GDE: General Data Exchange with Schema and Data Level Mappings

Rana Awada and Iluju Kiringa

University of Ottawa, SITE rawad049@uottawa.ca kiringa@site.uottawa.ca

1 Introduction

Data exchange (DE) [5,3] and data coordination [1,2,6] are two important settings that were introduced previously in the literature to resolve the problem of integrating information that resides in different sources. A DE setting moves data residing in independent applications, which refer to the same object using the same name, and accesses it through a new target schema. However, a data coordination setting allows the access of data residing in independent sources and that possibly belong to different sets of vocabularies, without necessarily exchanging it and while maintaining autonomy.

Although a data coordination setting provides users with an amalgamated view of related information, this solution is not enough for applications that require a view of related information using a unified set of vocabularies for periodic reporting and decision making. We introduce a *general data exchange* (GDE) setting that extends DE settings to allow collaboration at the instance level, using a mapping table M, that specifies for each constant value in the source, the set of related (or corresponding) constant values in the target.¹

We show in this paper that a GDE setting can be formalized using the knowledge exchange framework introduced in [4]. It allows us to store a target knowledge base (KB) which consists of a subset of the explicit data exchanged that is necessary to infer the full set of exchanged information using a set Σ_t of FO sentences. We identify in our work the class of "best" KBs to materialize and we define the set of certain answers.

2 Preliminaries

A (DE) setting [5,3] is a tuple $\mathfrak{S} = (\mathbf{S}, \mathbf{T}, \Sigma_{st})$, where **S** is a source schema, **T** is a target schema, **S** and **T** do not have predicate symbols in common, and Σ_{st} consists of a set of source-to-target tuple-generating dependencies (st-tgds) that establish the relationship between source and target schemas. A st-tgd is a FO-sentence of the form: $\forall \bar{x} \forall \bar{y} (\phi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z}))$, where $\phi(\bar{x}, \bar{y})$ and $\psi(\bar{x}, \bar{z})$ are conjunctions of relational atoms over **S** and **T** respectively. Let **Const** and **Var** be infinite and disjoint sets of constants and nulls, respectively. We consider in our

¹ We consider in this work a particular interpretation of related data in a mapping table; that is, a source element is always uniquely identified by at least one target element.

work "complete" source instances I of \mathbf{S} , where it holds that $dom(I) \subseteq \mathsf{Const}$ and do not contain missing data in the form of nulls. However, a target instance J of \mathbf{T} , is allowed to contain null values, and it holds that $dom(J) \subseteq \mathsf{Const} \cup \mathsf{Var}$;

A knowledge base [4] over a schema \mathbf{R} is a pair (K, Σ) , where K is an instance of \mathbf{R} (the explicit data) and Σ is a set of logical sentences over \mathbf{R} (the implicit data). The set of *models* of (K, Σ) , denoted by $\mathsf{Mod}(K, \Sigma)$, is defined as the set of instances of \mathbf{R} that contain the explicit data in K and the implicit data in Σ ; that is, $\mathsf{Mod}(K, \Sigma)$ corresponds to the set $\{K' \mid K' \text{ is an instance of } \mathbf{R}, K \subseteq K'$ and $K' \models \Sigma$ }. From now on, $K_{\mathbf{R}'}$ denotes the restriction of instance K to a subset \mathbf{R}' of its schema \mathbf{R} .

Mapping tables [6] are mechanisms that establish how values from different domains correspond. In its simplest form, given two domains D_1 and D_2 , not necessarily disjoint, a mapping table over (D_1, D_2) is a subset of $D_1 \times D_2$. Let **Const^S** and **Const^T** be the sets of source and target constants respectively. We consider in our work mapping tables with the following property: for each value $a \in \text{Const}^{\mathbf{S}} \cap dom(M)$, there exists at least a single target value $a' \in \text{Const}^{\mathbf{T}} \cap$ dom(M) such that M(a, a') holds, and there does not exist a source value $b \in$ $\text{Const}^{\mathbf{S}} \cap dom(M)$, where b is different than a and M(b, a') holds. We say a'uniquely identifies a in M. We define C as the set of values in $dom(M) \cap \text{Const}^{\mathbf{T}}$ that uniquely identify source values mapped in M.

3 GDE a Knowledge Exchange System

A GDE setting $\mathfrak{S} = (\mathbf{S}, \mathbf{T}, \mathcal{M}, \Sigma_{st})$ extends a DE setting with (1) a binary relation symbol \mathcal{M} that appears neither in \mathbf{S} nor in \mathbf{T} , and that is called a *source-to-target mapping*; and (2) Σ_{st} that consists of a set of *mapping* st-tgds, which are FO sentences of the form: $\forall \bar{x} \forall \bar{y} \forall \bar{z} \ (\phi(\bar{x}, \bar{y}) \land \mu(\bar{x}, \bar{z}) \rightarrow \exists \bar{w} \ \psi(\bar{z}, \bar{w}))$, where (a) $\phi(\bar{x}, \bar{y})$ and $\psi(\bar{z}, \bar{w})$ are conjunctions of relation symbols over \mathbf{S} and \mathbf{T} respectively, and (b) $\mu(\bar{x}, \bar{z})$ is a conjunction of relation symbols that only use the st-mapping relation symbol \mathcal{M} . We denote st-mapping tables by \mathcal{M} .

In a GDE setting, source KBs are of the form $((I \cup \{M\}), \Sigma_s = \emptyset)$, which correspond to data in the source instance I and the st-mapping table M. On the other hand, the target KBs are of the form $((J \cup \{M\}), \Sigma_t)$ where Σ_t is a set of FO sentences, of type *full* tgds (which are tgds that do not use existential quantication). We formalize the notion of a (universal) GDE KB-solution, extending the notion of knowledge exchange (universal) solution in [4] to allow coordinating the source and target information provided by M, as follows:

- 1. J is a GDE KB-solution for I and M under \mathfrak{S} , if for every $K \in \mathsf{Mod}((J \cup \{M\}), \Sigma_t)$ there is $K' \in \mathsf{Mod}((I \cup \{M\}), \Sigma_s = \emptyset))$ such that the following hold: (a) $K'_M \subseteq K_M$, and (b) $((K'_{\mathbf{S}} \cup K'_M), K_{\mathbf{T}}) \models \Sigma_{st}$.
- 2. Also, J is a *universal GDE KB-solution* (UGDE) for I and M under \mathfrak{S} , if J is a GDE KB-solution, and for every $K' \in \mathsf{Mod}((I \cup \{M\}), \Sigma_s = \emptyset)$ there is $K \in \mathsf{Mod}((J \cup \{M\}, \Sigma_t)$ such that (a) $K_M \subseteq K'_M$, and (b) $((K'_{\mathbf{S}} \cup K'_M), K_{\mathbf{T}}) \models \Sigma_{st}$.

Intuitively, in a GDE setting \mathfrak{S} , C is the sole set of target values that can capture correctly the set of source values exchanged to a target instance. There-

fore, intuitively a GDE KB-solution J in \mathfrak{S} has a domain $dom(J) \subseteq C \cup \mathsf{Var}$. We define Σ_t as the following set of full tgds over a schema $\mathbf{T} \cup \{\mathcal{M}, \mathsf{RELATED}\}$, where RELATED is a fresh binary table:

- 1. For each $T \in \mathbf{T} \cup \{\mathcal{M}\}$ of arity n and $1 \leq i \leq n$:
- $\forall x_1 \cdots \forall x_n (T(x_1, \dots, x_i, \dots, x_n) \to \text{Related}(x_i, x_i)).$ 2. $\forall x \forall y \forall z (\mathcal{M}(z, x) \land \mathcal{M}(z, y) \land C(x) \to \text{Related}(x, y)).$
- 2. $\forall x \forall y \forall z (\mathcal{M}(z, x) \land \mathcal{M}(z, y) \land C(x) \rightarrow \text{RELATED}(x, y)).$ 3. For each $T \in \mathbf{T}$ of arity n:
 - $\forall x_1, y_1 \cdots \forall x_n, y_n (T(x_1, \dots, x_n) \land \bigwedge_{i=1}^n \operatorname{ReLATED}(x_i, y_i) \to T(y_1, \dots, y_n)).$

In a GDE setting, we define "best" solutions formally following [4] as: Let \mathfrak{S} be a GDE setting, I be a source instance, M an st-mapping table, and J a UGDE solution for I and M under \mathfrak{S} . Then J is a *minimal* UGDE solution, if (1) there is no proper subset J' of J such that J' is a UGDE solution for I and M under \mathfrak{S} , and (2) there is no UGDE solution J' such that $dom(J') \cap \mathsf{Const}^T$ is properly contained in $dom(J) \cap \mathsf{Const}^T$. Also, given a fixed GDE setting, generating UGDE solutions and minimal UGDE solutions is in LOGSPACE.

4 Query Answering

We adapt the notion of a certain answer in the usual DE setting to the GDE setting. Formally, let \mathfrak{S} be a GDE setting, I a source instance, M an st-mapping table, and Q a conjunctive query over \mathbf{T} . The set of certain answers of Q over I and M and under \mathfrak{S} , denoted $\mathsf{certain}_{\mathfrak{S}}((I \cup \{M\}), Q)$, corresponds to the set of tuples of constants that belong to the evaluation of Q over $K_{\mathbf{T}}$, for each GDE KB-solution J for I and \mathcal{M} and $K \in \mathsf{Mod}((J \cup \{\mathcal{M}\}), \Sigma_t)$. Finally, generating $\mathsf{certain}_{\mathfrak{S}}((I \cup \{M\}), Q)$ is in LOGSPACE.

5 Future Work

An interesting extension for this work would be defining a GDE setting with a target that contains egds and tgds constraints. Also, investigating GDE in a peer-to-peer setting might add interesting challenges to the problem.

References

- Lawrence, M., Pottinger, R., Staub-French, S.: Data Coordination: Supporting Contingent Updates. In: VLDB (2011)
- Philip A. Bernstein , Fausto Giunchiglia , Anastasios Kementsietsidis , John Mylopoulos , Luciano Serafini , Ilya Zaihrayeu : Data Management for Peer-to-Peer Computing: A Vision. pp. 89–94 (2002)
- Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Relational and XML Data Exchange. Morgan & Claypool Publishers, (2010).
- Arenas, M., Perez, J., Reutter, J.: Data exchange beyond complete data. In : PODS, pp. 83–94 (2011)
- Fagin,R., Kolaitis, P. G., Miller,R. J., Popa, L.: Data exchange: semantics and query answering. In: Theoretical Computer Science, pp. 89–124 (2005) 31(4), pp. 761–791 (1984).
- Kementsietsidis, A., Arenas, M., Miller, R. J. : Mapping data in peer-to-peer systems: Semantics and algorithmic issues. In: SIGMOD, pp. 325–336 (2003).