
Learning Model Rules from High-Speed Data Streams

Ezilda Almeida and Carlos Ferreira and João Gama
LIAAD - INESC Porto L.A., Portugal

Abstract

Decision rules are one of the most expressive lan-
guages for machine learning. In this paper we
present Adaptive Model Rules (AMRules), the first
streaming rule learning algorithm for regression
problems. In AMRules the antecedent of a rule is
a conjunction of conditions on the attribute values,
and the consequent is a linear combination of at-
tribute values. Each rule in AMRules uses a Page-
Hinkley test to detect changes in the process gener-
ating data and react to changes by pruning the rule
set. In the experimental section we report the re-
sults of AMRules on benchmark regression prob-
lems, and compare the performance of our algo-
rithm with other streaming regression algorithms.

Keywords: Data Streams, Regression, Rule Learning,
Change Detection

1 Introduction
Regression analysis is a technique for estimating a functional
relationship between a dependent variable and a set of in-
dependent variables. It has been widely studied in statistics,
machine learning and data mining. Predicting numeric val-
ues usually involves complicated regression formulae. Model
trees [14] and regression rules [15] are the most powerful data
mining models. Trees and rules do automatic feature selec-
tion, being robust to outliers and irrelevant features; exhibit
high degree of interpretability; and structural invariance to
monotonic transformation of the independent variables. One
important aspect of rules is modularity: each rule can be in-
terpreted per si [6].

In the data stream computational model [7] examples
are generated sequentially from time evolving distributions.
Learning from data streams require incremental learning, us-
ing limited computational resources, and the ability to adapt
to changes in the process generating data. In this paper we
present Adaptive Model Rules, the first one-pass algorithm
for learning regression rule sets from time-evolving streams.
AMRules can learn ordered and unordered rules. The an-
tecedent of a rule is a set of literals (conditions based on the
attribute values). The consequent of a rule is a function that

minimizes the mean square error of the target attribute com-
puted from the set of examples covered by rule. This func-
tion might be either a constant, the mean of the target at-
tribute, or a linear combination of the attributes. Each rule
is equipped with an online change detector. It monitors the
mean square error using the Page-Hinkley test, providing in-
formation about the dynamics of the process generating data.

The paper is organized has follows. The next Section
presents the related work in learning regression trees and
rules from data focusing on streaming algorithms. Sec-
tion 3 describe in detail the AMRules algorithm. Section 4
presents the experimental evaluation using stationary and
time-evolving streams. AMRules is compared against other
regression systems. Last Section presents the lessons learned.

2 Related Work
In this section we analyze the related work in two dimensions.
One dimension is related to regression algorithms, the other
dimension is related to incremental learning of regression al-
gorithms.

In regression domains, [14] presented the system M5. It
builds multivariate trees using linear models at the leaves. In
the pruning phase for each leaf a linear model is built. Later,
[5] have presented M5′ a rational reconstruction of Quinlan’s
M5 algorithm. M5′ first constructs a regression tree by re-
cursively splitting the instance space using tests on single at-
tributes that maximally reduce variance in the target variable.
After the tree has been grown, a linear multiple regression
model is built for every inner node, using the data associated
with that node and all the attributes that participate in tests
in the subtree rooted at that node. Then the linear regression
models are simplified by dropping attributes if this results in
a lower expected error on future data (more specifically, if the
decrease in the number of parameters outweighs the increase
in the observed training error). After this has been done, ev-
ery subtree is considered for pruning. Pruning occurs if the
estimated error for the linear model at the root of a subtree
is smaller or equal to the expected error for the subtree. Af-
ter pruning terminates, M5′ applies a smoothing process that
combines the model at a leaf with the models on the path to
the root to form the final model that is placed at the leaf.

Cubist [15] is a rule based model that is an extension of
Quinlan’s M5 model tree. A tree is grown where the termi-
nal leaves contain linear regression models. These models are



based on the predictors used in previous splits. Also, there are
intermediate linear models at each step of the tree. A predic-
tion is made using the linear regression model at the terminal
node of the tree, but is smoothed by taking into account the
prediction from the linear model in the previous node of the
tree (which also occurs recursively up the tree). The tree is
reduced to a set of rules, which initially are paths from the
top of the tree to the bottom. Rules are eliminated via pruning
and/or combined for simplification.

2.1 Streaming Regression Algorithms

Many methods can be found in the literature for solving clas-
sification tasks on streams, but only a few exist for regres-
sion tasks. To the best of our knowledge, we note only two
papers for online learning of regression and model trees. In
the algorithm of [13] for incremental learning of linear model
trees the splitting decision is formulated as hypothesis test-
ing. The split least likely to occur under the null hypothesis
of non-splitting is considered the best one. The linear mod-
els are computed using the RLS (Recursive Least Square) al-
gorithm that has a complexity, which is quadratic in the di-
mensionality of the problem. This complexity is then multi-
plied with a user-defined number of possible splits per nu-
merical attribute for which a separate pair of linear models is
updated with each training example and evaluated. The Fast
Incremental Model Tree (FIMT) proposed in [10], is an in-
cremental algorithm for any-time model trees learning from
evolving data streams with drift detection. It is based on the
Hoeffding tree algorithm, but implements a different splitting
criterion, using a standard deviation reduction (SDR) based
measure more appropriate to regression problems. The FIMT
algorithm is able to incrementally induce model trees by pro-
cessing each example only once, in the order of their arrival.
Splitting decisions are made using only a small sample of the
data stream observed at each node, following the idea of Ho-
effding trees. Another data streaming issue addressed in [10]
is the problem of concept drift. Data streaming models capa-
ble of dealing with concept drift face two main challenges:
how to detect when concept drift has occurred and how to
adapt to the change. Change detection in the FIMT is carried
out using the Page-Hinkley change detection test [11]. Adap-
tation in FIMT involves growing an alternate subtree from the
node in which change was detected.

IBLStreams (Instance Based Learner on Streams) is an ex-
tension of MOA that consists in an instance-based learning
algorithm for classification and regression problems on data
streams by [1]; IBLStreams optimizes the composition and
size of the case base autonomously. On arrival of a new ex-
ample (x0, y0), this example is first added to the case base.
Moreover, it is checked whether other examples might be re-
moved, either since they have become redundant or since they
are outliers. To this end, a set C of examples within a neigh-
borhood of x0 are considered as candidates. This neighbor-
hood if given by the kc nearest neighbors of x0, determined
according a distance measure ∆, and the candidate set C con-
sists of the examples within that neighborhood. The most re-
cent examples are excluded from removal due to the difficulty
to distinguish potentially noisy data from the beginning of a

concept change. Even though unexpected observations should
be removed only in the former but not in the latter case.

Algorithm 1: AMRules Algorithm
Input:

S: Stream of examples
ordered-set: boolean flag
Nmin: Minimum number of examples
λ: Constant to solve ties
α: the magnitude of changes that are allowed
j: rule index

Result: RS Set of Decision Rules
begin

Let RS← {}
Let defaultRule {} → (L ← NULL)
foreach example (xi, yi) do

foreach Rule r ∈ RSj do
if r covers the example then

Let ŷi be the prediction of the rule r,
computed using Lr
Compute error =(ŷi − yi)2
Call PHTest(error, α, λ)
if Change is detected then

Remove the rule
else

Update sufficient statistics of r
Update Perceptron of r
if Number of examples in Lr ≥ Nmin
then

r ← ExpandRule(r)

if ordered-set then
BREAK

if none of the rules in RS triggers then
Update sufficient statistics of the default rule
Update Perceptron of the default rule
if Number of examples in L ≥ Nmin then

RS ← RS ∪ ExpandRule(defaultRule)

3 The AMRules Algorithm
The problem of learning model rules from data streams raises
several issues. First, the dataset is no longer finite and avail-
able prior to learning, it is impossible to store all data in
memory and learn from them as a whole. Second, multiple
sequencial scans over the training data are not allowed. An
algorithm must therefore collect the relevant information at
the speed it arrives and incrementally decide about splitting
decisions. Third the training dataset may consist of data from
different distributions. In this section we present an incremen-
tal algorithm for learning model rules to address these issues,
named Adaptive Model Rules from High-Speed Data Streams
(AMRules).The pseudo code of the algorithm is given in Al-
gorithm 1.

The algorithm begins with an empty rule set (RS), and a
default rule {} → L, where L is initialized to NULL. L is a
data structure used to store the sufficient statistics required to
expand a rule and for prediction. Every time a new training
example is available the algorithm proceeds with checking



Algorithm 2: Expandrule: Expanding one Rule
Input:

r: One Rule
τ : Constant to solve ties
δ : Confidence

Result: r′ : Expanded Rule
begin

Let Xa be the attribute with greater SDR
Let Xb be the attribute with second greater SDR

Compute ε =
√

R2 ln(1/δ)
2n

(Hoeffding bound)

Compute r = SDR(Xb)
SDR(Xa)

(Ratio of the SDR values for the
best two splits)
Compute UpperBound = r + ε
if UpperBound < 1 ∨ ε < τ then

Extend r with a new condition based on the best
attribute Xa ≤ vj or Xa > vj
Release sufficient statistics of Lr
r ← r ∪ {Xa ≤ vjorXa > vj}

return r

whether for each rule from rule set (RS) the example is cov-
ered by any rule, that is if all the literals are true for the exam-
ple. The target values of the examples covered by a rule are
used to update the sufficient statistic of the rule (L). To detect
changes we propose to use the Page-Hinkley (PH) change de-
tection test. If a change is detected the rule is removed from
the rule set. Otherwise, the rule might be expanded. The ex-
pansion of the rule is considered only after certain minimum
number of examples (Nmin). The expansion of a rule is ex-
plained in Algorithm 2.

The set of rules is learned in parallel, as described in Al-
gorithm 1. We consider two cases: learning ordered or un-
ordered set of rules. In the former case, every example up-
dates statistics of the first rule that covers it. In the latter ev-
ery example updates statistics of all the rules that covers it.
If an example is not covered by any rule, the default rule is
updated.

3.1 Expansion of a Rule
Before discussing how rules are expanded, we will first
discuss the evaluation measure used in the attribute selection
process. [10] describe a standard deviation reduction measure
(SDR) for determining the merit of a given split. It can be
efficiently computed in an incremental way. Given a leaf
where a sample of the dataset S of size N has been observed,
a hypothetical binary split hA over attribute A would divide
the examples in S in two disjoint subsets SL and SR, with
sizesNL andNR respectively. The formula for SDR measure
of the split hA is given below:

SDR(hA) = sd(S)− NL

N
sd(SL)− NR

N
sd(SR)

sd(S) =

√√√√ 1

N
(

N∑
i=1

(yi − ȳ)2) =

=

√√√√ 1

N
(

N∑
i=1

yi2 − 1

N
(

N∑
i=1

yi)2)

To make the actual decision regarding a split, the SDR
measured for the best two potential splits are compared, by
dividing the second-best value by the best one to generate
a ratio r in the range 0 to 1. Having a predefined range for
the values of the random variables, the Hoeffding probability
bound (ε) [17] can be used to obtain high confidence intervals
for the true average of the sequence of random variables. The
value of ε is calculated using the formula:

ε =

√
R2 ln (1/δ)

2n

The process to expand a rule by adding a new condition
works as follows. For each attribute Xi, the value of the SDR
is computed for each attribute value vj . If the upper bound
(r̄+ = r̄ + ε) of the sample average is below 1 then the true
mean is also below 1. Therefore with confidence 1−ε the best
attribute over a portion of the data is really the best attribute.
In this case, the rule is expanded with condition Xa ≤ vj or
Xa > vj . However, often two splits are extremely similar or
even identical, in terms of their SDR values, and despite the ε
intervals shrinking considerably as more examples are seen,
it is still impossible to choose one split over the other. In these
cases, a threshold (τ) on the error is used. If ε falls below this
threshold and the splitting criterion is still not met, the split is
made on the best split with a higher SDR value and the rule
is expanded.

3.2 Prediction Strategies
The set of rules learned by AMRules can be ordered or
unordered. They employ different prediction strategies to
achieve optimal prediction. In the former, only the first rule
that cover an example is used to predict the target example.
In the latter, all rules covering the example are used for pre-
diction and the final prediction is decided by using weighted
vote.

Each rule in AMrules implements 3 prediction strategies: i)
the mean of the target attribute computed from the examples
covered by the rule; ii) a linear combination of the indepen-
dent attributes; iii) an adaptive strategy, that chooses between
the first two strategies, the one with lower MSE in the previ-
ous examples.

Each rule in AMRules contains a linear model, trained us-
ing an incremental gradient descent method, from the ex-
amples covered by the rule. Initially, the weights are set to
small random numbers in the range -1 to 1. When a new
example arrives, the output is computed using the current
weights. Each weight is then updated using the Delta rule:
wi ← wi +η(ŷ−y)xi, where ŷ is the output, y the real value
and η is the learning rate.

3.3 Change Detection
The AMRules uses the Page-Hinkley (PH) test [12] to moni-
tor the error and signals a drift when a significant increase of
this variable is observed. The PH test is a sequential analysis
technique typically used for monitoring change detection in



signal processing. The PH test is designed to detect a change
in the average of a Gaussian signal [11]. This test considers
a cumulative variable mT , defined as the accumulated differ-
ence between the observed error and the mean of the error till
the current moment:

mT =

T∑
t=1

(et − ēT − α)

where ēT = 1/T
t∑

t=1
et and α corresponds to the magnitude

of changes that are allowed.
The minimum value of this variable is also computed:

MT = min(mt, t = 1 . . . T ). As a final step, the test moni-
tors the difference betweenMT andmT : PHT = mT −MT .
When this difference is greater than a given threshold (λ) we
signal a change in the distribution. The threshold λ depends
on the admissible false alarm rate. Increasing λ will entail
fewer false alarms, but might miss or delay change detection.

4 Experimental Evaluation
The main goal of this experimental evaluation is to study the
behavior of the proposed algorithm in terms of mean absolut
error (MAE) and root mean squared error (RMSE). We are
interested in studying the following scenarios:

– How to grow the rule set?

• Update only the first rule that covers training ex-
amples. In this case the rule set is ordered, and the
corresponding prediction strategy uses only the first
rule that covers test examples.

• Update all the rules that covers training examples.
In this case the rule set is unordered, and the cor-
responding prediction strategy uses a weighted sum
of all rules that covers test examples.

– How does AMRules compares against other streaming
algorithms?

– How does AMRules compares against other state-of-the-
art regression algorithms?

– How does AMRules learned models evolve in time-
changing streams?

4.1 Experimental Setup
All our algorithms were implemented in java using Massive
Online Analysis (MOA) data stream software suite [2]. For
all the experiments, we set the input parameters of AMRules
to: Nmin = 200, τ = 0.05 and δ = 0.01. The parameters
for the Page-Hinkley test are λ = 50 and α = 0.005. Table 1
summarizes information about the datasets used and reports
the learning rate used in the perceptron learning.

All of the results in the tables 2, 3 and 4 are averaged of
ten-fold cross-validation [16]. The accuracy is measured us-
ing the following metrics: Mean absolute error (MAE) and
root mean squared error (RMSE) [19]. We used two evalua-
tion methods. When no concept drift is assumed, the evalua-
tion method we employ uses the traditional train and test sce-
nario. All algorithms learn from the same training set and the

error is estimated from the same test sets. In scenarios with
concept drift, we use the prequential (predictive sequential)
error estimate [8]. This evaluation method evaluates a model
sequentially. When an example is available, the current re-
gression model makes a prediction and the loss is computed.
After the prediction the regression model is updated with that
example.

Datasets
The experimental datasets include both artificial and real data,
as well sets with continuous attributes. We use ten regression
datasets from the UCI Machine Learning Repository [3] and
other sources. The datasets used in our experimental work
are:

2dplanes this is an artificial data set described in [4]. Air-
lerons this data set addresses a control problem, namely fly-
ing a F16 aircraft. Puma8NH and Puma32H is a family of
datasets synthetically generated from a realistic simulation of
the dynamics of a Unimation Puma 560 robot arm. Pol this
is a commercial application described in [18].The data de-
scribes a tele communication problem. Elevators this data
set is also obtained from the task of controlling a F16 aircraft.
Fried is an artificial data set used in Friedman (1991) and
also described in Breiman (1996,p.139). Bank8FM a fam-
ily of datasets synthetically generated from a simulation of
how bank-customers choose their banks. Kin8nm this dataset
is concerned with the forward kinematics of an 8 link robot
arm. Airline this dataset using the data from the Data Expo
competition (2009). The dataset consists of a large amount of
records, containing flight arrival and departure details for all
the commercial flights within the USA, from October 1987
to April 2008. This is a large dataset with nearly 120 mil-
lion records (11.5 GB memory size) [10]. Table 1 summarizes
the number of instances and the number of attributes of each
dataset.

Table 1. Summary of datasets

Datasets # Instances # Attributes Learning rate
2dplanes 40768 11 0.01
Airlerons 13750 41 0.01
Puma8NH 8192 9 0.01
Puma32H 8192 32 0.01

Pol 15000 49 0.001
Elevators 8752 19 0.001

Fried 40769 11 0.01
Bank8FM 8192 9 0.01
Kin8nm 8192 9 0.01
Airline 115Million 11 0.01

4.2 Experimental Results

In this section, we empirically evaluate the AMRules. The
results are described in four parts. In the first part we compare
the AMRules variants, the second part we compare AMRules
against other streaming algorithms and the third part compare
AMRules against other state-of-the-art regression algorithms.
The last part presents the analysis of AMRules behavior in the
context of time-evolving data streams.



Comparison between AMRules Variants
In this section we focus on two strategies that we found po-
tentially interesting. It is a combination of expanding only
one rule, the rule that first triggered, with predicting strat-
egy uses only the first rule that covers test examples. Obvi-
ously, for this approach it is necessary to use ordered rules
(AMRuleso). The second setting employs unordered rule
set, where all the covering rules expand and the correspond-
ing prediction strategy uses a weighted sum of all rules that
cover test examples (AMRulesu).

Ordered rule sets specializes one rule at a time, and as a
result it often produces less rules than the unordered strat-
egy. Ordered rules need to consider the previous rules and re-
maining combinations, which might not be easy to interpret
in more complex sets. Unordered rule sets are more modular,
because they can be interpreted alone.

Table 2 summarize the mean absolute error and the root
mean squared error of these variants. Overall, the experimen-
tal results points out the unordered rule sets are more compet-
itive than ordered rule sets in terms of MAE and RMSE.

Table 2. Results of ten-fold cross-validation for AMRules algo-
rithms

Mean absolut error (variance) Root mean squared error (variance)
Datasets AMRuleso AMRulesu AMRuleso AMRulesu

2dplanes 1.23E+00 (0.01) 1.16E+00 (0.01) 1.67E+00 (0.02) 1.52E+00 (0.01)
Airlerons 1.10E-04 (0.00) 1.00E-04 (0.00) 1.90E-04 (0.00) 1.70E-04 (0.00)
Puma8NH 3.21E+00 (0.04) 3.26E+00 (0.02) 4.14E+00 (0.05) 4.28E+00 (0.03)
Puma32H 1.10E-02 (0.00) 1.20E-02 (0.00) 1.60E-02 (0.00) 1.20E-02 (0.00)

Pol 14.0E+00 (25.1) 15.6E+00 (3.70) 23.0E00 (44.50) 23.3E00 (4.08)
Elevators 3.50E-03 (0.00) 1.90E-03 (0.00) 4.80E-03 (0.00) 2.20E-03 (0.00)

Fried 2.08E+00 (0.01) 1.13E+00 (0.01) 2.78E+00 (0.08) 1.67E+00 (0.25)
Bank8FM 4.31E-02 (0.00) 4.30E-02 (0.00) 4.80E-02 (0.00) 4.30E-02 (0.00)
Kin8nm 1.60E-01 (0.00) 1.50E-01 (0.00) 2.10E-01 (0.00) 2.00E-01 (0.00)

Comparison with other Streaming Algorithms
We compare the performance of our algorithm with three
other streaming algorithms, FIMT and IBLStreams. FIMT is
an incremental algorithm for learning model trees, addressed
in [10]. IBLStreams is an extension of MOA that consists in
an instance-based learning algorithm for classification and re-
gression problems on data streams by [1].

The performance measures for these algorithms are given
in Table 3. The comparison of these streaming algorithms
shows that AMRules get better results.

Comparison with State-of-the-art Regression Algorithms
Another experiment which involves adaptive model rules is
shown in Table 4. We compare AMRules with other non-
incremental regression algorithms available in WEKA [9].
All these experiments using algorithms are performed us-
ing WEKA. We use the standard method of ten-fold cross-
validation, using the same folds for all the algorithms in-
cluded.

The comparison of these algorithms show that AMRules
is very competitive in terms of (MAE, RMSE) than all the
other methods, except M5Rules. AMRules is faster than all
the other algorithms considered in this study. These results
were somewhat expected, since these datasets are relatively
small for the incremental algorithm.

Table 5. Average results from the evaluation of change detection
over ten experiments.

Algorithms Delay Size
AMRules 1484 56 (nr. Rules)

FIMT 2096 290 (nr. Leaves)
IBLStreams - -

Evaluation in Time-Evolving Data streams
In this subsection we first study the evolution of the error
measurements (MAE and RMSE) and evaluate the change de-
tection method. After, we evaluate the streaming algorithms
on non-stationary streaming real-world problem, we use the
Airline dataset from the DataExpo09 competition.

To simulate drift we use Fried dataset. The simulations al-
low us to control the relevant parameters and to evaluate the
drift detection. Figure 1 and Figure 2 depict the MAE and
RMSE curves of the streaming algorithms using the dataset
Fried. These figures also illustrate the point of drift and the
points where the change was detected. Only two of the algo-
rithms – FIMT and AMRules – were able to detect a change.
Table 5 report the average results over ten experiments vary-
ing the seed of the Fried dataset. We measure the number of
nodes for FIMT, the number of rules AMrules and the the de-
lay (in terms of number of examples) in detection the drift.
The delay gives indication of how fast the algorithm will be
able to start the adaptation strategy. These two algorithms ob-
tained similar results. The general conclusions are that FIMT
and AMRules algorithms are robust and have better results
than IBLStreams. Figures 3 and 4 show the evaluation of the
MAE and the RMSE of the streaming algorithms on non-
stationary real-world problem. FIMT and AMRules obtain
approximately similar behavior in terms of MAD and MSE.
Both exhibit somewhat better performance than IBLStreams,
but not significantly different.

Fig. 1. Mean absolut error of streaming algorithms using the dataset
Fried.

5 Conclusions
Learning regression rules from data streams is an interest-
ing approach that has not been explored by the stream mining
community. In this paper, we presented a new regression rules
approach for streaming data with change detection. The AM-
Rules algorithm is able to learn very fast and the only mem-
ory it requires is for storing sufficient statistics of the rules. To



Table 3. Results of ten-fold cross-validation for Streaming Algorithms

Mean absolut error (variance) Root mean squared error (variance)
Datasets AMRulesu FIMT IBLStreams AMRulesu FIMT IBLStreams
2dplanes 1.16E+00 (0.01) 8.00E-01 (0.00) 1.03E+00 (0.00) 1.52E+00 (0.01) 1.00E+00 (0.00) 1.30E+00 (0.00)
Airlerons 1.00E-04 (0.00) 1.90E-04 (0.00) 3.20E-04 (0.00) 1.70E-04 (0.00) 1.00E-09 (0.00) 3.00E-04 (0.00)
Puma8NH 2.66E+00 (0.01) 3.26E+00 (0.03) 3.27E+00 (0.01) 4.28E+00 (0.03) 12.0E+00 (0.63) 3.84E+00 (0.02)
Puma32H 1.20E-02 (0.00) 7.90E-03 (0.00) 2.20E-02 (0.00) 1.00E-04 (0.01) 1.20E-02 (0.00) 2.70E-02 (0.00)

Pol 15.6E+00 (3.70) 38.2E+00 (0.17) 29.7E+00 (0.55) 23.3E+00 (4.08) 1,75E+03 (1383) 50,7E+00 (0.71)
Elevators 1.90E-03 (0.00) 3.50E-03 (0.00) 5.00E-03 (0.00) 2.20E-03 (0.00) 3.00E-05 (0.00) 6.20E-03 (0.00)

Fried 1.13E+00 (0.01) 1.72E+00 (0.00) 2.10E+00 (0.00) 1.67E+00 (0.25) 4.79E+00 (0.01) 2.21E+00 (0.00)
Bank8FM 4.30E-02 (0.00) 3.30E-02 (0.00) 7.70E-02 (0.00) 4.30E-02 (0.00) 2.20E-03 (0.00) 9.60E-02 (0.00)
Kin8nm 1.60E-01 (0.00) 1.60E-01 (0.00) 9.50E-01 (0.00) 2.00E-01 (0.00) 2.10E-01 (0.00) 1.20E-01 (0.00)

Table 4. Results of ten-fold cross-validation for AMRulesu and others Regression Algorithms

Mean absolute error (variance) Root mean squared error (variance)
Datasets MRulesu M5Rules MLPerceptron LinRegression MRulesu M5Rules MLPerceptron LinRegression
2dplanes 1.16E+00 (0.01) 8.00E-01 (0.01) 8.70E-01 (0.01) 1.91E+00 (0.00) 1.52E+00 (0.01) 9.8E-01 (0.01) 1.09E+00 (0.01) 2.37E+00 (0.00)
Airlerons 1.00E-04 (0.00) 1.00E-04 (0.00) 1.40E-04 (0.00) 1.10E-04 (0.00) 1.70E-04 (0.00) 2.00E-04 (0.00) 1.71E-04 (0.00) 2.00E-04 (0.00)
Puma8NH 3.26E+00 (0.03) 2.46E+00 (0.00) 3.34E+00 (0.17) 3.64E+00 (0.01) 4.28E+00 (0.03) 3.19E+00 (0.01) 4.14E+00 (0.20) 4.45E+00 (0.01)
Puma32H 1.20E-02 (0.00) 6.80E-03 (0.00) 2.30E-02 (0.00) 2.00E-02 (0.00) 1.20E-02 (0.00) 8.60E-03 (0.00) 3.10E-02 (0.00) 2.60E-02 (0.00)

Pol 15.6E+00 (3.70) 2.79E+00 (0.05) 14.7E+00 (5.53) 26.5E+00 (0.21) 23.3E+00 (4.08) 6.56E+00 (0.45) 20.1E+00 (15.1) 30.5E+00 (0.16)
Elevators 1.90E-03 (0.00) 1.70E-03 (0.00) 2.10E-03 (0.00) 2.00E-03 (0.00) 2.20E-03 (0.00) 2.23E-03 (0.00) 2.23E-03 (0.00) 2.29E-03 (0.00)

Fried 1.13E+00 (0.01) 1.25E+00 (0.00) 1.35E+00 (0.03) 2.03E+00 (0.00) 1.67E+00 (0.25) 1.60E+00 (0.00) 1.69E+00 (0.04) 2.62E+00 (0.00)
Bank8FM 4.30E-02 (0.00) 2.20E-02 (0.00) 2.60E-02 (0.00) 2.90E-02 (0.00) 4.30E-02 (0.00) 3.10E-02 (0.00) 3.40E-02 (0.00) 3.80E-02 (0.00)
Kin8nm 1.60E-01 (0.00) 1.30E-01 (0.00) 1.30E-01 (0.00) 1.60E-01 (0.00) 2.00E-01 (0.00) 1.70E-01 (0.00) 1.60E-01 (0.00) 2.00E-01 (0.00)

Fig. 2. Root mean squared error of streaming algorithms using the
dataset Fried.

Fig. 3. Mean absolut error of streaming algorithms using the dataset
Airlines.

Fig. 4. Root mean squared error of streaming algorithms using the
dataset Airlines.

the best of our knowledge, in the literature there is no other
method that addresses this issue.

AMRules learns ordered and unordered rule sets. The ex-
perimental results point out that unordered rule sets, in com-
parison to ordered rule sets, are more competitive in terms
of error metrics (MAE and RMSE). AMRules achieves bet-
ter results than the others algorithms even for medium sized
datasets. The AMRule algorithm is equipped with explicit
change detection mechanisms that signals change points dur-
ing the learning process. This information is relevant to un-
derstand the dynamics of evolving streams.

Acknowledgments:
The authors acknowledge the financial support given by the
projects FCT-KDUS (PTDC/EIA/098355/2008); FCOMP -
01-0124-FEDER-010053, the ERDF through the COMPETE



Programme and by Portuguese National Funds through FCT
within the project FCOMP - 01-0124-FEDER-022701.

References
1. S. Ammar and H. Eyke. Iblstreams: a system for instance-based

classification and regression on data streams. Evolving Systems,
3:235–249, 2012.

2. A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer,
T. Jansen, and T. Seidl. Moa: Massive online analysis. Jour-
nal of Machine learning Research (JMLR), pages 1601–1604,
2010.

3. K. E. Blake and C. Merz. Uci repository of machine learning
databases. 1999.

4. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifica-
tion and Regression Trees. Wadsworth and Brooks, Monterey,
CA, 1984.

5. E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten. Using
model trees for classification. Machine Learning, 32(1):63–76,
1998.

6. J. Frnkranz, D. Gamberger, and N. Lavra. Foundations of Rule
Learning. Springer, 2012.

7. J. Gama. Knowledge Discovery from Data Streams. Chapman
& Hall, CRC Press, 2010.

8. J. Gama, R. Sebasti ao, and P. P. Rodrigues. Issues in evaluation
of stream learning algorithms. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and
data mining, KDD ’09, pages 329–338, New York, NY, USA,
2009. ACM.

9. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: an update.
SIGKDD Explor. Newsl., 11:10–18, 2009.

10. E. Ikonomovska, J. Gama, and S. Dzeroski. Learning model
trees from evolving data streams. Data Min. Knowl. Discov.,
23(1):128–168, 2011.

11. H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi. Test f page-
hinckley, an approach for fault detection in an agro-alimentary
production system. In Proceedings of the Asian Control Con-
ference, 2:815–818, 2004.

12. E. S. Page. Continuous inspection schemes. Biometrika,
41(1):100–115, 1954.

13. D. Potts and C. Sammut. Incremental learning of linear model
trees. Machine Learning, 61(1-3):5–48, 2005.

14. J. R. Quinlan. Learning with continuous classes. In Aus-
tralian Joint Conference for Artificial Intelligence, pages 343–
348. World Scientific, 1992.

15. J. R. Quinlan. Combining instance-based and model-based
learning. pages 236–243. Morgan Kaufmann, 1993.

16. K. Ron. A study of cross-validation and bootstrap for accuracy
estimation and model selection. pages 1137–1143, 1995.

17. H. Wassily. Probability inequalities for sums of bounded ran-
dom variables. Journal of the American Statistical Association,
58(301):13–30, 1963.

18. S. M. Weiss and N. Indurkhya. Rule-based machine learning
methods for functional prediction. Journal of Artificial Intelli-
gence Research, 3:383–403, 1995.

19. C. J. Willmott and K. Matsuura. Advantages of the mean ab-
solute error (mae) over the mean square error (rmse) in assess-
ing average model performance. Climate Research, 30:79–82,
2005.


