (v̄j) are tuples whose components (terms)
can either be variables or constants. In addition, we have two “special” terms:
a temporal term t (t′) called time-step identifier and ranging over the set of
natural numbers N0, and a spatial term lj called location specifier and ranging
over the set of node identifiers L. We assume that the time-step identifier term
cannot appear in any of the vectors w̄, ūi, v̄j , while we will see that the location
specifier is allowed to appear in w̄. As usual, the left-hand part of a rule (H(w̄))
is referred to as the head, and the right-hand part as the body. The head of each
rule is an atom, i.e. an occurrence of a predicate, while the Bi(ūi, t) − Sj(v̄j , t)
are literals, i.e., positive or negated atoms. If m = 0 the rule is local, distributed
otherwise. Moreover, if n = m = 0 the rule is expressing a fact. We assume each
rule to be safe, i.e., every variable occurring in a rule-head or in negative literal,
must appear in at least one positive literal of the rule body. As a consequence,
we assume all facts to be ground, i.e., containing only constants terms.

A (temporal-spatial) database schema RTS is defined as the set of relation
names R ∈ relname plus two pairs of built-in relations: succ (of arity two),
and time (of arity one) ranging over time-step identifiers, and id and all, both
of arity one and ranging over the set of location specifiers. The interpretation of
succ(t, t′) is t′ = t+1, while time(t) is used to bind the time-step of a tuple to a
precise time t. As for the interpretation of id and all, an occurrence of the first is
in each node and stores only that node id, while the second contains all the nodes

1 The formal basis of this work, along with many examples, is developed in [12].



Datalog in Time and Space, Synchronously 3

belonging to the network, i.e., L. The intensional part of the database schema,
namely idb(RTS , Π), is the subset of the database schema RTS containing all
relations that appear in at least one rule-head in Π, while with edb(RTS , Π)
we denote the extensional database. In addition, with sdb(RTS , Π) – disjoined
from both edb and idb – we refer to the set of distributed shared relations (DSR),
which contains the relations represented as Sj in eq.s (1, 2) above, and are the
only ones allowed to contain location specifier terms. As the name highlights,
DSR’s are shared among multiples nodes simultaneously, and are the means
by which nodes are able to interact among themselves; therefore a mechanism
for deciding which node is responsible for which tuple must be developed. The
location specifier term exactly serves at this scope: it is used to identify which
node is responsible for which portion of data. From the above definitions and
eq.s (1, 2) follows that Bi ∈ edb(RTS , Π)∪ idb(RTS , Π), Sj ∈ sdb(RTS , Π) and
finally H ∈ idb(RTS , Π) ∪ sdb(RTS , Π), with the meaning that H can specify
an intensional relation or a distributed relation. In the latter case, we assume w̄
to contain also the location specifier term. In particular, in case of rules of the
type of (1) the location specifier term in w must be the local node id, while for
rules of type (2) can be any node identifier in L, so that, with inductive rules,
we are able to perform communication among nodes. Then, given a time-step
value t ∈ N0, a (temporal-spatial) database instance is a finite set of facts I[t]
over the relations of RTS . Similarly, a (temporal-spatial) relation instance IR ⊆
I[t] is a set of facts defined over R, with R ∈ RTS . In the following we will refer
to Init as the finite initial database instance of the schema.

In Datalog¬TS , we consider tuples to be immutable – once instantiated they
cannot be retracted nor changed – and ephemeral by default, i.e., a tuple is valid
only for its assigned time-step. Hence, we use rules in the form of (1) to derive new
facts given the information currently available at that point in time. Adopting
the same notation of [2] we call this type of rules deductive. Nevertheless, in
Datalog¬TS mutable tuples can be emulated using time and explicitly stating how
tuples evolve with the progress of time. In fact, if a tuple, let’s say R(a, b, t) is
valid at time t, by employing inductive rules [2] in the form of eq. (2), we specify
a new immutable version which will be valid at time-step t + 1. If defined by
means of inductive rules, tuples from ephemeral become persistent : once derived,
for example at time-step t, they will eventually last for every t′ ≥ t.

As example, we use the program depicted in Listing 1.1 where we employ an
edb relation link containing tuples in the form (x,y,t) to specify the existence
of a directed link between a source node x and a destination node y at time t. In
addition, we employ a distributed shared relation path to define the transitive
closure of the link relation.

r1: link(x,y,t′):-link(x,y,t),time(t),succ(t,t′).

r2: path(@x,y,t′):-path(@x,y,t′),time(t),succ(t,t′).

r3: path(@x,y,t):-link(x,y,t),time(t).

r4: path(@x,z,t′):-path(@x,y,t),path(@y,z,t),time(t),succ(t,t′).

Listing 1.1. Simple Datalog¬
ST Program



4 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

Computation is performed simultaneously on multiple distributed nodes. Com-
munication among nodes is achieved through rules r4 which specifies for example
that node a knows that a path from node a to a node c exists if it knows that
there is a path from a to another node b and this last node knows that a path
to c exists. Rule r4 contains relations stored at different locations, therefore
implicitly assuming tuples to be exchanged among nodes.

3 Semantics for Synchronous Systems

The operational semantics of Datalog for distributed systems is classically based
on the notion of relational transducer and network of relational transducers [3].
We follow the same approach. Given a Datalog¬TS program Π defined over a re-
lational schema RTS , we define the database, memory, and dsr schemas, respec-
tively, as Rdb = edb(RTS , Π), Rmem = idb(RTS , Π), and Rdsr = sdb(RTS , Π).
A transducer schema R is a tuple (Rdb, Rmem, Rdsr, Rtime, Rsys) where Rtime

contains just the unary relation time, and the system schema Rsys contains the
two unary relations id, and all. A transducer state for R is a database instance
T over (Rdb, Rmem, Rdsr, Rtime), and a Datalog¬TS -relational transducer is a
program T defined over R. Finally, a transducer configuration is a tuple (L,α)
where L is the set of nodes defining the relation all, and α is the location
identifier of the node.

Initially a relational transducer T is assumed as loaded with the initial in-
stance Tdb = Init, time contains the tuple (0), and all the other relations are
empty. In addition, we assume to have a (possibly infinite) input tape contain-
ing an ordered sequence of consecutive natural numbers starting from 0. This
sequence will be used as input for a relational transducer in order to provide
the clock driving the computation. Why we provide time-steps in this way will
be more clear in Section 3.3, where we define synchronous transducer networks.
Then, given as input a set of input tuples Tin defined over Rdsr, together with a
configuration and the next time value taken from the input tape, the relational
transducer will transit to the next state and output a set of output tuples T ′

out.

Thus, a local transition is denoted as T, Tin
t,(L,i)
=⇒ T′, T ′

out, where t ∈ N is taken
from the input tape, Tin, T ′

out are instances of Rdsr, and (i, L) is a configuration.
Now, if we denote withMded the perfect model of the deductive rules in T com-
puted by employing the so called temporal stratified semantics [2, 12] to control
negation, Mind the model derived from Mded by firing all the inductive rules,
and analogously Mcom is derived from Mded by firing all the communication
rules – i.e., inductive rules of the type of eq. (2) where the head relation is a
DSR – then T′, T ′

out are transducer states such that:

– T ′
db = Tdb

– T ′
time = time(t)

– T ′
dsr =Mi

com – i.e., sdb tuples referred to the local node i
– T ′

out =Mcom/Mi
com

– T ′
mem =Mind



Datalog in Time and Space, Synchronously 5

3.1 Distributed Computation

At any point in time each node is in some particular local state incapsulating
all the information of interest the node possesses. For convenience, we define the
local state si of a node i ∈ L as the pair (Ii, n) where Ii = Ti[n], being Ti[n]
a transducer state for node i at time-step n. We define the global state g of a
distributed system as a tuple (se, s1, ..., sn) where si is node i’s state and se is the
environment local state. We can consider the environment as a “special” node
storing all the information external to all nodes. We define how global states
may change over time through the notion of run, which binds time values to
global states. If we assume the set of time values to be isomorphic to the natural
numbers we can define the function ρ : N→ G where G = {Se × S1 × ...× Sn},
Si is the set of possible local states for node i ∈ L , and Se is the set of possible
states for the environment. If ρ(t) = (se, s1, ..., sn) is the global state at time t, we
define ρe(t) = se and ρi(t) = si, for i ∈ L. We want to note here that the time t
and the notion of time-step n incapsulated in programs are two different entities.
In fact, while the first one is an external time used to reason about the evolution
of global states, the second is definitely an internal (relative) perspective that
each node has about the passing of time. A system may have many possible runs,
indicating all the possible ways the global state can evolve. In order to capture
this, we define a system S as a set of runs.

3.2 Synchronous Systems

For a system to be synchronous it must satisfy the following properties:

S1 a global clock is defined and is accessible by every node
S2 the relative difference between the time-step of any two nodes is bounded
S3 updates to remote sdb relations arrive at destination at most after a certain

bounded physical time delay ∆ [8]

A synchronous system Ssync is therefore a set of runs fulfilling the above con-
ditions. The first property can be expressed in our framework by linking the
time-step identifier of each node with the external time, i.e., by assuming the
time tape to be globally accessible by every node. Thus, by definition, every
local state ρi(t) = (Ii, n) will have now t = n. In this configuration, the second
property is implemented by assuming that programs proceed in rounds, and that
each round, operationally speaking, lasts enough to permit each node computa-
tion to reach the fix-point. In order to express the third property, we assume ∆
to be amply lower than the amount of (physical) time spent between the end of
one round and the start of the consecutive one.

3.3 Synchronous Transducer Networks

We have already defined how local states evolve by defining what a relational
transducer is. Now that we have defined synchronous systems, it remains to
specify how properties S1 - S3 can be enforced during the evolution of global
states. To accomplish this, we employ a synchronous transducer network [3]: a



6 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

synchronous Datalog¬TS-transducer network is a tuple (L, γ, T , T e) where γ is a
function mapping each element i ∈ L to a transducer state Ti. We assume the
environment to be a “special” relational transducer. In particular, we consider
the transducer defining the environment T e as having an empty program, and
the schema composed only by dsr relations with Re

dsr =
⋃

i∈L Ri
dsr. Hence, we

consider the environment as registering the sdb facts floating in the network and
not received yet. As can be noticed, in our definition we assume each node i ∈ L
to have the same transducer T , while the only thing that we allow to change
from node to node is its instance. Then, a state N of a transducer network
(L, γ, T , T e) is a tuple (Te,T1, . . . ,Tn) where for each i ∈ L the i-th element is
the related relational transducer state γ(i) = Ti such that Tdb = Initi.

Let a transducer network initial state be a state where each time relation
contains the value 0, and except Rdb all the remaining relations are empty.

A global transition is denoted by N
t

=⇒ N′, where N and N′ are transducer
network states, and t ∈ N is denoting the input from the time tape specifying
what will be the next round. Then, a global transition is defined such that:

– Tin = Te[t]

– ∀i ∈ L, ∃Ti s. t. γ(i) = Ti, (Ti, T i
in,

t,(L,i)
=⇒ T′i, T ′i

out) is a local transition for
node i, where T i

in denotes the set of facts in Tin for node i ∈ L
– T′e =

⋃
i∈L T

′i
out

Informally, during a global transition all the transducers composing the network
instantaneously make a local transition taking as input the associated sdb -tuples’
output of the t − 1 round. In addition we assume that one global transition, in
order to satisfy property S3, can start only after that a certain amount ∆ of
physical time has elapsed after the end of the previous transition. If we consider
a global state at round t to be defined as ρ(t) = (se, s1, . . . , sn) with si = (Ii, t)
and Ii = Ti[t] where Ti[t] denotes the local Datalog¬TS-transducer state for
node i ∈ L ∪ e at time-step t, the definition of global transition specifies how
global states evolve in synchronous settings because it satisfies conditions S1
- S3. Given a Datalog¬TS program and an initial instance Init, its operational
semantics in synchronous settings is completely determined by the synchronous
system Ssync defining its evolution.

3.4 Model-Theoretic Semantics

Starting from a synchronous transducer network (L, γ, T , T e), we can develop a
restricted form of Datalog¬TS-relational transducer, namely Datalog¬T -relational
transducer, which is able to simulate the behavior of such a network in cen-
tralized settings. Thus, given a transducer network (L, γ, T , T e) with schema
R = (Rdb, Rmem, Rdsr, Rtime, Rsys), its centralized version is a Datalog¬T -
relational transducer defined as follows (where we use the apex c to denote the

centralized variant): Rc = (Rdb, R
c
mem, Rtime) where Rc

mem = Rmem∪ R†
dsr –

where with R†
dsr we denote Rdsr restricted over the temporal database – and

T c is a Datalog¬T -relational transducer, i.e., the restricted version of T ranging
over Rc. Informally, the centralized version of a synchronous transducer network



Datalog in Time and Space, Synchronously 7

is composed by the same program T defining the network but where each sdb
relation is now an idb relations. Due to this restriction, the environment and
the system relations are no more necessary. We are now able to derive the
model-theoretic semantics of synchronous transducer networks.

Theorem 1 Let Init be a finite initial database instance, (L, γ, T , T e) a trans-
ducer network, andMc the perfect model of the centralized version of (L, γ, T , T e).
Then:

Mc = (
⋃
i∈L

ρi(0), . . . ,
⋃
i∈L

ρi(n)) (3)

4 Conclusion

Pushed by recent trends of highly distributed systems, we tried to give an in-
tuition of the semantics of a distributed version of Datalog¬ in synchronous
settings. We introduced a new type of Relational Transducer [1] and Trans-
ducer network [3] tailored for synchronous distributed systems, and sketched the
model-theoretic semantics of distributed Datalog programs for such systems.

References

1. S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha. Relational transducers for
electronic commerce. In Proceedings of the seventeenth symposium on Principles
of database systems, PODS’98,179–187. 1998.

2. P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, et al. Dedalus: Datalog
in time and space. In de Moor et al. Datalog Reloaded, 262–281. 2010

3. T. J. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for
declarative networking. In Proceedings of the thirtieth symposium on Principles of
database systems, PODS’11, 283–292. 2011.

4. P. Barceló and R. Pichler, editors. Datalog in Academia and Industry - Second
International Workshop, Datalog 2.0, Vienna, Austria, September 11-13, 2012.
Proceedings, volume 7494 of Lecture Notes in Computer Science. Springer, 2012.

5. Bloom Language http://boom.cs.berkeley.edu/index.html.
6. Cascalog Libray https://github.com/nathanmarz/cascalog.
7. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, Jan. 2008.
8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.

MIT Press, Cambridge, MA, USA. 2003.
9. J. M. Hellerstein. The declarative imperative: experiences and conjectures in dis-

tributed logic. SIGMOD Rec., 39:5–19, September 2010.
10. P. Koutris, D. Suciu. Parallel evaluation of conjunctive queries. In Proceedings of

the thirtieth symposium on Principles of database systems, PODS’11. 2011.
11. M. Interlandi. Reasoning about knowledge in distributed systems using datalog.

In Barceló and Pichler [4], pages 99–110.
12. M. Interlandi, L. Tanca, S. Bergamaschi: Datalog in Time and Space. Syn-

choronusly. http://www.dbgroup.unimo.it/TechnicalReport/interlandi2013.

pdf, Febbraury 2013. Technical Report.
13. C. Zaniolo. Advanced database systems. Morgan Kaufmann series in data manage-

ment systems. Morgan Kaufmann Publishers. 1997.


