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Abstract
In this paper, we develop a clustering approach
based on variational incremental learning of a
Dirichlet process of generalized Dirichlet (GD) dis-
tributions. Our approach is built on nonparametric
Bayesian analysis where the determination of the
complexity of the mixture model (i.e. the number
of components) is sidestepped by assuming an in-
finite number of mixture components. By leverag-
ing an incremental variational inference algorithm,
the model complexity and all the involved model’s
parameters are estimated simultaneously and effec-
tively in a single optimization framework. More-
over, thanks to its incremental nature and Bayesian
roots, the proposed framework allows to avoid
over- and under-fitting problems, and to offer good
generalization capabilities. The effectiveness of the
proposed approach is tested on a challenging appli-
cation involving visual scenes clustering.

1 Introduction
Incremental clustering plays a crucial role in many data min-
ing and computer vision applications [Opelt et al., 2006;
Sheikh et al., 2007; Li et al., 2007]. Incremental clustering
is particularly efficient in the following scenarios: when data
points are obtained sequentially, when the available memory
is limited, or when we have large-scale data sets to deal with.
Bayesian approaches have been widely used to develop pow-
erful clustering techniques. Bayesian approaches applied for
incremental clustering fall basically into two categories: para-
metric and non-parametric, and allow to mimic the human
learning process which is based on iterative accumulation of
knowledge. As opposed to parametric approaches in which
a fixed number of parameters is considered, Bayesian non-
parametric approaches use an infinite-dimensional parameter
space and allow the complexity of models to grow with data
size. The consideration of an infinite-dimensional parame-
ter space allows to determine appropriate model complexity,
which is normally referred to as the problem of model selec-
tion or model adaptation. This is a crucial issue in clustering
since it permits to capture the underlying data structure more
precisely, and also to avoid over- and under-fitting problems.
This paper focuses on the latter one since it is more adapted

to modern data mining applications (i.e. modern applications
involve generally dynamic data sets).
Nowadays, the most popular Bayesian nonparametric formal-
ism is the Dirichlet process (DP) [Neal, 2000; Teh et al.,
2004] generally translated to a mixture model with a count-
ably infinite number of components in which the difficulty
of selecting the appropriate number of clusters, that usu-
ally occurs in the finite case, is avoided. A common way
to learn Dirichlet process model is through Markov chain
Monte Carlo (MCMC) techniques. Nevertheless, MCMC ap-
proaches have several drawbacks such as the high compu-
tational cost and the difficulty of monitoring convergence.
These shortcomings of MCMC approaches can be solved
by adopting an alternative namely variational inference (or
variational Bayes) [Attias, 1999], which is a deterministic
approximation technique that requires a modest amount of
computational power. Variational inference has provided
promising performance in many applications involving mix-
ture models [Corduneanu and Bishop, 2001; Constantinopou-
los et al., 2006; Fan et al., 2012; 2013]. In our work, we
employ an incremental version of variational inference pro-
posed by [Gomes et al., 2008] to learn infinite generalized
Dirichlet (GD) mixtures in the context where data points are
supposed to arrive sequentially. The consideration of the
GD distribution is motivated by its promising performance
when handling non-Gaussian data, and in particular propor-
tional data (which are subject to two restrictions: nonneg-
ativity and unit-sum) which are naturally generated in sev-
eral data mining, machine learning, computer vision, and
bioinformatics applications [Bouguila and Ziou, 2006; 2007;
Boutemedjet et al., 2009]. Examples of applications include
textual documents (or images) clustering where a given doc-
ument (or image) is described as a normalized histogram of
words (or visual words) frequencies.
The main contributions of this paper are listed as the follow-
ing: 1) we develop an incremental variational learning al-
gorithm for the infinite GD mixture model, which is much
more efficient when dealing with massive and sequential data
as opposed to the corresponding batch approach; 2) we ap-
ply the proposed approach to tackle a challenging real-world
problem namely visual scenes clustering. The effectiveness
and merits of our approach are illustrated through extensive
simulations. The rest of this paper is organized as follows.
Section 2 presents the infinite GD mixture model. The incre-



mental variational inference framework for model learning is
described in Section 3. Section 4 is devoted to the experimen-
tal results. Finally, conclusion follows in Section 5.

2 The Infinite GD Mixture Model
Let ~Y = (Y1, . . . , YD) be a D-dimensional random vector
drawn from an infinite mixture of GD distributions:

p(~Y |~π, ~α, ~β) =

∞∑
j=1

πjGD(~Y |~αj , ~βj) (1)

where ~π represents the mixing weights that are positive and
sum to one. ~αj = (αj1, . . . , αjD) and ~βj = (βj1, . . . , βjD)
are the positive parameters of the GD distribution associated
with component j, while GD(~Y |~αj , ~βj) is defined as

GD(~Y |~αj , ~βj) =

D∏
l=1

Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
Y
αjl−1

l

(
1−

l∑
k=1

Yk

)γjl
(2)

where
∑D
l=1 Yl < 1 and 0 < yl < 1 for l = 1, . . . , D,

γjl = βjl − αjl+1 − βjl+1 for l = 1, . . . , D − 1, and
γjD = βjD − 1. Γ(·) is the gamma function defined by
Γ(x) =

∫∞
0
ux−1e−udu. Furthermore, we exploit an inter-

esting and convenient mathematical property of the GD dis-
tribution which is thoroughly discussed in [Boutemedjet et
al., 2009], to transform the original data points into another
D-dimensional space where the features are conditionally in-
dependent and rewrite the infinite GD mixture model in the
following form

p( ~X|~π, ~α, ~β) =

∞∑
j=1

πj

D∏
l=1

Beta(Xl|αjl, βjl) (3)

where Xl = Yl and Xl = Yl/(1 −
∑l−1
k=1 Yk) for l > 1.

Beta(Xl|αjl, βjl) is a Beta distribution parameterized with
(αjl, βjl).
In this work, we construct the Dirichlet process through a
stick-breaking representation [Sethuraman, 1994]. There-
fore, the mixing weights πj are constructed by recursively
breaking a unit length stick into an infinite number of pieces
as πj = λj

∏j−1
k=1(1 − λk). λj is known as the stick break-

ing variable and is distributed independently according to
λj ∼ Beta(1, ξ), where ξ > 0 is the concentration param-
eter of the Dirichlet process.
For an observed data set ( ~X1, . . . , ~XN ), we introduce a set of
mixture component assignment variables ~Z = (Z1, . . . , ZN ),
one for each data point. Each element Zi of ~Z has an integer
value j specifying the component from which ~Xi is drawn.
The marginal distribution over ~Z is given by

p(~Z|~λ) =

N∏
i=1

∞∏
j=1

[
λj

j−1∏
k=1

(1− λk)

]1[Zi=j]

(4)

where 1[·] is an indicator function which equals to 1 when
Zi = j, and equals to 0 otherwise. Since our model frame-
work is Bayesian, we need to place prior distributions over

random variables ~α and ~β. Since the formal conjugate prior
for Beta distribution is intractable, we adopt Gamma pri-
ors G(·) to approximate the conjugate priors of ~α and ~β as:
p(~α) = G(~α|~u,~v) and p(~β) = G(~β|~s,~t), with the assumption
that these parameters are statistically independent.

3 Model Learning
In our work, we adopt an incremental learning framework
proposed in [Gomes et al., 2008] to learn the proposed in-
finite GD mixture model through variational Bayes. In this
algorithm, data points can be sequentially processed in small
batches where each one may contain one or a group of data
points. The model learning framework involves the following
two phases: 1) model building phase: to inference the opti-
mal mixture model with the currently observed data points;
2) compression phase: to estimate which mixture component
that groups of data points should be assigned to.

3.1 Model Building Phase
For an observed data set X = ( ~X1, . . . , ~XN ), we define Θ =

{~Z, ~α, ~β,~λ} as the set of unknown random variables. The
main target of variational Bayes is to estimate a proper ap-
proximation q(Θ) for the true posterior distribution p(Θ|X ).
This problem can be solved by maximizing the free energy
F(X , q), where F(X , q) =

∫
q(Θ) ln[p(X ,Θ)/q(Θ)]dΘ. In

our algorithm, inspired by [Blei and Jordan, 2005], we trun-
cate the variational distribution q(Θ) at a value M , such
that λM = 1, πj = 0 when j > M , and

∑M
j=1 πj =

1, where the truncation level M is a variational parame-
ter which can be freely initialized and will be optimized
automatically during the learning process [Blei and Jor-
dan, 2005]. In order to achieve tractability, we also as-
sume that the approximated posterior distribution q(Θ) can
be factorized into disjoint tractable factors as: q(Θ) =

[
∏N
i=1 q(Zi)][

∏M
j=1

∏D
l=1 q(αjl)q(βjl)][

∏M
j=1 q(λj)].

By maximizing the free energy F(X , q) with respect to each
variational factor, we can obtain the following update equa-
tions for these factors:

q(~Z) =

N∏
i=1

M∏
j=1

r
1[Zi=j]
ij , q(~α) =

M∏
j=1

D∏
l=1

G(αjl|u∗jl, v∗jl) (5)

q(~β) =

M∏
j=1

D∏
l=1

G(βjl|s∗jl, t∗jl), q(~λ) =

M∏
j=1

Beta(λj |aj , bj) (6)

where we have defined

rij =
exp(ρij)∑M

j=1
exp(ρij)

(7)

ρij =

D∑
l=1

[
R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)

]
+
〈
lnλj

〉
+

j−1∑
k=1

〈
ln(1− λk)

〉
u∗jl = ujl +

N∑
i=1

〈
Zi = j

〉
[Ψ(ᾱjl + β̄jl)−Ψ(ᾱjl) + β̄jl



×Ψ′(ᾱjl + β̄jl)(〈lnβjl〉 − ln β̄jl)]ᾱjl

s∗jl = sjl +

N∑
i=1

〈
Zi = j

〉
[Ψ(ᾱjl + β̄jl)−Ψ(β̄jl) + ᾱjl

×Ψ′(ᾱjl + β̄jl)(〈lnαjl〉 − ln ᾱjl)]β̄jl

v∗jl = vjl −
N∑
i=1

〈
Zi = j

〉
lnXil, bj = ξj +

N∑
i=1

M∑
k=j+1

〈Zi = k〉

t∗jl = tjl −
N∑
i=1

〈
Zi = j

〉
ln(1−Xil), aj = 1 +

N∑
i=1

〈Zi = j〉

where Ψ(·) is the digamma function, and 〈·〉 is the ex-
pectation evaluation. Note that, R̃ is the lower bound of
R =

〈
ln Γ(α+β)

Γ(α)Γ(β)

〉
. Since this expectation is intractable,

the second-order Taylor series expansion is applied to find
its lower bound. The expected values in the above formu-
las are given by 〈Zi = j〉 = rij , ᾱjl = 〈αjl〉 = u∗jl/v

∗
jl,

β̄jl = 〈βjl〉 = s∗jl/t
∗
jl, 〈lnλj〉 = Ψ(aj) − Ψ(aj + bj),

〈ln(1−λj)〉 = Ψ(bj)−Ψ(aj+bj), 〈lnαjl〉 = Ψ(u∗jl)−ln v∗jl
and 〈lnβjl〉 = Ψ(s∗jl)− ln t∗jl .
After convergence, the currently observed data points are
clustered into M groups according to corresponding respon-
sibilities rij through Eq. (7). According to [Gomes et al.,
2008], these newly formed groups of data points are also de-
noted as “clumps”. Following [Gomes et al., 2008], these
clumps are subject to the constraint that all data points ~Xi in
the clump c share the same q(Zi) ≡ q(Zc) which is a key
factor in the following compression phase.

Algorithm 1
1: Choose the initial truncation level M .
2: Initialize the values for hyper-parameters ujl, vjl, sjl, tjl and
ξj .

3: Initialize the values of rij by K-Means algorithm.
4: while More data to be observed do
5: Perform the model building phase through Eqs. (5) and (6).
6: Initialize the compression phase using Eq. (10).
7: whileMC ≥ C do
8: for j = 1 to M do
9: if evaluated(j) = false then

10: Split component j and refine this split using Eqs (9).
11: ∆F(j) = change in Eq. (8).
12: evaluated(j) = true.
13: end if
14: end for
15: Split component j with the largest value of ∆F(j).
16: M = M + 1.
17: end while
18: Discard the current observed data points.
19: Save resulting components into next learning round.
20: end while

3.2 Compression Phase
Within the compression phase, we need to estimate clumps
that are possibly belong to the same mixture component while
taking into consideration future arriving data. Now assume
that we have already observed N data points, our aim is to

make an inference at some target time T where T ≥ N . we
can tackle this problem by scaling the observed data to the tar-
get size T , which is equivalent to using the variational poste-
rior distribution of the observed data N as a predictive model
of the future data [Gomes et al., 2008]. We then have a mod-
ified free energy for the compression phase in the following
form

F =

M∑
j=1

D∑
l=1

[〈
ln
p(αjl|ujl, vjl)

q(αjl)

〉
+
〈

ln
p(βjl|sjl, tjl)

q(βjl)

〉]

+

M∑
j=1

〈
ln
p(λj |ξj)
q(λj)

〉
+
T

N

∑
c

|nc| ln
M∑
j=1

exp(ρcj) (8)

where |nc| represents the number of data points in clump
c and T

N is the data magnification factor. The corresponding
update equations for maximizing this free energy function can
be obtained as

rcj =
exp(ρcj)∑M

j=1
exp(ρcj)

(9)

ρij =

D∑
l=1

[
R̃jl + (ᾱjl − 1) ln〈Xcl〉+ (β̄jl − 1) ln(1− 〈Xcl〉)

]
+
〈
lnλj

〉
+

j−1∑
k=1

〈
ln(1− λk)

〉
u∗jl = ujl +

T

N

∑
c

|nc|rcj [Ψ(ᾱjl + β̄jl)−Ψ(ᾱjl) + β̄jl

×Ψ′(ᾱjl + β̄jl)(〈lnβjl〉 − ln β̄jl)]ᾱjl

s∗jl = sjl +
T

N

∑
c

|nc|rcj [Ψ(ᾱjl + β̄jl)−Ψ(β̄jl) + ᾱjl

×Ψ′(ᾱjl + β̄jl)(〈lnαjl〉 − ln ᾱjl)]β̄jl

v∗jl = vjl −
T

N

∑
c

|nc|rcj ln〈Xcl〉

t∗jl = tjl −
T

N

∑
c

|nc|rcj ln(1− 〈Xcl〉)

aj = 1 +
T

N

∑
c

|nc|〈Zc = j〉

bj = ξj +
T

N

∑
c

|nc|
M∑

k=j+1

〈Zc = k〉

where 〈Xcl〉 denotes average over all data points contained
in clump c.
The first step of the compression phase is to assign each
clump or data point to the component with the highest re-
sponsibility rcj calculated from the model building phase as

Ic = arg max
j
rcj (10)

where {Ic} denote which component the clump (or data
point) c belongs to in the compression phase. Next, we cy-
cle through each component and split it along its principal
component into two subcomponents. This split is refined by
updating Eqs. (9). The clumps are then hard assigned to one



of the two candidate components after convergence for refin-
ing the split. Among all the potential splits, we select the one
that results in the largest change in the free energy (Eq. (8)).
The splitting process repeats itself until a stopping criterion
is met. According to [Gomes et al., 2008], the stoping crite-
rion for the splitting process can be expressed as a limit on
the amount of memory required to store the components. In
our case, the component memory cost for the mixture model
isMC = 2DNc, where 2D is the number of parameters con-
tained in a D-variate GD component, and Nc is the number
of components. Accordingly, We can define an upper limit
on the component memory cost C, and the compression phase
stops whenMC ≥ C. As a result, the computational time and
the space requirement is bounded in each learning round. Af-
ter the compression phase, the currently observed data points
are discarded while the resulting components can be treated
in the same way as data points in the next round of leaning.
Our incremental variational inference algorithm for infinite
GD mixture model is summarized in Algorithm 1.

coast forest highway inside-city

mountain open country street tall building

Figure 1: Sample images from the OT data set.

4 Visual Scenes Clustering
In this section, the effectiveness of the proposed incremental
infinite GD mixture model (InGDMM) is tested on a chal-
lenging real-world application namely visual scenes cluster-
ing. The problem is important since images are being pro-
duced at exponential increasing rates and very challenging
due to the difficulty of capturing the variability of appearance
and shape of diverse objects belonging to the same scene,
while avoiding confusing objects from different scenes. In
our experiments, we initialize the truncation level M as
15. The initial values of the hyperparameters are set as:
(ujl, vjl, sjl, tjl, ξj) = (1, 0.01, 1, 0.01, 0.1), which have
been found to be reasonable choices according to our experi-
mental results.

4.1 Database and Experimental Design
In this paper, we test our approach on a challenging and pub-
licly available database known as the OT database, which was
introduced by Oliva and Torralba [Oliva and Torralba, 2001]
1. This database contains 2,688 images with the size of 256×

1OT database is available at: http://cvcl.mit.edu/database.htm.

256 pixels, and is composed of eight urban and natural scene
categories: coast (360 images), forest (328 images), highway
(260 images), inside-city (308 images), mountain (374 im-
ages), open country (410 images), street (292 images), and
tall building (356 images). Figure 1 shows some sample im-
ages from the different categories in the OT database.
Our methodology is based on the proposed incremental infi-
nite GD mixture model in conjunction with a bag-of-visual
words representation, and can be summarized as follows:
Firstly, we use the Difference-of-Gaussians (DoG) interest
point detector to extract Scale-invariant feature transform
(SIFT) descriptors (128-dimensional) [Lowe, 2004] from
each image. Secondly, K-Means algorithm is adopted to
construct a visual vocabulary by quantizing these SIFT vec-
tors into visual words. As a result, each image is repre-
sented as the frequency histogram over the visual words. We
have tested different sizes of the visual vocabulary |W| =
[100, 1000], and the optimal performance was obtained for
|W| = 750 according to our experimental results. Then, the
Probabilistic Latent Semantic Analysis (pLSA) model [Hof-
mann, 2001] is applied to the obtained histograms to rep-
resent each image by a 55-dimensional proportional vector
where 55 is the number of latent aspects. Finally, the pro-
posed InGDMM is deployed to cluster the images supposed
to arrive in a sequential way.

Table 1: Average rounded confusion matrix for the OT
database calculated by InGDMM.

C F H I M O S T

Coast (C) 127 10 4 2 3 31 2 1

Forest (F) 2 155 1 2 1 3 0 0

Highway (H) 0 0 122 1 0 3 3 1

Inside-city (I) 2 4 2 119 3 2 15 7

Mountain (M) 6 21 4 5 139 9 1 2

Open country (O) 2 22 19 15 9 131 3 4

Street (S) 0 1 4 8 5 5 122 1

Tall building (T) 4 9 7 23 3 19 3 110

4.2 Experimental Results
In our experiments, we randomly divided the OT database
into two halves: one for constructing the visual vocabulary,
another for testing. Since our approach is unsupervised, the
class labels are not involved in our experiments, except for
evaluation of the clustering results. The entire methodology
was repeated 30 times to evaluate the performance. For com-
parison, we have also applied three other mixture-modeling
approaches: the finite GD mixture model (FiGDMM), the in-
finite Gaussian mixture model (InGMM) and the finite Gaus-
sian mixture model (FiGMM). To make a fair comparison,
all of the aforementioned approaches are learned through
incremental variational inference. Table 1 shows the aver-
age confusion matrix of the OT database calculated by the
proposed InGDMM. Table 2 illustrates the average catego-
rization performance using different approaches for the OT
database. As we can see from this table, it is obvious that
our approach (InGDMM) provides the best performance in



terms of the highest categorization rate (77.47%) among all
the tested approaches. In addition, we can observe that better

Table 2: The average classification accuracy rate (Acc) (%)
obtained over 30 runs using different approaches.

Method InGDMM FiGDMM InGMM FiGMM

Acc(%) 77.47 74.25 72.54 70.19

performances are obtained for approaches that adopt the in-
finite mixtures (InGDMM and InGMM) than the correspond-
ing finite mixtures (FiGDMM and FiGMM), which demon-
strate the advantage of using infinite mixture models over fi-
nite ones. Moreover, according to Table 2, GD mixture has
higher performance than Gaussian mixture which verifies that
the GD mixture model has better modeling capability than the
Gaussian for proportional data clustering.

5 Conclusion
In this work, we have presented an incremental nonpara-
metric Bayesian approach for clustering. The proposed ap-
proach is based on infinite GD mixture models with a Dirich-
let process framework, and is learned using an incremental
variational inference framework. Within this framework, the
model parameters and the number of mixture components
are determined simultaneously. The effectiveness of the pro-
posed approach has been evaluated on a challenging applica-
tion namely visual scenes clustering. Future works could be
devoted to the application of the proposed algorithm for other
data mining tasks involving continually changing or growing
volumes of proportional data.
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