
A Monotonic Extension for Horn-Clauses and its
Significance in Datalog’s Renaissance

Mirjana Mazuran1, Edoardo Serra2, and Carlo Zaniolo3

1 Politecnico di Milano DEI – mazuran@elet.polimi.it
2 University of Calabria DEIS – eserra@deis.unical.it

3 University of California, Los Angeles – zaniolo@cs.ucla.edu

Abstract. FS-rules provide a powerful monotonic extension for Horn
clauses that supports monotonic aggregates in recursion by reasoning on
the multiplicity of occurrences satisfying existential goals. The least fix-
point semantics, and its equivalent least model semantics, hold for logic
programs with FS-rules; moreover, generalized notions of stratification
and stable models are easily derived once negated goals are also allowed.
Finally, the generalization of techniques such as seminaive fixpoint and
magic sets, make possible the efficient implementation of DatalogFS, i.e.,
Datalog with FS-rules and stratified negation. A large number of appli-
cations that could not be supported efficiently, or could not be expressed
at all in stratified Datalog can now be easily expressed and efficiently
supported in DatalogFS and a powerful DatalogFS system is now being
developed at UCLA.

1 Introduction

The recent revival of interest in Datalog [1] is driven by various developments
that include the emergence of natural application areas [2–4], the success of
industrial-strength systems [5], and Datalog’s uses in (i) advanced computational
and semantic models [3, 6], (ii) the big-data problem [7, 8], and (iii) Data Stream
Management Systems [9]. Due to space limitations, this is a very incomplete list,
which does not mention many significant contributions from the past, and the
many new ones that are emerging now, i.e., in a time that has been described with
terms such as ‘resurgence’ [1], ‘springtime’ [3] and ‘renaissance’ [10] for Datalog4.
In this paper, we make a significant contribution to this renaissance, by providing
an effective solution to the problem of supporting aggregates in recursive rules,
a challenge that had motivated much classical Datalog research [11–16]. Space
constraints force us to limit this presentation to a general overview, whereas
details and formal proofs are given in [17, 18].

2 A Monotonic Extension for Horn Clauses

There is a big party on campus, and every student who has a friend attending
the party will join in. This can be expressed by the following rule:

4 The last term is actually the most fitting, since the renaissance is the era that, after
the ‘dark ages,’ revived arts and sciences producing accomplishments that outshined
and outlasted even the glorious ones of classical times.

attend(Y)← student(Y), attend(X), friend(Y, X).

A logical equivalent that makes a distinction between universal and existential
variables is:

∀Y[attend(Y)← student(Y),∃X[attend(X), friend(Y, X)]]

which shows that Y is a global/universal variable and X is a local/existential
one. Now, if the party is held during finals, students are much less outgo-
ing and require that three friends attend the party before they join in. We
could express this condition by expanding the bracketed expression above into:
[attend(X), friend(X, Y1), friend(X, Y2), friend(X, Y3), Y16=Y2, Y2 6=Y3, Y3 6=Y1].
However, such an expansion becomes unwieldy when the number of required
friends increases, and actually impossible when this number is a variable. Thus,
DatalogFS introduces a special notation as follows:

attend(Y)← student(Y), 3 : [attend(X), friend(Y, X)].

Here, 3 : [attend(X), friend(Y, X)] means that there are at least three distinct oc-
currences of the local variable X that make the expression in the brackets true. In
general , K : [b-expression(X, Y)], where X is the vector of global variables and X is
the vector of local variables, means that there are at least K distinct occurrences
of Y that satisfy our b-expression(X, Y). Naturally, if K : [b-expression(X, Y)] is
true, then K′ : [b-expression(X, Y)] is also true for every 1 ≤ K′ ≤ K. Following
[17], we refer to the conjunct of positive atoms in the bracket as the b-expression,
while the whole ‘3 : [attend(X), friend(Y, X)]’ is called a Running FS-goal.

Rules where FS-goals are allowed will be called FS-rules. An FS-rule has
the form A ← A1, . . . , Am, where A is an atom, which is the head of the rule,
and A1, . . . , Am is the conjunction of literals forming the body of the rule. Now,
literals in the body can either be (i) the positive atom of Horn clauses, or (ii)
running FS-goals. A set of FS-rules will be called an FS-program.

The elegant foundations that provide formal semantics to definite-clause pro-
grams find natural extensions, since the notions of Herbrand Universe, interpre-
tations, models, instantiated rules and programs, and the immediate consequence
operator TP , can be extended to an FS-program [18]. The model intersection
property holds for FS-programs, whereby every FS-program has a least minimal
model. Moreover, the immediate consequence operator TP of an FS-program
P is monotonic and continuous in the lattice of interpretations, whereby the
equation I = TP (I) has a least solution, denoted lfp(TP), which is equal to

the least model of P . Finally, lfp(TP) can be computed as lfp(TP) = T ↑ω
P (∅).

These beautiful properties that Paris Kanellakis once described as ‘The Garden
of Eden’ of declarative semantics5 have now been extended to logic programs
with FS-rules, which can now express declaratively many monotonic functions
which were not expressible in traditional Datalog.

However, many real-life applications require non-monotonic functions and
reasoning. Indeed, Datalog and its bottom-up semantics fostered many advances

5 Paris Kanellakis, personal communication, March 1987.

in this area with the introduction of stratified negation, stable models, and re-
lated semantics. As shown in [18], these non-monotonic concepts and definitions
can be easily extended to FS-programs. For an example, let us return to the party
attendance example inspired by [15] and add a few facts describing students and
their friends:

Example 1. Organizers always attend; the others join after three friends do.

organizer(tom). organizer(sue). organizer(pat).

friend(marc, sue). friend(marc, tom). friend(marc, pat).
friend(ann, pat). friend(ann, tom). friend(ann, marc).
student(marc). student(ann).

attend(Y)← organizer(Y).
attend(Y)← student(Y), 3 : [attend(X), friend(Y, X)].

In this example, tom, pat and sue attend the party as organizers. Now, marc
views the three of them as his friends, so he will attend too. Because of this, ann
who views pat, tom and marc as her friends, joins the party too.

Negation is needed to detect how many people actually attend the party:

partycount(K)← K : [attend(Y)], K1 = K + 1, ¬K1 : [attend(Y1)].

Thus, at least K people will attend the party but K+1 will not. Therefore, K is the
exact count of people attending the party. Alternatively the final FS construct,
denoted by =! can be used to determine the exact count, as follows:

partycount(K)← K=! [attend(Y)].

The meaning of this rule is actually defined by its expansion into the previous
one that uses negation—whereby we refer to programs that are stratified w.r.t.
final FS goals as negation-stratified programs.

3 DatalogFS

In addition to stratified negation, the DatalogFS system being developed at
UCLA supports FS-assert constructs that are used to declare predicates with
multiplicity greater than one. For instance, we might want to state that tom has
five friends without stating their names as follows: friends(tom) :5. Then, since
tom has five friends, the following rule that invites to the party students with
more than four friends will succeed for tom:

invite(Y)← student(Y), 4 : [friends(Y)].

This FS-assert construct is basically syntactic sugaring whose semantics is de-
fined by a simple rewriting. In fact friends(tom) :5 is viewed as a shorthand for
friends(tom, J), J = 1, . . . , 5. Naturally the FS-goals in the rules are re-written
according to this expansion, whereas our previous rule becomes:

invite(Y)← student(Y), 4 : [friends(Y, J)].

The FS-assert construct is very useful since it implicitly computes the maxi-
mum of positive integers. For instance, say that we add the fact friends(tom) :7.
Since this fact stands for friends(tom, J), J = 1, . . . , 7, it subsumes friends(tom, J),
J = 1, . . . , 5, and therefore friends(tom) :5.

By using running FS-goals, and FS-assert constructs, negation-stratified DatalogFS

programs can express in a concise fashion queries that were not expressible in
stratified Datalog. For instance, the Summarized Part-Explosion query cannot
be expressed in Datalog with stratified aggregates [14]. This query counts the
number of copies of component Sub needed to construct one copy of a given
Part:

Example 2. Summarized Part Explosion.

cassb(Part, Sub) :Qty ← subpart(Part, Sub, Qty).

need(Sub, Sub) :1← subpart(, Sub,).
need(Part, Sub) :K← K : [cassb(Part, P1), need(P1, Sub)].
total(Part, Sub, K)← K =![need(Part, Sub)].

We next consider the Company Control application proposed in [11].

Example 3. Companies can purchase shares of other companies; in addition to its
directly owned shares, a company A controls the shares controlled by a company
B when A has a controlling majority (50%) of B’s shares (in other words, when
A bought B). The shares of each company are subdivided in 100 equal-size lots.

cshares(C2, C3, dirct) :P← owned shares(C2, C3, P).
cshares(C1, C3, indirct) :P← P : [bought(C1, C2), cshares(C2, C3,)].
bought(C1, C2)← C1 6= C2, 50 : [cshares(C1, C2,)].

Here dirct and indirct are tags identifying the two different kinds of shares.

Simple assemblies, such as bicycles, can be put together the very same day in
which the last basic part arrives. Thus, the time needed to deliver a bicycle is the
maximum of the number of days that the various basic parts require to arrive.

Example 4. How many days until delivery?

delivery(Pno) :Days ← basic(Pno, Days).
delivery(Part) :Days ← assbl(Part, Sub,), Days : [delivery(Sub)].
actualDays(Part, CDays)← CDays =![delivery(Part)].

For each assembled part, we find each basic subpart along with the number of
days this takes to arrive. By using the multi-occurring predicate delivery inside
the FS-goal ‘Days : [delivery(Sub)]’ we find, for a given Part, the maximum
among the delivery times of its subparts.

4 Efficient Implementation

DatalogFS programs are amenable to efficient implementation using (i) general-
izations of well-known techniques such as the seminaive (or differential) fixpoint
and the magic set method, and (ii) a specialized new technique called max op-
timization that was introduced specifically for DatalogFS [17] and is described

next. The max optimization of the rule in Example 1 begins by recasting it into
this equivalent rule:

attend(Y)← student(Y), K : [friend(Y, X), attend(X)], K ≥ 3.

Here, the value of K ranges from 1 to a max(K), thus achieving monotonicity
and least-fixpoint semantics. However, we also observe that the rule is actually
satisfied iff max(K) ≥ 3. In other words, we do not need to compute a continuous
count, we can instead perform a final count computation at each iteration in the
seminaive fixpoint computation. The same conclusion holds for all the examples
in this paper, and in fact for all the rules that use only monotonic functions on
positive numbers. In these programs, final FS-goals can be computed by ignoring
every K value but max(K). Therefore, traditional count and sum can be used to
implement these rules, instead of continuous aggregates. Indeed, the max-based
optimization can be performed whenever the function that maps FS-values from
the body to the head is monotonic on positive numbers. This is true for all
examples in this paper where the mapping is the identity function, but monotic
arithmetic functions such as addition, multiplication and many other functions
easily recognized as monotonic by the compiler can be used [17].

As discussed in [17], the standard differential fixpoint and magic-set trans-
formations can be applied to FS-rules, but only after they have been put in
canonical form. Rules with FS-goals can be reduced into canonical form by sim-
ply moving the predicates in the b-expression out of the brackets while avoiding
redundancy. For instance for Example 1 we obtain the following equivalent rule:

attend(Y)← student(Y), friend(Y, X), attend(X),
K : [friend(Y, XX), attend(XX)], K ≥ 3.

Then, seminaive fixpoint will be computed by performing a symbolic differ-
entiation on the recursive predicates outside the brackets whereas b-expressions
are left unchanged, as if they were constants:

δattend(Y)← student(Y), friend(Y, X), δattend(X),
K : [friend(Y, XX), attend(XX)], K ≥ 3.

The canonical representation is used when performing the binding passing anal-
ysis and in the magic-set method that propagate constraints in a top-down fash-
ion. For instance, say that in Example 1 we want to know whether a given Joe
will attend, using the goal: ?attend($Joe). Then, after performing the binding
passing analysis, we apply the magic-set transformation and obtain the following
magic set rules, where the b-expression condition has also been relaxed:

m.attend($Joe).
m.attend(X)← m.attend(Y), student(Y), friend(Y, X),

K : [friend(Y,)], K ≥ 3.

Therefore, the magic set consists of Joe’s friends and the friends of his friends
(friend*); but if Joe has fewer than three friends, we can exclude him from the
magic set—and the same holds for any friend*. Once the magic set predicate is
computed as shown above, m.attend(Y) is added as a goal to the original exit
rules and recursive rules restricting the final seminaive fixpoint computation [18].

5 Arbitrary Positve Numbers

The least fixpoint and its equivalent least model define the semantics of DatalogFS

when the FS-values are positive integers, and this also provides a declarative
semantics for programs that use arbitrary positive numbers for FS-values. In
fact, the rational numbers in a program can be represented by their numer-
ators once we assume they all share the same (large) denominator, D. Then
operations on these numbers can be viewed as involving only their numerators:
e.g., A/D + B/D = A + B/D, and A/D × B/D = ((A × B) ÷ D)/D. Now,
while addition introduces no error, the multiplication introduces a roundoff er-
ror due to integer division ÷D. However, roundoff is an arithmetic function
that is monotonically increasing (it can be viewed as staircase), and thus our
DatalogFS programs still have a least fixpoint-based semantics. Now, since large
values for D would produce good approximations, rather than unbounded length
integers, we can instead use floating point numbers to provide accurate solutions
efficiently supported in systems [17]. Because of limited precision mantissa, float-
ing point numbers also incur in roundoff errors; but again, these are monotonic
functions, and any imprecision in the resulting fixpoint can be resolved with
double-precision arithmetic and various methods of numerical analysis. Finally,
observe that monotonic approximation preserves the max-based optimization in
the computation—a sine qua non since the numerators are now large integers.

Many important applications that use probabilities and fractional weights can
now be expressed concisely and supported efficiently. Examples include shortest-
path in graphs, page rank, social networks [17], and the following example.

Example 5. Say that arc(a, b):0.66 denotes that starting from a we reach b in
66% of cases. Then, the following program computes the probability of complet-
ing a trip from a to Y along the maximum-probability path:

reach(a) :1.00.
reach(Y) :V ← reach(X), V : [reach(X), arc(X, Y)].
maxprob(Y, V) ← V =![reach(Y)].

The source a is reachable with probability 1. Then, the probability of reaching
Y via an arc from X is the product of the probability of being in X times the
probability that the segment from X to Y can be completed. This product is
computed by the goal V : [reach(X), arc(X, Y)] in the first rule. Finally, in the
head of the last rule, we only retain the maximum V—i.e., we only retain the
path with largest probability to succeed. ut

6 Conclusion

FS-rules provide a simple but powerful extension of Horn Clauses which dovetails
with both the declarative semantics of Datalog and its bottom-up implementa-
tion technology. In fact, the inclusion of running FS-goals, which operate in ways
that are similar to continuous counts, produces a generalized TP operator that
is monotonic and continuous in the lattice of interpretations: thus its repeated
application, starting with an empty interpretation, converges (on or before the

first ordinal) to TP ’s least fixpoint, which coincides with the unique minimal
model for P . Moreover, the bottom-up optimization techniques of Datalog, such
as magic-sets and differential fixpoints, can be easily generalized to programs
with FS-rules; simple generalizations also hold for stratified negation and more
advanced non-monotonic semantics [18]. Applications that cannot be expressed
efficiently, or cannot be expressed at all, in Datalog can be expressed efficiently
in the powerful DatalogFS system being developed at UCLA. Inasmuch as Dat-
alog’s recursive query techniques greatly influenced their SQL implementations
[19, 20], these extensions can also lead to their support in commercial DBMS.

References

1. Pablo Barceló and Reinhard Pichler, editors. Datalog in Academia and Industry–
2nd International Workshop, Datalog 2.0, volume 7494 of LNCS. Springer, 2012.

2. Boon Thau Loo et al. Declarative networking. Commun. ACM, 52(11), 2009.
3. Joseph M. Hellerstein. Datalog redux: experience and conjecture. In PODS, pages

1–2, 2010.
4. Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Emilien Antoine. A rule-

based language for web data management. In PODS, pages 293–304, 2011.
5. Todd J. Green, Molham Aref, and Grigoris Karvounarakis. Logicblox, platform

and language: A tutorial. In Barceló and Pichler [1], pages 1–8.
6. Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Ontological queries: Rewriting

and optimization. In ICDE, pages 2–13, 2011.
7. Foto N. Afrati et al. Map-reduce extensions and recursive queries. In EDBT, pages

1–8, 2011.
8. Yingyi Bu, Vinayak R. Borkar, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis,

Tyson Condie, Markus Weimer, and Raghu Ramakrishnan. Scaling datalog for
machine learning on big data. CoRR, abs/1203.0160, 2012.

9. Carlo Zaniolo. The logic of query languages for data streams. In Logic and
Databases 2011. EDBT 2011 Workshops, pages 1–2, 2011.

10. Serge Abiteboul. Datalog: La renaissance.
11. Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The magic

of duplicates and aggregates. In VLDB, pages 264–277, 1990.
12. Phokion G. Kolaitis. The expressive power of stratified logic programs. Inf. Com-

put., 90:50–66, January 1991.
13. Sergio Greco and Carlo Zaniolo. Greedy algorithms in datalog. TPLP, 1(4):381–

407, 2001.
14. Inderpal Singh Mumick and Oded Shmueli. How expressive is stratified aggrega-

tion? Annals of Mathematics and Artificial Intelligence, 15:407–435, 1995.
15. Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive

database. J. Comput. Syst. Sci., 54(1):79–97, 1997.
16. C. Zaniolo et al. Advanced Database Systems. Morgan Kaufmann, 1997.
17. Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. Extending the power of

datalog recursion. The VLDB Journal On-Line First, Nov. 2012.
18. Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. A declarative extension of

horn clauses, and its significance for datalog and its applications. February 2013.
19. Inderpal Singh Mumick and Hamid Pirahesh. Implementation of magic-sets in a

relational database system. In SIGMOD Conference, pages 103–114, 1994.
20. Carlos Ordonez. Optimization of linear recursive queries in sql. IEEE Trans.

Knowl. Data Eng., 22(2):264–277, 2010.

