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Abstract

We propose eigen-based and Markov-based meth-
ods to explore the global and local structure of
patterns in real-world GPS taxi trajectories. Our
primary goal is to predict the subsequent path of
an in-progress taxi trajectory. The exploration of
global and local structure in the data differenti-
ates this work from the state-of-the-art literature
in trajectory prediction methods, which mostly fo-
cuses on local structures and feature selection. We
propose four algorithms: a frequency based algo-
rithm FreqCount, which we use as a benchmark,
two eigen-based (EigenStrat, LapStrat), and a
Markov-based algorithm (MCStrat). Pairwise per-
formance analysis on a large real-world data set re-
veals that LapStrat is the best performer, followed
by MCStrat.

1 Introduction

In order to discover characteristic patterns in large spatio-
temporal data sets, mining algorithms have to take into ac-
count spatial relations, such as topology and direction, as well
as temporal relations. The increased use of devices that are
capable of storing driving-related spatio-temporal informa-
tion helps researchers and practitioners gather the necessary
data to understand driving patterns in cities, and to design
location-based services for drivers. To the urban planner, the
work can help to aggregate driver habits and can uncover al-
ternative routes that could help alleviate traffic. Additionally,
it also helps prioritize the maintenance of roads.

Our work combines data mining techniques that discover
global structure in the data, and local probabilistic methods
that predict short-term routes for drivers, based on past driv-
ing trajectories through the road network of a city.

The literature on prediction has offered Markov-based
and other probabilistic methods that predict paths accurately.
However, most methods rely on local structure of data, and
use many extra features to improve prediction accuracy. In
this paper we use only the basic spatio-temporal data stream.
We advance the state-of-the-art by proposing the LapStrat
algorithm. This algorithm reduces dimensionality and clus-
ters data using spectral clustering to then predict a subse-
quent path using a Bayesian network. Our algorithm supports

global analysis of the data, via clustering, as well as local in-
ference using the Bayesian framework. In addition, since our
algorithm only uses location and time data, it can be easily
generalized to other domains with spatio-temporal informa-
tion. Our contributions are summarized as follows:

1. We offer a systematic way of extracting common behav-
ioral characteristics from a large set of observations us-
ing an algorithm inspired by principal component anal-
ysis (EigenStrat) and our LapStrat algorithm.

2. We compare the effectiveness of methods that explore
global structure only (FreqCount and EigenStrat), lo-
cal structure only (MCStrat), and mixed global and lo-
cal structure (LapStrat). We show experimentally that
LapStrat offers competitive prediction power compared
to the more local structure-reliant MCStrat algorithm.

2 Related Work

Eigendecomposition has been used extensively to analyze and
summarize the characteristic structure of data sets. The struc-
ture of network flows is analyzed in [Lakhina et al., 2004],
principal component analysis (PCA) is used to summarize the
characteristics of the flows that pass through an internet ser-
vice provider. [Zhang et al., 2009] identify two weaknesses
that make PCA less effective on real-world data. i.e. sensi-
tivity to outliers in the data, and concerns about its interpreta-
tion, and present an alternative, Laplacian eigenanalysis. The
difference between these methods is due to the set of relation-
ships each method considers: the Laplacian matrix only con-
siders similarity between close neighbors, while PCA consid-
ers relationships between all pairs of points. These studies
focus on the clustering power of the eigen-based methods to
find structures in the data. Our work goes beyond summariz-
ing the structure of the taxi routes, and uses the eigenanalysis
clusters to predict the subsequent path of an in-progress taxi
trajectory.

Research in travel prediction based on driver behavior has
enjoyed some recent popularity. [Krumm, 2010] predicts the
next turn a driver will take by choosing with higher likeli-
hood a turn that links more destinations or is more time effi-
cient. [Ziebart et al., 2008] offer algorithms for turn predic-
tion, route prediction, and destination prediction. The study
uses a Markov model representation and inverse reinforce-
ment learning coupled with maximum entropy to provide ac-



curate predictions for each of their prediction tasks. [Veloso
et al., 2011] proposes a Naive Bayes model to predict that a
taxi will visit an area, using time of the day, day of the week,
weather, and land use as features. In [Fiosina and Fiosins,
2012], travel time prediction in a decentralized setting is in-
vestigated. The work uses kernel density estimation to predict
the travel time of a vehicle based on features including length
of the route, average speed in the system, congestion level,
number of traffic lights, and number of left turns in the route.

All these studies use features beyond location to improve
prediction accuracy, but they do not offer a comprehensive
analysis of the structure of traffic data alone. Our work ad-
dresses this shortcoming by providing both an analysis of
commuting patterns, using eigenanalysis, and route predic-
tion based on partial trajectories.

3 Data Preparation

The GPS trajectories we use for our experiments are taken
from the publicly available Beijing Taxi data set which in-
cludes 1 to 5-minute resolution location data for over ten-
thousand taxis for one week in 2009 [Yuan et al., 2010]. Bei-
jing, China is reported to have seventy-thousand registered
taxis, so this data set represents a large cross-section of all
taxi traffic for the one-week period [Zhu et al., 2012].

Because the data set contains only location and time in-
formation of each taxi, preprocessing the data into segments
based on individual taxi fares is useful. The data has sufficient
detail to facilitate inference on when a taxi ride is completed:
for example, a taxi waiting for a fare will be stopped at a taxi
stand for many minutes [Zhu er al., 2012]. Using these infer-
ences, the data is separated into taxi rides.

To facilitate analysis, the taxi trajectories are discretized
into transitions on a region grid with cells of size 1.5 km x
1.5 km square. V =< wvy,v2,...,v, > is a collection of
trajectories. We divide it into Vg, Vrg, Vya which are the
training, test, and validation sets, respectively. A trajectory
v; is a sequence of IV time-ordered GPS coordinates: v; =<
cy*y...cjt, ..., c}f >. Each coordinate contains a GPS lat-

itude and longitude value, c7* = (z;,y;). Given a complete
trajectory (v;), a partial trajectory (50% of a full trajectory)

partial v Vi V;
can be generated as v =< 010 Oy > The

K2
last location of a partial trajectory v?%! =< ey 12 > is used
to begin the prediction task.

The relevant portion of the city’s area containing the ma-
jority of the city’s taxi trips, called a city grid, is enclosed
in a matrix of dimension 17 x 20. Each s; corresponds to
the center of a grid square in the euclidean xy-space. The
city graph is encoded as a rectilinear grid with directed edges
(es;s,) between adjacent grid squares. I(c;, s;) is an indicator
function that returns 1 if GPS coordinate ¢; is closer to grid
center s; than to any other grid center and otherwise returns
0. Equation 1 shows an indicator function to determine if two

GPS coordinates indicate traversal in the graph.

. 1, ifI(cy, s) *1(c}i, 8m) =1
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From trajectory v;, a policy vector 7r; is created having one

Figure 1: City grid transitions are all rectilinear.

value for each edge in the city grid. Each d;, ,, is a directed
edge coefficient indicating that a transition occurred between
s; and s,, in the trajectory. The policy vectors for this data
set graph have length (|7r|) of 1286, based on the number of
edges in the graph. A small sample city grid is in Figure 1. A
collection of policies Il =< 7y, ma, ..., ™, > is computed
from a collection of trajectories V:

T =G 0 e > )
N g s

v _ L, if Zj:l (I)(C;'} 7C;'}+1768z7sm) >1 3)

S 8m 0 Otherwise

A graphical example showing a trajectory converted into a
policy is shown in Figure 2. All visited locations for trajec-
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Figure 2: A trajectory converted to a policy in the city grid.
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A baseline approach for prediction, FreqCount, uses ob-
served probabilities of each outgoing transition from each
node in the graph. Figure 3 shows the relative frequencies
of transitions between grid squares in the training set. This
city grid discretization is similar to methods used by others in
this domain [Krumm and Horvitz, 2006; Veloso et al., 2011].

4 Methods

This work proposes four methods that explore either the local
or the global structure or a mix of both to predict short-term
trajectories for drivers, based on past trajectories.
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Figure 4: A sample partial policy 7
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Figure 3: Visualization of frequency counts for edge transitions in
the training set. Longer arrows indicate more occurrences.

Benchmark: Frequency Count Method. A benchmark pre-
diction measure, FreqCount, uses frequency counts for tran-
sitions in the training set to predict future actions. The relative
frequency of each rectilinear transition from each location in
the grid is computed and is normalized based on the number
of trajectories involving the grid cell. The resulting policy
matrix is a Markov chain that determines the next predicted
action based on the current location of the vehicle.

The FreqCount method computes a policy vector based
on all trajectories in the training set V. 7w7C0Ut contains
first order Markov transition probabilities computed from all
trajectories as in Equation 6.

v
Z’UGVTR 55i75j

> b 02
veVrr k=1 "s;,s

The probability of a transition (s; — s;) is computed as
the count of the transition s; — s; in Vg divided by the
count of all transitions exiting s; in Vrg.

Policy iteration (Algorithm 1) is applied to the last loca-
tion of a Cpartial trajectory using the frequency count policy
set TTFreacount — - Freqount o determine a basic predic-
tion of future actions. This method only considers frequency
of occurrence for each transition in the training set, so it is ex-
pected to perform poorly in areas where trajectories intersect.

T FreqCount o

(6)
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Figure 5: 6, location probabilities from Fre-
qCount method with horizon of 3
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Figure 6: Actual complete trajectory corre-
sponding to Fig. 4, trajectory 7

Algorithm 1: Policy lteration

Input: Location vector with last location of taxi glast g
policy list I, prediction horizon niter
Output: A location vector containing visit probabilities
for future locations @
1 @accum 0last
2 for m € Il do

3 t+1

4 00 «— Olast

5 while ¢ < niter do

6 et:<w;’wzz""’w;""’sz>
7 , where w! = maXSjeS(Wé;l * 07 o)
8 t—t+1

9 for S; € S do
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EigenStrat: Eigen Analysis of Covariance. This method
exploits linear relationships between transitions in the grid
which 1) can be matched to partial trajectories for purposes
of prediction and 2) can be used to study behaviors in the
system. The first part of the algorithm focuses on model gen-
eration. For each pair of edges, the covariance is computed
using the training set observations. The n largest eigenvectors
are computed from the covariance matrix. These form a col-
lection of characteristic eigen-strategies from training data.

When predicting for an in-progress trajectory, the algo-
rithm takes the policy generated from a partial taxi trajectory
mVrredict '3 maximum angle to use as the relevancy threshold
«, and the eigen-strategies as II. Eigen-strategies having an
angular distance less than « to 7wVrredict are added to IL,.;.
This collection is then used for policy iteration. Optimal val-
ues for o and dims are learned experimentally.

Eigenpolicies also facilitate exploration of strategic deci-
sions. Figure 7 shows an eigenpolicy plot with a distinct pat-
tern in the training data. Taxis were strongly confined to tra-
jectories either the inside circle or the perimeter of the circle,



Algorithm 2: EigenStrat

Algorithm 3: LapStrat

Input: 1Itr, number of principal components (dims),

minimum angle between policies (), prediction
. . . . .partial
horizon (horizon), partial policy (TI'v’“p ' )

Output: Inferred location vector 6

Generate covariance matrix C|n, | |x,| (Where 7; € IItr)
between transitions on the grid

2 Get the dims eigenvectors of C with largest eigenvalues

and the

—

.partial

3 Compute cosine similarity between 7w*?
principal components (7, j = 1...dims):
I, = {mjl|cos(m;, 7| > a}

4 If the cos(m;, w¥""™""") < 0, then flip the sign of the
coefficients for this eigenpolicy. Use Algorithm 1 with
II,¢; onv? artial g1 horizon iterations to compute 0

but rarely between these regions. The two series (positive and
negative) indicate the sign and magnitude of the grid coeffi-
cients for this eigenvector. We believe analysis of this type
has great promise for large spatio-temporal data sets.
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Figure 7: An eigenpolicy showing a strategic pattern.

LapStrat: Spectral Clustering-Inspired Algorithm. Lap-
Strat (Algorithm 3) combines spectral clustering and
Bayesian-based policy iteration to cluster policies and infer
driver next turns. Spectral clustering operates upon a simi-
larity graph and its respective Laplacian operator. This work
follows the approach of [Shi and Malik, 2000] using an un-
normalized graph Laplacian. We use Jaccard index to com-
pute the similarity graph between policies. We chose the Jac-
card index, because it finds similarities between policies that
are almost parallel. This is important in cases such as two
highways that only have one meeting point; in this case, if
the highways are alternative routes to the same intersection,
they should be similar with respect to the intersection point.
The input to the Jaccard index are two vectors representing
policies generated in Section 3. J(7r;, ;) is the Jaccard sim-
ilarity for pair mr; and ;. The unnormalized Laplacian is
computed by subtracting the degree matrix from the similar-
ity matrix in the same fashion as [Shi and Malik, 2000]. We
choose the dims eigenvectors with smallest eigenvalues, and

Input: IItg, dimension (dims), number of clusters (k),
similarity threshold (¢), prediction (horizon),

partial policy (w”ipamal)
Output: Inferred location vector 8
1 Generate similarity matrix W, |x |1 | Where

{J(Tl'i,ﬂ'j), if J(?Ti,ﬂ'j) > €
Wij = ’

0 Otherwise
2 Generate Laplacian (L): L = D — W and Vd;; € D
g I s, it =
“ 0 Otherwise

3 Get the dims eigenvectors with smallest eigenvalues
4 Use k-means to find the mean centroids (7,7 =1... k)
of k policy clusters

partial

5 Find all centroids similar to 7w¥¢
.partial
1L, = {7rj|J(7rj,7'r”1p ) > €}

6 Use Algorithm 1 with II,; on v? artial gor horizon

iterations to compute 6

perform k-means to find clusters in the reduced dimension.
The optimal value for dims is learned experimentally.

MCStrat: Markov Chain-Based Algorithm. The Markov

chain approach uses local, recent information from vzfgzg,
the partial trajectory to predict from. Given the last k& edges
traversed by the vehicle, the algorithm finds all complete tra-
jectories in the training set containing the same & edges to
build a set of relevant policies V,..; using the match function.
match(k, a, b) returns 1 only if at least the last & transitions
in the policy generated by trajectory a are also found in b.
Using Equation 9, V;.; is used to build a composite single
relevant policy 7,;, that obeys the Markov assumption, so
the resulting policy preserves the probability mass.

Vyer = {wi|match(k, w%react, %) = 1,v; € Vig} (1)
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Using the composite 7., policy iteration is then performed
on the last location vector computed from vp,edict-

Method Complexity Comparison. A comparison of the
storage complexity of the methods appears in Table 1.

Model Model Construction Model Storage
FreqCount O(|x)) O(|x))
EigenStrat O((Im|)?) O(dims x |7])

LapStrat O(([trr|)?) O(k x |m])
MCStrat O(1) O(|Urg| x |=]|)

Table 1: Space complexity of methods.



5 Results

Given an in-progress taxi trajectory, the methods presented
facilitate predictions about the future movement of the ve-
hicle. To simulate this task, a collection of partial trajecto-
ries (e.g. Figure 4) is generated from complete trajectories
in the test set. A set of relevant policy vectors is generated
using one of the four methods described, and policy itera-
tion is performed to generate the future location predictions.
The inferred future location matrix (e.g. Figure 5) is com-
pared against the actual complete taxi trajectory (e.g. Fig-
ure 6). Prediction results are scored by comparing the in-

ferred visited location vector @ against the full location vec-
tor 8Vi. The scores are computed using Pearson’s correlation:

score = Cor(6,0"). The scores reported are the aggregate
mean of scores from examples in the validation set.

The data set contains 100,000 subtrajectories (of approxi-
mately 1 hour in length) from 10,000 taxis. The data set is
split randomly into 3 disjoint collections to facilitate experi-
mentation: 90% in the training set, and 5% in both the test and
validation sets. For each model type, the training set is used
to generate the model. Model parameters are optimized using
the test set. Scores are computed using predictions made on
partial trajectories from the validation set.

Results of each method for 4 prediction horizons are shown
in Table 2. The methods leveraging more local information
near the last location of the vehicle (LapStrat, MCStrat) per-
form better than the methods relying only on global patterns
(FreqCount, EigenStrat). This is true for all prediction hori-
zons, but the more local methods have an even greater perfor-
mance advantage for larger prediction horizons.

Prediction Horizon

Method 1 2 4 6

FreqCount|.579 (.141) .593 (.127) .583 (.123) 573 (.122)

EigenStrat|.563 (.143) .576 (.134) .574 (.140) .574 (.140)

CapSirat |.590 (.144) .618 (.139) .626 (.137) .626 (.137)

MCStrat |-600 (.146) 616 (.149) .621 (.149) .621 (.149)

Table 2: Correlation (std. dev.) by method and prediction horizon.
The best score is in bold.

Statistical significance testing was performed on the vali-
dation set results, as shown in Table 3. The best performing
methods (LapStrat and MCStrat) achieve a statistically sig-
nificant performance improvement over the other methods.
However, the relative performance difference between the lo-
cal methods is not significantly different.

6 Conclusions

The methods presented can be applied to many other spatio-
temporal domains where only basic location and time infor-
mation is collected from portable devices, such as sensor net-
works as well as mobile phone networks. These predictions
assume the action space is large but fixed and observations
implicitly are clustered into distinct but repeated goals. In
this domain, each observation is a set of actions a driver takes
in fulfillment of a specific goal: for example, to take a passen-
ger from the airport to his/her home. In future work, we pro-

Method |FreqCount|EigenStrat|LapStrat|MCStrat

FreqCount n/a n/a n/a
EigenStrat| 0.431

LapStrat | *0.000211 | *0.000218

MCStrat | *0.00149 | *0.000243

Table 3: p-values of Wilcoxon signed-rank test pairs. Starred (*) val-
ues indicate the row method achieves statistically significant (0.1%
significance level) improvement over the column method for a pre-
diction horizon of 6. If n/a, the row method’s mean is not better than
the column method.

pose to extend this work using a hierarchical approach which
simultaneously incorporates global and local predictions to
provide more robust results.
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