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Abstract. We present an extension of GLukG, a logic that was intro-
duced in [6] as a three-valued logic under the name of G′

3. GLukG is a
paraconsistent logic defined in terms of 15 axioms, which serves as the
formalism to define the p-stable semantics of logic programming. We in-
troduce a new axiomatic system, N-GLukG, a paraconsistent logic that
possesses strong negation. We use the 5-valued logic N ′

5, which is a con-
servative extension of GLukG, to help us to prove that N-GLukG is an
extension of GLukG. N-GLukG can be used as the formalism to define
the p-stable semantics as well as the stable semantics.

1 Introduction

Deductive databases are an important aspect in the convergence of artificial
intelligence and databases [9]. Currently it is necessary to have complex reasoning
tasks to deal with great amounts of data. Logic base systems are an option to
provide such complex reasoning capabilities. Specifically, Deductive Database
Systems are forms of database management systems whose storage structures are
designed around a logical model of data and at the same time inference modules
for the Deductive Database Systems are designed on logic programming systems.
The Deductive Database Systems are based on deductive database theories that
always have associated a semantics. In general, a deductive database theory may
give different answers to a query depending on the semantics used.

Two of the semantics that a database theory can be based on, are the stable
logic programming semantics (stable semantics) as well as the p-stable logic pro-
graming semantics (p-stable semantics). The mathematical formalism to support
those semantics is the theory of intermediate and paraconsistent logics; thus, in-
tuitionism helps to express the stable semantics and the logic G′

3 helps to express
the p-stable semantics. In this work we study a new paraconsistent logic called
N-GLukG. N-GLukG has a stong negation besides having the native paraconsis-
tent negation, and it is capable of expressing both, the p-stable and the stable
semantics. With the help of the 5-valued logic N ′

5 [5] we prove that N-GLukG is
an extension of GLukG. Furthermore, N-GLukG can be used as the formalism
to extend the p-stable semantics to a version that includes strong negation in a



similar way as the stable semantics has been extended to include such a negation
[4].

Our paper is structured as follows. In section 2, we summarize some defini-
tions and logics necessary to understand this paper. In section 3, we introduce
a new logic that is an extension of a known logic, this new logic satisfies a sub-
stitution theorem, and can express the stable semantics as well as the p-stable
semantics. Finally, in section 4, we present some conclusions.

2 Background

We present several logics that are useful to define and study or logic N-GLukG.
We assume that the reader has some familiarity with basic logic such as chapter
one in [3].

2.1 Hilbert style proof systems

One way of defining a logic is by means of a set of axioms together with the
inference rule of Modus Ponens.

As examples we offer two important logics defined in terms of axioms, which
are related to the logics we study later.

Cω logic [2] is defined by the following set of axioms:

Pos1 a→ (b→ a)
Pos2 (a→ (b→ c))→ ((a→ b)→ (a→ c))
Pos3 a ∧ b→ a
Pos4 a ∧ b→ b
Pos5 a→ (b→ (a ∧ b))
Pos6 a→ (a ∨ b)
Pos7 b→ (a ∨ b)
Pos8 (a→ c)→ ((b→ c)→ (a ∨ b→ c))
Cω1 a ∨ ¬a
Cω2 ¬¬a→ a

The first eight axioms of the list define positive logic. Note that these axioms
somewhat constraint the meaning of the →, ∧ and ∨ connectives to match our
usual intuition. It is a well known result that in any logic satisfying axioms Pos1
and Pos2, and with modus ponens as its unique inference rule, the Deduction
Theorem holds [3].

2.2 Axiomatic definition of GLukG

We present a Hilbert-style axiomatization of G′
3 that is a slight (equivalent)

variant of the one presented in [6]. We present this logic, since it will be extended
to a new logic called N-GLukG, which possesses a strong negation and is the
main contribution of this work.

GLukG logic has four primitive logical connectives, namely GL := {→,∧,∨,¬}.
GLukG-formulas are formulas built from these connectives in the standard form.
We also have two defined connectives:
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−α := α→ (¬α ∧ ¬¬α). α↔ β := (α→ β) ∧ (β→ α).

GLukG Logic has all the axioms of Cω logic plus the following:

E1 (¬α→¬β)↔ (¬¬β→¬¬α)
E2 ¬¬(α→ β)↔ ((α→ β) ∧ (¬¬α→¬¬β))
E3 ¬¬(α ∧ β)↔ (¬¬α ∧ ¬¬β)
E4 (β ∧ ¬β)→ (−− α→ α)
E5 ¬¬(α ∨ β)↔ (¬¬α ∨ ¬¬β)

Note that Classical logic is obtained from GLukG by adding to the list of
axioms any of the following formulas: α→¬¬α, α→(¬α→β), (¬β→¬α)→(α→β).
On the other hand, −α→¬α is a theorem in GLukG, that is why we call the
“−” connective a strong negation.

In this paper we consider the standard substitution, here represented with
the usual notation: ϕ[α/p] will denote the formula that results from substituting
the formula α in place of the atom p, wherever it occurs in ϕ. Recall the recursive
definition: if ϕ is atomic, then ϕ[α/p] is α when ϕ equals p, and ϕ otherwise.
Inductively, if ϕ is a formula ϕ1#ϕ2, for any binary connective #. Then ϕ[α/p]
will be ϕ1[α/p]#ϕ2[α/p]. Finally, if ϕ is a formula of the form ¬ϕ1, then ϕ[α/p]
is ¬ϕ1[α/p].

2.3 GLukG as a multi-valued logic and the multi-valued logic N ′
5

It is very important for the purposes of this work to note that GLukG can also be
presented as a multi-valued logic. Such presentation is given in [7], where GLukG
is called G′

3. In this form it is defined through a 3-valued logic with truth values
in the domain D = {0, 1, 2} where 2 is the designated value. The evaluation
functions of the logic connectives are then defined as follows: x ∧ y = min(x, y);
x ∨ y = max(x, y); and the ¬ and → connectives are defined according to the
truth tables given in Table 1. We write |= α to denote that the formula α
is a tautology, namely that α evaluates to 2 (the designated value) for every
valuation.

In this paper we keep the notation G′
3 to refer to the multi-valued logic just

defined, and we use the notation GLukG to refer to the Hilbert system defined
at the beginning of this section.

There is a small difference between the definitions of G′
3 and Gödel logic

G3: the truth value assigned to ¬1 is 0 in G3. G3 accepts an axiomatization
that includes all of the axioms of intuitionistic logic. In particular, the formula
(a ∧ ¬a)→ b is a theorem, therefore G3 is not paraconsistent.

The next couple of results are facts we already know about the logic G′
3

Theorem 1. [6] For every formula α, α is a tautology in G′
3 iff α is a theorem

in GLukG.

Theorem 2 (Substitution theorem for G′
3-logic). [6]Let α, β and ψ be

GLukG-formulas and let p be an atom. If α ↔ β is a tautology in G′
3 then

ψ[α/p]↔ ψ[β/p] is a tautology in G′
3.
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x ¬x
0 2
1 2
2 0

→ 0 1 2

0 2 2 2
1 0 2 2
2 0 1 2

Table 1. Truth tables of connectives in G′
3.

Corollary 1. [6]Let α, β and ψ be GLukG-formulas and let p be an atom. If
α↔ β is a theorem in GLukG then ψ[α/p]↔ ψ[β/p] is a theorem in GLukG.

Now we presentN ′
5, a 5-valued logic defined in [5]. We will use the set of values

{−2,−1, 0, 1, 2}. Valid formulas evaluate to 2, the chosen designated value. The
connectives ∧ and ∨ correspond to the min and max functions in the usual way.
For the other connectives, the associated truth tables are in table 2.

→ −2 −1 0 1 2

−2 2 2 2 2 2
−1 2 2 2 2 2

0 2 2 2 2 2
1 −1 −1 0 2 2
2 −2 −1 0 1 2

¬
−2 2
−1 2

0 2
1 2
2 −2

∼
−2 2
−1 1

0 0
1 −1
2 −2

↔ −2 −1 0 1 2

−2 2 2 2 −1 −2
−1 2 2 2 −1 −1

0 2 2 2 0 0
1 −1 −1 0 2 1
2 −2 −1 0 1 2

Table 2. Truth tables of connectives in N ′
5.

3 The logic N-GLukG

In this section we introduce a new logic we will call N-GLukG. We prove that
N-GLukG is an extension of GLukG (Theorem 4), that it satisfies a substitution
theorem (Theorem 5), and that it can express the stable semantics as well as the
p-stable semantics. N-GLukG is defined in terms of an axiomatic system. The
axioms are chosen in such a way that N-GLukG is sound with respect to N ′

5,
i.e. every theorem of N-GLukG is a tautology in N ′

5. The only inference rule is
modus ponens. Here is our list of 19 axioms:

Cω2 ¬¬a→ a
NPos1 ¬¬(a→ (b→ a))
NPos2 ¬¬((a→ (b→ c))→ ((a→ b)→ (a→ c)))
NPos3 ¬¬(a ∧ b→ a)
NPos4 ¬¬(a ∧ b→ b)
NPos5 ¬¬(a→ (b→ (a ∧ b)))
NPos6 ¬¬(a→ (a ∨ b))
NPos7 ¬¬(b→ (a ∨ b))
NPos8 ¬¬((a→ c)→ ((b→ c)→ (a ∨ b→ c)))
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NCω1 ¬¬(a ∨ ¬a)
NCω2 ¬¬(¬¬a→ a)
NE1 ¬¬((¬a→¬b)↔ (¬¬b→¬¬a))
NE2 ¬¬(¬¬(a→ b)→ ((a→ b) ∧ (¬¬a→¬¬b)))
NN1 ¬¬(∼ (a→ b)↔ a∧ ∼ b)
NN2 ¬¬(∼ (a ∧ b)↔ ∼ a∨ ∼ b)
NN3 ¬¬(∼ (a ∨ b)↔ ∼ a∧ ∼ b)
NN4 ¬¬(a↔ ∼∼ a)
NN5 ¬¬(∼ ¬a↔¬¬a)
NN6 ¬¬(∼ a→¬a)

We have a defined connective: α↔β := (α→β)∧ (β→α). Also we note that
the connective ∨ is not an abbreviation.

Observe that the inclusion of axiom Cω2 assures that each of the other 16
axioms becomes a theorem in N-GLukG when dropping the double negation
in front of them, this way we recover as theorems the axioms that define the
positive logic as well as some of those that define GLukG. The convenience
of having double negation in front of all these axioms is key in the proof of
the substitution property (Theorem 5) presented at the end of this section. In
particular the deduction theorem is valid in N-GLukG: α ` β if and only if
` α→ β.

Next we present some of the first results about N-GLukG:

Theorem 3. N-GLukG logic is sound with respect to N ′
5 logic.

From this result we conclude that the logic N-GLukG is paraconsistent, since
the formula (¬a ∧ a) → b is not a theorem. Now we continue looking at some
properties of N-GLukG. In particular we have that the connective ∼ of N-GLukG
is not a paraconsistent negation as the following proposition shows.

Proposition 1. The formula (a∧ ∼ a)→ b is a theorem in N-GLukG.

We also have the following result as a consecuence of theorem 3.

Theorem 4. Every theorem in N-GLukG that can be expressed in the language
of GLukG, is a theorem in GLukG.

Now we present a substitution theorem for N-GLukG logic. The next lemma
is interesting on its own and plays a role in the proof of the theorem.

Lemma 1. If Ψ is a theorem in N-GLukG, then ¬¬Ψ is also a theorem in
N-GLukG.

For the next result, we introduce the notation α ⇔ β as equivalent to the
formula (α↔ β) ∧ (∼α↔∼β).

Theorem 5. Let α, β and ψ be N ′
5-formulas and let p be any atom. If α ⇔ β

is a theorem in N-GLukG then ψ[α/p]⇔ ψ[β/p] is a theorem in N-GLukG.
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So far we have looked at some properties of logics N-GLukG and N ′
5. Now

we would like to point out the theoretical value of these logics in the context of
logic programming and knowledge representation.

Lemma 2. In N-GLukG the weak explosion principle is valid: For any formulas
α, β, the formula ¬α ∧ ¬¬α→ β, is a theorem.

According to this, we can define a bottom particle in N-GLukG.

Definition 1. For any fixed formula α let us define the bottom particle ⊥ as
¬α ∧ ¬¬α.

Lemma 3. The fragment of N-GLukG defined by the symbols ∧,∨,→,⊥ con-
tains all theorems of intuitionism.

As indicated in the introduction, logic GLukG(as some other paraconsistent
logics) can be used as the formalism to define the p-stable semantics in the same
way as intuitionism (as some other constructive logics) serves as the mathemat-
ical formalism of the theory of answer set programming (stable semantics) [8].
Accordingly we can state the next result.

Theorem 6. N-GLukG can express the stable semantics as well as the p-stable
semantics.

4 Conclusions and Future Work

In this paper, we introduce a new logic called N-GLukG, it can be used as a for-
malism to define two logic programming semantics: stable and p-stable. These
logic programming semantics could be used to define the semantics of deductive
databases.
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