
Effectively Updatable Conjunctive Views
(Extended Abstract)

Enrico Franconi and Paolo Guagliardo

KRDB Research Centre, Free University of Bozen-Bolzano, Italy
{franconi,guagliardo}@inf.unibz.it

1 Introduction

The view update problem [1] consists in finding suitable ways of consistently and
univocally propagating the changes introduced into a set of the view relations to
the underlying database relations over which the view relations are defined. This
can be formalised within a general framework [1,7] where a view is a function
that associates instances of a database schema with instances of a view schema,
which has a constructive characterisation when each view symbol is defined in
terms of the database symbols in a concrete query language. A view is updatable
if the changes introduced into the view relations by updates can be unambigu-
ously propagated back to the underlying database relations over which the view
relations are defined. This is possible whenever the view is invertible, but invert-
ibility in itself is not enough for practical purposes, as it merely indicates that
the database instances functionally depend on the corresponding view instances.
What is actually needed is in fact a constructive characterisation of the inverse,
obtained by finding an exact rewriting of each database symbol in terms of the
view symbols, expressed in a query language that is not necessarily the same as
the one used for defining the view symbols.

In the context of relational databases, the study of the invertibility of views
has focused on very restricted settings. Cosmadakis and Papadimitriou [2] limit
their investigation to only two view relations defined by projections over a single
database relation, which was recently generalised in [7] to an arbitrary number of
view relations defined by acyclic projections, but still over a database consisting
of a single relation. Moreover, the set of integrity constraints considered on the
database schema has been limited to functional and join dependencies in [2] and
full embedded dependencies in [7].

In this paper, we consider a setting where the view symbols are defined by
conjunctive queries (CQs) and we show that, when the integrity constraints on
the database schema are stratified embedded dependencies [3], a view is invertible
precisely if each database symbol has an exact rewriting given by a CQ over the
view schema. We then discuss how such rewritings can be effectively found using
the Chase & Backchase algorithm [4]. As a special case, in combination with the
general criterion for the translatability of view updates we introduced in [7], our
results settle the long-standing open issue pointed out in [2] of how to solve the
view update problem for a multi-relational database with view relations that are
projections of joins of the database relations.

Outline. The rest of the paper is organised as follows: after some preliminaries
in Sec. 2, in Sec. 3 we recall and summarise the framework introduced in [7]; in
Sec. 4 we show how view updatability can be checked, and rewritings effectively
found, when the view symbols are defined by CQs in a multi-relational database
under stratified embedded dependencies; we conclude in Sec. 5 by pointing out
future research directions.

2 Preliminaries

A schema is a finite set of relation symbols. Let dom be an arbitrary (possibly
infinite) set of domain values. An instance I of a schema S maps each relation
symbol S in S to a relation SI on dom of appropriate arity, called the extension
of S under I. The set of elements of dom that occur in an instance I is called
the active domain of I and is denoted by adom(I). An instance is finite when
its active domain is, and we always assume instances to be finite. We consider
a database schema R of database symbols and a view schema V of view symbols
not occurring in R. A database state is an instance IR of R and a view state is
an instance IV of V. The set of all database states (resp., view states) is denoted
by R (resp., V). The disjoint union IR] IV of a database state IR and a view
state IV is the instance, called a global state, of the global schema R ∪ V, with
active domain adom(IR) ∪ adom(IV) and associating each relation symbol S
in R∪ V with SIR if S ∈ R and with SIV otherwise.

We consider a satisfiable (finite) set Σ of global constraints over R∪V, con-
sisting of a set ΣR of database constraints over R and a set ΣRV of interschema
constraints over R∪V. The set ΣRV consists of exactly one formula of the form
∀x
(
V (x) ↔ φ(x)

)
for each V ∈ V, where φ(x) mentions only database symbols

and is called a definition of V in terms of R. Note that, as R and V are disjoint,
every instance of R∪ V satisfying Σ has the form IR] IV where IR and IV are
a database state and a view state, respectively. A view state IV (resp., database
state IR) is Σ-consistent (or globally consistent or consistent with the global con-
straints) if there is a database state IR (resp., view state IV) such that IR] IV
satisfies the global constraints Σ. Observe that every legal database state (i.e.,
one that satisfies the database constraints ΣR) is globally consistent. We denote
the set of Σ-consistent view states (resp., database states) by VΣ (resp., RΣ).

We say that V determines R under Σ (written V �Σ R) if, for every IV and
IR, I

′
R, it is the case that IR = I ′R whenever IR] IV |= Σ and I ′R] IV |= Σ. In

other words, models of Σ that agree on the extension of the view symbols also
agree on the extension of the database symbols, which means that in every model
of Σ the latter functionally depends on former. Clearly, under the assumptions
we made on the global constraints Σ, it is always the case that R �Σ V, and we
refer to the corresponding functional mapping f : RΣ → VΣ , associating each
Σ-consistent database state with a Σ-consistent view state, as the view from R
to V induced by Σ. In the rest of the paper, unless specified otherwise, whenever
we say “a view” we refer to the (one and only) view from R to V induced by a
set of global constraints Σ as above.

2

3 The View Update Framework

In this section we briefly recapitulate the general view update framework previ-
ously introduced in [7]. A view update is a function u : V → V associating each
view state with another, possibly the same. Given a view update that modifies
the current view state, we want to modify the database state accordingly so as
to reflect exactly the changes introduced into the view state. For this to be pos-
sible in an unambiguous way, the view must be updatable, and the view update
translatable, as we formally define next.

Definition 1 (Updatability). A view is updatable if V �Σ R.

Note that a view in our sense is always surjective, and V �Σ R further implies
injectivity [7], hence the notion of updatability coincides with invertibility.

Definition 2 (Translatability). Let u be a view update and let IV ∈ VΣ. We
say that u is translatable on IV if u(IV) ∈ VΣ.

A translatable view update leads to view states in the image of the view f ,
which are therefore reachable from some database state by means of f . In such
a case, when the view is updatable, the changes introduced into the view state
IV by the view update u, resulting in the updated view state I ′V = u(IV), can
be univocally pushed back by updating the database to the new state f−1(I ′V).

However, the fact that V determines R under Σ, even though it ensures that a
view is invertible, does not actually provide a constructive characterisation of its
inverse. In other words, V �Σ R guarantees that the extension of the database
symbols functionally depends on that of the view symbols, but it says nothing on
how the former is to be obtained from the latter. In order to effectively compute
the inverse of a view, we must be able to explicitly express each database symbol
R ∈ R in terms of the view symbols V by means of a formula ψ, called an exact
rewriting of R in terms of V under Σ, mentioning only view symbols and such
that Σ |= ∀x

(
R(x) ↔ ψ(x)

)
.

Definition 3. A view is effectively updatable if each database symbol has an
exact rewriting in terms of the view symbols under Σ.

Whenever a view update results in a view state IV in VΣ , if a view is effect-
ively updatable the changes can be propagated to the database state f−1(IV) by
computing the extension of each database symbol from its rewriting in terms of
the view symbols. But at this point, the question is: How do we ascertain whether
a view state belongs in fact to VΣ? The solution consists in constructing what
we call the V-embedding Σ̃V of Σ, which is obtained from Σ by replacing every
occurrence of each R ∈ R with its rewriting in terms of V. The resulting set of
constraints mentions only view symbols and, as it turns out, is satisfied exactly
by all and only the view states in VΣ . Thus, checking for the translatability of a
view update amounts to checking whether the updated view state satisfies Σ̃V .

Theorem 1 ([7]). Let f be an effectively updatable view, let u be a view update,

and let IV ∈ VΣ. Then, u is translatable on IV if and only if u(IV) |= Σ̃V .

3

Whether a view update u is translatable on a view state IV satisfying Σ̃V can
be checked in polynomial time in the size of u(IV), which is the data complexity
of testing whether a finite relational structure is a model of a FOL theory.

Summing up, for the above machinery to work it is essential to find a rewriting
of each database symbol in terms of the view symbols, in order to build the V-
embedding of Σ (and thus checking for the translatability of updates) and to
propagate the changes introduced by translatable view updates (by computing
the extension of the database symbols from that of the view symbols). Note that
checking whether a view is invertible, and eventually computing its inverse, is
an operation performed once for all offline.

4 Conjunctive Views

In this section, we settle the long-standing open issue pointed out in [2], namely
how to solve the view update problem in a multi-relational database with views
that are projections of joins of relations, and we do so in a more general setting
where the view symbols are defined by CQs and the constraints on the database
schema are embedded dependencies satisfying appropriate restrictions.

Example 1. Let R = {R1, R2} and ΣR consist of the following embedded de-
pendencies (in this case, inclusion and functional dependencies):1

R1(x, y, z) → ∃v, w R2(z, v, w) , (1a)

R2(z, v, w) → ∃x, y R1(x, y, z) , (1b)

R1(x, y, z) ∧R1(x′, y, z′) → z = z′ , (1c)

R2(z, v, w) ∧R2(z, v′, w′) → v = v′ . (1d)

Let V = {V1, V2, V3} and ΣRV consist of the following view definitions:

V1(x, y) ↔ ∃z R1(x, y, z) , (2a)

V2(y, z, v) ↔ ∃x,w R1(x, y, z) ∧R2(z, v, w) , (2b)

V3(z, w) ↔ ∃v R2(z, v, w) . (2c)

The embedded dependencies we consider are required to satisfy the condition
known as stratification [3], which is based on the notion of chase graph: The chase
graph of a set of embedded dependencies Σ has the dependencies in Σ as nodes
and, for α, β ∈ Σ, has an edge from α to β if and only if, intuitively, firing α may
cause β to fire as well (refer to [3] for the formal definition). Then, Σ is stratified
if the set of dependencies in every cycle of its chase graph is weakly acyclic [6,5].
Note that every weakly acyclic set of dependencies is also stratified. Indeed, ΣR
of Example 1 is weakly acyclic and, in turn, stratified.

Our main result establishes that, when the embedded dependencies over the
database schema are stratified, the view is invertible precisely if each database
symbol has an exact rewriting as a conjunctive query over the view schema.

1 Universal quantifiers are omitted.

4

Algorithm 1

INPUT: an atomic query over R, a view schema V, a set of embedded dependencies
Σ over R∪ V.

OUTPUT: an exact CQ rewriting of q in terms of V under Σ, if any, or ⊥ otherwise.

1: function Rewrite(q,V, Σ)
2: for each subquery q′ of chase(q,Σ) over V do
3: repeat
4: if ∃ containment mapping from q to q′ return q′

5: set q′ to chase-step(q′, Σ)
6: until no further chase step applies
7: end for
8: return ⊥
9: end function

Theorem 2. Let Σ = ΣR ∪ΣRV , where ΣR consists of stratified embedded de-
pendencies and each V ∈ V is defined in ΣRV by a CQ. Then, V �Σ R if and
only if each R ∈ R has an exact CQ rewriting in terms of V under Σ.

The Chase and Backchase (C&B) [4] is an algorithm that enumerates the ex-
act CQ-rewritings of a CQ under constraints. More precisely, given two schemas
S and T , a set of embedded dependencies Γ over S ∪T , and an input CQ q over
S, the C&B outputs all the CQs over T which are equivalent to q under Γ . The
C&B is sound and complete, in the sense that it returns all and only the CQs
into which the input CQ can be rewritten (up to homomorphic equivalence) un-
der the given constraints, whenever the chase is guaranteed to terminate, which
is the case, e.g., for stratified sets of dependencies. Obviously, the fact that the
output of the C&B is empty for q does not mean that q has no rewriting in terms
of T under Γ , but simply that its rewriting, if any, is not a CQ.

We can use the C&B to look for the rewritings we are interested in. For each
R ∈ R, consider the atomic query q(x) = R(x) and proceed as follows:

Chase. Chase q with Σ until no further chase step applies. The resulting query
is the so-called universal plan U .

Backchase. Every subquery of U over V (i.e., a set of V-atoms from U mention-
ing all of q’s free variables) is a candidate rewriting of q. Chase each candidate
q′ with Σ step-by-step until no further chase step applies, and at each new step
in the chase sequence check whether a containment mapping from the original
query q can be found. If that is the case, then q′ is a rewriting of q.

The above is described in more detail in Algorithm 1 and illustrated in our
running example.

Example 2. Chasing the query q(x, y, z) = R1(x, y, z) with Σ of Example 1 gives
the following universal plan:

U(x, y, z) = ∃v, w R1(x, y, z) ∧R2(z, v, w) ∧ V1(x, y) ∧ V2(y, z, v) ∧ V3(z, w) .

5

A candidate rewriting of R(x, y, z) in terms of V is the subquery q′(x, y, z) =
∃v V1(x, y) ∧ V2(y, z, v), that chased with the left-to-right TGDs from (2a) and
(2b) yields the following:

q′′(x, y, z) = ∃v, z′, x′, w
V1(x, y) ∧ V2 (y , z, v) ∧R1(x, y, z′) ∧R1(x′, y, z) ∧R2(z, v, w) .

A further chase step with (1c) gives z′ = z, and therefore we can find a contain-
ment mapping (the identity) from the original query q to q′′. Thus, the rewriting
of R1(x, y, z) is ∃v V1(x, y) ∧ V2(y, z, v). Similarly, we also have that R2(z, v, w)
can be rewritten in terms of V as ∃y V2(y, z, v) ∧ V3(z, w).

As it turns out, the constraints Σ considered in Theorem 2 are stratified, and
this ensures that if an exact CQ-rewriting of R(x) cannot be found by means of
Algorithm 1, then R cannot be expressed at all in terms of the view symbols.

Theorem 3. Let Σ be as in Theorem 2. Then, the procedure Rewrite of Algo-
rithm 1 is sound and complete for finding the exact rewriting of each database
symbol in terms of the view symbols under Σ. Moreover, V �Σ R if and only if
Rewrite(q,Σ,V) 6= ⊥ for every atomic query q over R.

The results presented above extend the setting of [7], consisting of only one
database symbol, view symbols defined by acyclic projections and database con-
straints given by full dependencies, which is a special case where the rewriting
is known to be the join, rather than a generic CQ.

5 Outlook

We conclude by pointing out and briefly discussing possible research directions
that would be interesting to pursue and investigate further.

– Consider views defined by queries expressed in languages beyond CQs. A first
natural candidate is the class of unions of conjunctive queries.

– Consider different constraints on the database schema. Several sufficient condi-
tions for chase termination have been proposed, e.g., super-weak acyclicity [8],
safety and inductive restriction [9], some of which extend stratification, while
some other are incomparable with it. The question is whether the global con-
straints satisfy such conditions, as is the case for stratification when views are
defined by CQs and database constraints are stratified embedded dependen-
cies.

– Consider constraints also on the view schema. We can allow a set of view con-
straints ΣV for which ΣR ∪Σ′V is a set of stratified embedded dependencies,
where Σ′V is the set of constraints over R obtained from ΣV by replacing every
occurrence of each view symbol with its CQ-definition (given in ΣRV) in terms
of the database symbols. What is interesting to understand is the shape that
such view constraints must have in order to satisfy the above condition.

6

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557–575 (Dec 1981)

2. Cosmadakis, S.S., Papadimitriou, C.H.: Updates of relational views. Journal of the
Association for Computing Machinery 31(4), 742–760 (Oct 1984)

3. Deutsch, A., Nash, A., Remmel, J.: The Chase revisited. In: Proc. of PODS 2008.
pp. 149–158. ACM (2008)

4. Deutsch, A., Popa, L., Tannen, V.: Query reformulation with constraints. SIGMOD
Record 35(1), 65–73 (Mar 2006)

5. Deutsch, A., Tannen, V.: Reformulation of XML queries and constraints. In: Proc.
of ICDT 2003. LNCS, vol. 2572, pp. 225–241. Springer (2002)

6. Fagin, R., Kolaitis, P., Miller, R., Popa, L.: Data exchange: Semantics and query
answering. In: Proc. of ICDT 2003. LNCS, vol. 2572, pp. 207–224. Springer (2002)

7. Franconi, E., Guagliardo, P.: On the translatability of view updates. In: Proc. of
AMW. CEUR Workshop Proceedings, vol. 866, pp. 154–167. CEUR-WS.org (2012)

8. Marnette, B.: Generalized schema-mappings: from termination to tractability. In:
Proc. of PODS 2009. pp. 13–22. ACM, New York, NY, USA (2009)

9. Meier, M., Schmidt, M., Lausen, G.: On chase termination beyond stratification.
Proceedings of the VLDB Endowment 2(1), 970–981 (Aug 2009)

7

